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Abstract
We prove that affine Coxeter groups are profinitely rigid.
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1 Introduction

For a group G we denote by F(G) the set of isomorphism classes of finite quotients of G. A
group G is called profinitely rigid relative to a class of groups C if G ∈ C and for any group
H in the class C whenever F(G) = F(H), then G ∼= H . A finitely generated residually
finite group G is called profinitely rigid if G is profinitely rigid among all finitely generated
residually finite groups.

Theorem 1.1 Affine Coxeter groups are profinitely rigid.

Given a finite graph � with the vertex set V (�), the edge set E(�) and an edge-labeling
m : E(�) → N≥3 ∪ {∞}, the associated Coxeter group W� is given by the presentation

W� =
〈
V (�)

∣∣∣∣ v
2 for all v ∈ V (�), (vw)2 if {v,w} /∈ E(�),

(vw)m({v,w}) if {v,w} ∈ E(�) and m({v,w}) < ∞
〉
.
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Fig. 1 Coxeter graphs of affine type

The Coxeter groups associated to the graphs in Fig. 1 are precisely the irreducible affine
Coxeter groups. More generally, a Coxeter group W� is affine if � is a disjoint union of
those graphs. It was shown in [17] that irreducible affine Coxeter groups are profinitely rigid
relative to the class consisting of all Coxeter groups, our main result generalises this. Other
work on profinite rigidity of Coxeter groups can be found in [3, 4, 6, 24].

An n-dimensional crystallographic group G is a discrete, cocompact subgroup of the
group of isometries of the Euclidean space E

n . An n-dimensional crystallographic group G
always gives rise to the short exact sequence 1 ↪→ Z

n ↪→ G � P � 1 where P is finite
and is called the point group of G. By definition, G is symmorphic if the above short exact
sequence splits. Note that affineCoxeter groups are examples of symmorphic crystallographic
groups.

The next proposition collects old and new profinite invariants of crystallographic groups.
A group G is said to be just infinite if G itself is infinite but all proper quotients of G are
finite. Let G and H be crystallographic groups with point groups P1, P2 � GLn(Z). By
definition, P1 and P2 are in the same Q-class if they are conjugate in GLn(Q). For a group
G, the poset CF(G) is the lattice of finite subgroups of G modulo the conjugacy relation.

Proposition 1.2 Let G be an n-dimensional crystallographic group and H be a finitely gener-
ated residually finite group. If F(G) = F(H), then H is an n-dimensional crystallographic
groupwhose point group is isomorphic to the point group of G. In particular, if G is profinitely
rigid relative to the class of n-dimensional crystallographic groups, then G is profinitely rigid
in the absolute sense. Moreover, the following statements hold

(1) CF(G) = CF(H);
(2) G is torsion free if and only if H is torsion free;
(3) G is centreless if and only if H is centreless;
(4) G is just infinite if and only if H is just infinite;
(5) Gab ∼= H ab;
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(6) G is symmorphic if and only if H is symmorphic;
(7) the point group of G is in the same Q-class as the point group of H.

Proof The first paragraph of the proposition is given by Proposition 2.10. We now, prove the
“moreover”. (1) is Proposition 2.8, (2) is given by Proposition 2.10, (3) is Proposition 2.12,
(4) is Proposition 2.13, (5) is classical (see for example [23]), (6) essentially follows from
Grunewald–Zalesskii [13] but we include a proof for completeness (see Proposition 2.10),
and finally (7) is due to Piwek–Popovic–Wilkes and follows from the fact that the point
groups of G and H are conjugate in GLn(Ẑ) by [21, page 554] and conjugacy in GLn(Q) is
a necessary condition for conjugacy over Ẑ [21, page 558].

Remark 1.3 If follows from Proposition 1.2 and [21] that every crystallographic group in
dimension at most 4 is profinitely rigid. Note that [11] provides an example of an 11-
dimensional crystallographic group with point group of order 55 which is not profinitely
rigid. Further, for each prime number p ≥ 23 there exist non profinitely rigid crystallographic
groups of shape Z

p−1
� Zp , see [5, Theorem 1].

Remark 1.4 Since we wrote this paper it has come to light that Theorem 1.1 was proven
independently in [19]. The authors there in fact prove first order rigidity of affine Coxeter
groups and then appeal to a result of Oger [18] which states the two notions are equivalent
for abelian-by-finite groups.

2 The ingredients in Proposition 1.2

The following lemma characterises crystallographic groups among virtually free abelian
groups of positive rank algebraically.

Lemma 2.1 Let G be a virtually free abelian group of rank n ≥ 1. The group G is an n-
dimensional crystallographic group if and only if G does not have non-trivial finite normal
subgroups.

Proof If G is an n-dimensional crystallographic group, then by definition G acts faithfully,
cocompactly and by isometries on E

n . Let � : G → Isom(En) denote a faithful cocompact
action. Note that the set of fixed points of an isometry of E

n is always either empty or an
affine subspace, see [1, Part II, Proposition 6.5].

Suppose for a contradiction that N � G is a non-trivial finite normal subgroup.

Claim 2.2 Fix(�(N )) = {x ∈ E
n | �(n)(x) = x for all n ∈ N } is a non-empty affine

subspace of E
n .

Proof For x ∈ E
n , the orbit O = �(N )(x) is bounded since N is finite. Hence the convex hull

of O spans a convex polytope. Clearly, �(N ) fixes the polytope (not necessarily pointwise
but as a polytope). Hence, it fixes the geometric center (also known as the centroid) of
the polytope. Since Fix(�(N )) is non-empty it must be an affine subspace. In particular,
Fix(�(N )) is closed and convex. �

Claim 2.3 Fix(N ) is G invariant.

Proof Let g ∈ G. Then �(g)(Fix(�(N ))) = Fix(�(gNg−1)) = Fix(�(N )) by elementary
calculations. �
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Claim 2.4 There exists a constant C such that for every x ∈ E
n we have d(x,Fix(�(N ))) ≤

C .

Proof Since the action is cocompact, there exists a compact set K ⊆ E
n such that⋃

g∈G
�(g)(K ) = E

n , hence the supremum of the distance of two points in K is the desired

constant C . �

Claim 2.5 Fix(�(N )) = E
n .

Proof Since Fix(�(N )) is an affine subspace, there exists an orthogonal projectionπ : E
n →

Fix(�(N )). Now suppose there exists a point x0 ∈ E
n −Fix(�(N )). Consider the unit speed

straight line c : [0,∞) → E
n starting in π(x0) and going through x0. By construction and

convexity of Fix(�(N ))we obtain d(c(t), π(x0)) = t for all t ∈ [0,∞), contradicting Claim
2.4. �

This is a contradiction, since the action is faithful and we just showed that N is contained in
the kernel of �.

On the other hand, if G is not crystallographic, then by [26] there exists a non-trivial
finite normal subgroup N � G such that G/N is crystallographic. Hence, if G does not have
non-trivial finite normal subgroups, then G is crystallographic. 
�

Let G be a group and N be the set of all finite index normal subgroups of G. We equip
each G/N , N ∈ N with the discrete topology and endow

∏
N∈N G/N with the product

topology. We define a map

ι : G →
∏
N∈N

G/N by g �→ (gN )N∈N .

The map ι is injective if and only if G is residually finite. The profinite completion of G,
denoted by Ĝ, is defined as Ĝ := ι(G). Let G and H be finitely generated residually finite
groups. Then F(G) = F(H) if and only if Ĝ ∼= Ĥ , see [9].

Lemma 2.6 Let G be a finitely generated residually finite group. Denote by ι : G → Ĝ the
canonical homomorphism. If N � G is a finite normal subgroup, then ι(N ) is normal in Ĝ.

Compare to the proof of Theorem 3.6 in [3].

Proof Assume for contradiction that ι(N ) is not normal in Ĝ. Then there exist n ∈ ι(N ) and
g ∈ Ĝ such that gng−1 /∈ ι(N ). Hence the finite set S := {

gng−1m | m ∈ ι(N )
}
does not

include the trivial element. We know that ι(N ) = {m1, . . . ,ml}. Since Ĝ is residually finite,
there exists an epimorphism ψk : Ĝ � Hk with Hk finite and ψk(gng−1mk) 
= 1 for every
k ∈ {1, . . . , l}.

Define ψ = ψ1 × . . . × ψl : Ĝ → H1 × . . . × Hl by (ψ1 × . . . × ψl)(h) =
(ψ1(h), . . . , ψl(h)). In particular, this map has finite image and 1 /∈ ψ(S). But ψ ◦ ι(N ) is
normal in the image ψ ◦ ι(G), and ψ ◦ ι(G) = ψ(Ĝ) by [3, Lemma 2.1], so it is necessary
that 1 ∈ ψ(S). This contradiction shows that ι(N ) is normal in Ĝ. 
�

Given a group G we denote by CF(G) the set of conjugacy classes of all finite subgroups
in G. We define a partial order on CF(G) as follows: [A] ≤ [B] if there exists a g ∈ G such
that A ⊆ gBg−1.

Proposition 2.7 Let G be a finitely generated virtually free abelian group. Then, CF(G) =
CF(Ĝ).
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Proof Let G be a finitely generated virtually free abelian group. We define a map
ψ : CF(G) → CF(Ĝ) via ψ ([A]) := [ι(A)]. Note ψ is clearly order preserving.

Virtually abelian groups are finite subgroup separable by [12, Theorem 1]. Thus by [6,
Lemma 3.4] the map ψ is injective.

We follow the proof strategy used in [15, Theorem 2.7]. For the surjectivity we show that
a finite subgroup of Ĝ is conjugate to a finite subgroup of G. Let H denote a finite subgroup
of Ĝ. Since G is virtually free abelian, there exists a normal subgroup A ∼= Z

n such that
Q := G/A is finite. Thus, we have H ⊆ G · Â = Â · G. Define ρ : H × Â → Â where
ρ(h, a) = hah−1. Since G and Â normalize Â, so does H . Thus Â is an H -module, A is an
H -submodule and Â/A is an H -module.

Let h ∈ H . There exist elements gh ∈ G and xh ∈ Â such that h = xhgh . The element xh
is in general not uniquely determined by h, however, its image in Â/A is, since G ∩ Â = A.

Consider the map D : H → Â/A by h �→ xh A. A computation shows that the map
D is a derivation, that is, D(h1h2) = D(h1) + h1D(h2), where h1D(h2) = h1xh2h

−1
1 A,

for h1, h2 ∈ H . We claim that H1(H ; Â/A) = 0. Indeed, let k denote the order of H ,
let f ∈ H1(H ; Â/A) denote a derivation and g ∈ H an arbitrary element and set x :=∑

h∈H f (h). Now, we can compute that gx = ∑
h∈H f (h) − k f (g) = x − k f (g). So we

obtain k f (g) = gx ′ − x ′ for x ′ := −x in Â/A. Since Â/A is k-divisible, we can divide by
k and obtain f (g) = gy − y for y = x ′/k. Thus, f = 0.

Since H1(H ; Â/A) = 0, we see that D is an inner derivation, that is there exists a
b ∈ Â such that D(h) = hbh−1b−1A for every h ∈ H . It follows that bhb−1 ∈ G, since
D(h) = xh A = hbh−1b−1A, which implies ghbhb−1 ∈ A ⊆ G. Hence, bHb−1 ⊆ G as
desired. This implies the surjectivity of ψ . 
�
Proposition 2.8 Let G be a finitely generated virtually free abelian group and H be a finitely
generated residually finite group such that Ĝ ∼= Ĥ . Then, CF(G) = CF(H).

Proof Since Ĝ ∼= Ĥ is virtually abelian and H ↪→ Ĥ it follows that H is a virtually free
abelian group. Hence, by Proposition 2.7 we have order isomorphisms CF(G) → CF(Ĝ) →
CF(Ĥ) → CF(H). Let α denote the composite isomorphism and note that for any [A] ∈
CF(G) and B ∈ α([A]) we have A ∼= B. 
�
Lemma 2.9 Let G be a crystallographic group with point group P. Then G is symmorphic
if and only if G has a subgroup isomorphic to P.

Proof Let 1 ↪→ Z
n ↪→ G

π
� P � 1 be the short exact sequence associated to G. If there

exists a group homomorphism ϕ : P → G such that π ◦ ϕ = idP , then ϕ is injective and
therefore G has a subgroup ϕ(P) ∼= P .

For the other direction let H � G be a subgroup such that H ∼= P . Since the kernel of
π is torsion free, the map π|H : H → P is injective and therefore an isomorphism since
|H | = |P|. We define φ := π−1

|H . It is straightforward to verify that φ is a section. 
�
Proposition 2.10 Let G be an n-dimensional crystallographic group with point group P and
H be a finitely generated residually finite group. If Ĝ ∼= Ĥ , then H is an n-dimensional
crystallographic group with point group isomorphic to P. Moreover,

(1) G is symmorphic if and only if H is symmorphic.
(2) G is torsion free if and only if H is torsion free.

Proof Let H be a finitely generated residually finite group with Ĝ ∼= Ĥ . By [13, Proposition
2.10] follows that H is a virtually free abelian group of rank n with quotient isomorphic to
P .
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By Lemma 2.1 the crystallographic group G does not have non-trivial finite normal sub-
groups, thus by Proposition 2.7 we know that Ĝ does not have non-trivial finite normal
subgroups. Hence, Ĥ and therefore H does not have any non-trivial finite normal subgroups
either. Thus, by Lemma 2.1 we see that H is an n-dimensional crystallographic group.

Now, Proposition 2.8 implies that G is torsion free if and only if H is torsion free. Further,
G has a subgroup isomorphic to P if and only if H has a subgroup isomorphic to P . Thus,
by Lemma 2.9 we obtain that G is symmorphic if and only if H is symmorphic. 
�
Theorem 2.11 [22, Theorem 6] Let G be a crystallographic group. Then Z(G) ∼= Z

n, where
n is the rank of the abelianization of G.

Proposition 2.12 Let G be an n-dimensional crystallographic group. Then Ĝ is centreless if
and only if G is centreless.

Proof We have Z(G) ⊆ Z(Ĝ) (see [2, Lemma 2.1]). Hence, if Ĝ is centreless, then G is
centreless as well.

Now, assume that Z(G) is trivial. By Theorem 2.11 we know that G has finite abelian-
ization, thus the commutator subgroup [G,G] has finite index in G and therefore [G,G] =
[̂G,G] has finite index in Ĝ. It follows that Ĝab is finite.

The profinite completion Ĝ has a normal subgroup N isomorphic to Ẑn such that Ĝ/N ∼=
P where P is the point group of G. Let m = |P|.

Assume for a contradiction that Ĝ has a non-trivial centre. By Proposition 2.7 we know
that Ĝ does not have non-trivial finite normal subgroups, hence the torsion part of the centre
of Ĝ is trivial. Thus there exists a non-trivial n0 ∈ N ∩ Z(Ĝ).

Now we consider the transfer map tr : Ĝ → N defined by Schur in [25] as follows: let
g1, . . . , gm be a set of left coset representatives of N in Ĝ. For g ∈ Ĝ and i = 1, . . . ,m,
there exists ni ∈ N such that ggi = g jni for some g j . We define tr(g) := n1 + . . . + nm .
In particular we have: tr(n0) = m · n0, thus the order of tr(n0) is infinite. Hence, Ĝ has an
infinite abelian quotient which contradicts the fact that the abelianization of Ĝ is finite. 
�
Proposition 2.13 Let G be an n-dimensional crystallographic group with point group P and
H be a finitely generated residually finite group. If Ĝ ∼= Ĥ , then G is just infinite if and only
if H is just infinite.

Proof By Proposition 2.10 we have that H is a crystallographic group. We denote by P ′
the point group of H . Since Ĝ ∼= Ĥ , the point groups P and P ′ are in the same Q-class
by [21, page 558]. A result of Ratcliffe–Tschantz [22, Theorem 11] shows that a crystallo-
graphic group is just infinite if and only if the corresponding representation of the point group
P → GLn(Z) is Z-irreducible. Moreover, by [7, page 497] we have that Z-irreducibility is
equivalent toQ-irreducibility. SinceQ-irreducibility is preserved by conjugation in GLn(Q),
it follows that G is just infinite if and only if H is just infinite. 
�

3 Proof of Theorem 1.1

The following lemma follows from [8, Proposition 17.2.1], [20, Theorem 3.4], and Lemma
2.1.

Lemma 3.1 ACoxeter groupW� is crystallographic if and only if every connected component
of � is isomorphic to one of the graphs in Fig. 1.
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Proof of Theorem 1.1 We first prove the result for the irreducible crystallographic Coxeter
groups. Let X̃n be one of the graphs in Fig. 1 and let W = WX̃n . Then W ∼= Q(X∨

n ) �

WXn , where Q(X∨
n ) ∼= Z

n is the corresponding coroot lattice and WXn is the corresponding
finite Coxeter group. We denote by Q(Xn) the corresponding root lattice and by P(Xn)

the weight lattice. See [14, pages 81 and 118] for the definitions of these lattices and for the
Coxeter graphs of type Xn . Note that by Lemma 3.1 the Coxeter groupW is an n-dimensional
crystallographic group.

Let G be a finitely generated residually finite group such that Ŵ ∼= Ĝ. If n ≤ 4, then
W ∼= G by Remark 1.3. Now we assume that n ≥ 5. By Proposition 1.2 it follows that G
is an n-dimensional symmorphic crystallographic group whose point group is in the same
Q-class as WXn and W ab ∼= Gab. We consider two cases:

Case 1: Assume that X̃n is not of type B̃n or C̃n .
Since n ≥ 5 the Coxeter graph X̃n is of type Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8. Thus the corresponding

root lattice Q(Xn) is equal to the coroot lattice Q(X∨
n ), see [14, pages 102–105]. Hence

W ∼= Q(Xn) � WXn .
By [10, Theorem 1], there exists a WXn invariant lattice L such that G ∼= L � WXn and

Q(Xn) ⊆ L ⊆ P(Xn). Thus W is a normal subgroup of G of index |L/Q(Xn)|. Note that
W ab ∼= W ab

Xn
∼= Z2 by [17, Propositions 2.2 and 2.3]. Since Gab ∼= W ab ∼= Z2, it follows that

L/Q(Xn) is trivial or is isomorphic to Z2.
The lattice Q(Xn) is a normal subgroup of G, thus G/Q(Xn) ∼= L/Q(Xn) � WXn . Since

|L/Q(Xn)| ≤ 2, the semidirect product is indeed a direct product. Thus G/Q(Xn) ∼=
L/Q(Xn) × WXn � L/Q(Xn) × W ab

Xn
∼= L/Q(Xn) × Z2. Since Gab ∼= W ab ∼= Z2 we

conclude that L/Q(Xn) is trivial and therefore G ∼= W .
Case 2: Assume that X̃n is of type B̃n or C̃n .
First we note thatWBn = WCn . Further, the irreducible affine Coxeter groupWX̃n does not

have a quotient isomorphic to (Z2
2) � WBn or Z4 � WBn by [16, Proposition 7.2].

By [10, Theorem 1] and the discussion on page 217 in [10], there exist WBn invariant
lattices L1 ⊆ L2 ⊆ L3 such that |Li/Li−1| = 2 for i = 2, 3 and WB̃n

∼= Ll � WBn ,
WC̃n

∼= Lk � WBn and G ∼= Lm � WBn for k, l,m ∈ {1, 2, 3}. Moreover, L3/L1 ∼= Z4 if n
is odd and L3/L1 ∼= Z

2
2 if n is even. Thus the group L3 � WBn has a quotient isomorphic to

Z
2
2 � WBn if n is odd and Z4 � WBn if n is even, namely (L3 � WBn )/L1.
Further, the group L2 �WBn has a quotient isomorphic toZ

3
2. More precisely: the abelian-

ization of the point groupWBn isZ
2
2. Hence, L2�WBn � (L2�WBn )/L1 ∼= L2/L1�WBn �

Z2 × W ab
Bn

∼= Z
3
2.

Note that the abelianization of WB̃n is isomorphic to Z
2
2. Thus WB̃n

∼= L1 � WBn .
Since WC̃n does not have a quotient isomorphic to Z

2
2 � WBn or Z4 � WBn we know

that WC̃n
∼= L2 � WBn . Thus the groups WB̃n

∼= L1 � WBn and WC̃n
∼= L2 � WBn can be

distinguished from L3 � WBn by their finite quotients.
Further, the abelianization of WC̃n is Z

3
2, thus the group WB̃n can be distinguished from

WC̃n by the abelianisation. Finally, we obtain G ∼= WX̃n .
It remains to deal with the case of a non-trivial direct product. Let W�1 , . . . ,W�n be

irreducible affine Coxeter groups. Assume that Ŵ�1 × . . .× Ŵ�n
∼= Ĝ. By Proposition 1.2,G

is a symmorphic crystallographic group.Wemay decomposeG as a direct product of directly
indecomposable groupsG1, . . . ,Gm , thusG ∼= G1× . . .×Gm and eachGi is a symmorphic
crystallographic group for i = 1, . . . ,m. Now, applying [13, Proposition 2.17 (2)] we obtain
n = m and that there exists σ ∈ Sym(m) such that Ŵ�i

∼= Ĝσ(i). More precisely, the
direct product structure gives rise to a blockmatrix structure in the representation of the
point group in GLn(Ẑ), this is preserved by conjugation and yields the desired conclusions.
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Since irreducible affine Coxeter groups are profinitely rigid we obtain W�i
∼= Gσ(i). Thus

W�1 × . . . × W�m
∼= G. 
�
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