PROFINITE RIGIDITY OF AFFINE COXETER GROUPS

SAMUEL M. CORSON, SAM HUGHES, PHILIP MÖLLER, AND OLGA VARGHESE

Abstract. We prove that affine Coxeter groups are profinitely rigid.

1. Introduction

For a group G we denote by $\mathcal{F}(G)$ the set of isomorphism classes of finite quotients of G. A group G is called profinitely rigid relative to a class of groups \mathcal{C} if $G \in \mathcal{C}$ and for any group H in the class \mathcal{C} whenever $\mathcal{F}(G)=$ $\mathcal{F}(H)$, then $G \cong H$. A finitely generated residually finite group G is called profinitely rigid if G is profinitely rigid among all finitely generated residually finite groups.

Theorem 1.1. Affine Coxeter groups are profinitely rigid.
Given a finite graph Γ with the vertex set $V(\Gamma)$, the edge set $E(\Gamma)$ and an edge-labeling $m: E(\Gamma) \rightarrow \mathbb{N}_{\geqslant 3} \cup\{\infty\}$, the associated Coxeter group W_{Γ} is given by the presentation

$$
W_{\Gamma}=\left\langle\begin{array}{l|l}
V(\Gamma) & \begin{array}{l}
v^{2} \text { for all } v \in V(\Gamma),(v w)^{2} \text { if }\{v, w\} \notin E(\Gamma) \\
(v w)^{m(\{v, w\})} \text { if }\{v, w\} \in E(\Gamma) \text { and } m(\{v, w\})<\infty
\end{array}
\end{array}\right\rangle
$$

The Coxeter groups associated to the graphs in Figure 1 are precisely the irreducible affine Coxeter groups. More generally, a Coxeter group W_{Γ} is affine if Γ is a disjoint union of those graphs. It was shown in [MV24] that irreducible affine Coxeter groups are profinitely rigid relative to the class consisting of all Coxeter groups, our main result generalises this. Other work on profinite rigidity of Coxeter groups can be found in [BCR16, BMRS21, CHMV23, RS22].

An n-dimensional crystallographic group G is a discrete, cocompact subgroup of the group of isometries of the Euclidean space \mathbb{E}^{n}. An n-dimensional crystallographic group G always gives rise to the short exact sequence $1 \hookrightarrow \mathbb{Z}^{n} \hookrightarrow G \rightarrow P \rightarrow 1$ where P is finite and is called the point group of G. By definition, G is symmorphic if the above short exact sequence splits. Note that affine Coxeter groups are examples of symmorphic crystallographic groups.

The next proposition collects old and new profinite invariants of crystallographic groups. A group G is said to be just infinite if G itself is infinite but all proper quotients of G are finite. Let G and H be crystallographic groups with point groups $P_{1}, P_{2} \leqslant \mathrm{GL}_{n}(\mathbb{Z})$. By definition, P_{1} and P_{2} are in

[^0]

Figure 1. Coxeter graphs of affine type.
the same \mathbb{Q}-class if they are conjugate in $\mathrm{GL}_{n}(\mathbb{Q})$. For a group G, the lattice $\mathcal{C \mathcal { F }}(G)$ is the lattice of finite subgroups of G modulo the conjugacy relation.

Proposition 1.2. Let G be an n-dimensional crystallographic group and H be a finitely generated residually finite group. If $\mathcal{F}(G)=\mathcal{F}(H)$, then H is an n-dimensional crystallographic group whose point group is isomorphic to the point group of G. In particular, if G is profinitely rigid relative to the class of n-dimensional crystallographic groups, then G is profinitely rigid in the absolute sense. Moreover, the following statements hold
(1) $\mathcal{C F}(G)=\mathcal{C \mathcal { F }}(H)$;
(2) G is torsion free if and only if H is torsion free;
(3) G is centreless if and only if H is centreless;
(4) G is just infinite if and only if H is just infinite;
(5) $G^{a b} \cong H^{a b}$;
(6) G is symmorphic if and only if H is symmorphic;
(7) the point group of G is in the same \mathbb{Q}-class as the point group of H.

Proof. The first paragraph of the proposition is given by Proposition 2.6. We now, prove the "moreover". (1) is Proposition 2.4, (2) is given by Proposition 2.6, (3) is Proposition 2.8, (4) is Proposition 2.9, (5) is classical (see for example [Rei18]), (6) essentially follows from Grunewald-Zalesskii [GZ11] but we include a proof for completeness (See Proposition 2.6), and finally (7) is due to Piwek-Popovic-Wilkes [PPW21, page 558].

Remark 1.3. If follows from Proposition 1.2 and [PPW21] that every crystallographic group in dimension at most 4 is profinitely rigid. Note that [FNP80] provides an example of an 11-dimensional crystallographic group with point group of order 55 which is not profinitely rigid. Further, for each prime number $p \geqslant 23$ there exist non profinitely rigid crystallographic groups of shape $\mathbb{Z}^{p-1} \rtimes \mathbb{Z}_{p}$, see [Bri71, Theorem 1].

Acknowledgements. This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 850930). OV is supported by DFG grant VA 1397/2-2.

2. The ingredients in Proposition 1.2

The following lemma is well known.
Lemma 2.1. Let G be a virtually free abelian group of rank $n \geqslant 1$. The group G is an n-dimensional crystallographic group if and only if G does not have non-trivial finite normal subgroups.

Let G be a group and \mathcal{N} be the set of all finite index normal subgroups of G. We equip each $G / N, N \in \mathcal{N}$ with the discrete topology and endow $\prod_{N \in \mathcal{N}} G / N$ with the product topology. We define a map

$$
\iota: G \rightarrow \prod_{N \in \mathcal{N}} G / N \text { by } g \mapsto(g N)_{N \in \mathcal{N}}
$$

The map ι is injective if and only if G is residually finite. The profinite completion of G, denoted by \widehat{G}, is defined as $\widehat{G}:=\overline{\iota(G)}$. Let G and H be finitely generated residually finite groups. Then $\mathcal{F}(G)=\mathcal{F}(H)$ if and only if $\widehat{G} \cong \widehat{H}$, see [DFPR82].

Lemma 2.2. Let G be a finitely generated residually finite group. Denote by $\iota: G \rightarrow \widehat{G}$ the canonical homomorphism. If $N \lessgtr G$ is a finite normal subgroup, then $\iota(N)$ is normal in \widehat{G}.

Compare to the proof of Theorem 3.6 in [BCR16].
Proof. Assume for contradiction that $\iota(N)$ is not normal in \widehat{G}. Then there exist $n \in \iota(N)$ and $g \in \widehat{G}$ such that $g n g^{-1} \notin \iota(N)$. Hence the finite set $S:=\left\{g n g^{-1} m \mid m \in \iota(N)\right\}$ does not include the trivial element. We know that $\iota(N)=\left\{m_{1}, \ldots, m_{l}\right\}$. Since \widehat{G} is residually finite, there exists an epimorphism $\psi_{k}: \widehat{G} \rightarrow H_{k}$ with H_{k} finite and $\psi_{k}\left(g n g^{-1} m_{k}\right) \neq 1$ for every $k \in\{1, \ldots, l\}$.

Define $\psi=\psi_{1} \times \ldots \times \psi_{l}: \widehat{G} \rightarrow H_{1} \times \ldots \times H_{l}$ by $\left(\psi_{1} \times \ldots \times \psi_{l}\right)(h)=$ $\left(\psi_{1}(h), \ldots, \psi_{l}(h)\right)$. In particular, this map has finite image and $1 \notin \psi(S)$. But $\psi \circ \iota(N)$ is normal in the image $\psi \circ \iota(G)$, and $\psi \circ \iota(G)=\psi(\widehat{G})$ by [BCR16, Lemma 2.1], so it is necessary that $1 \in \psi(S)$. This contradiction shows that $\iota(N)$ is normal in \widehat{G}.

Given a group G we denote by $\mathcal{C \mathcal { F }}(G)$ the set of conjugacy classes of all finite subgroups in G. We define a partial order on $\mathcal{C \mathcal { F }}(G)$ as follows: $[A] \leqslant[B]$ if there exists a $g \in G$ such that $A \subseteq g B g^{-1}$.

Proposition 2.3. Let G be a finitely generated virtually free abelian group. Then, $\mathcal{C F}(G)=\mathcal{C F}(\widehat{G})$.

Proof. Let G be a finitely generated virtually free abelian group. We define a map $\psi: \mathcal{C} \mathcal{F}(G) \rightarrow \mathcal{C} \mathcal{F}(\widehat{G})$ via $\psi([A]):=[\iota(A)]$. Note ψ is clearly order preserving.

Virtually abelian groups are finite subgroup separable by [GS78, Theorem 1]. Thus by [CHMV23, Lemma 3.4] the map ψ is injective.

We follow the proof strategy used in [KW93, Theorem 2.7]. For the surjectivity we show that a finite subgroup of \widehat{G} is conjugate to a finite subgroup of G. Let H denote a finite subgroup of \widehat{G}. Since G is virtually free abelian, there exists a normal subgroup $A \cong \mathbb{Z}^{n}$ such that $Q:=G / A$ is finite. Thus, we have $H \subseteq G \cdot \hat{A}=\hat{A} \cdot G$. Define $\rho: H \times \widehat{A} \rightarrow \hat{A}$ where $\rho(h, a)=h a h^{-1}$. Since G and \hat{A} normalize \hat{A}, so does H. Thus \hat{A} is an H-module, A is an H-submodule and \widehat{A} / A is an H-module.

Let $h \in H$. There exist elements $g_{h} \in G$ and $x_{h} \in \widehat{A}$ such that $h=x_{h} g_{h}$. The element x_{h} is in general not uniquely determined by h, however, its image in \widehat{A} / A is, since $G \cap \widehat{A}=A$.

Consider the map $D: H \rightarrow \hat{A} / A$ by $h \mapsto x_{h} A$. A computation shows that the map D is a derivation, that is, $D\left(h_{1} h_{2}\right)=D\left(h_{1}\right)+h_{1} D\left(h_{2}\right)$, where $h_{1} D\left(h_{2}\right)=h_{1} x_{h_{2}} h_{1}^{-1} A$, for $h_{1}, h_{2} \in H$. We claim that $H^{1}(H ; \hat{A} / A)=0$. Indeed, let k denote the order of H, let $f \in H^{1}(H ; \widehat{A} / A)$ denote a derivation and $g \in H$ an arbitrary element and set $x:=\sum_{h \in H} f(h)$. Now, we can compute that $g x=\sum_{h \in H} f(h)-k f(g)=x-k f(g)$. Therefore, $k f$ equals 0 in $H^{1}(H ; \hat{A} / A)$; so $k f(g)=g x^{\prime}-x^{\prime}$ for some $x^{\prime} \in \hat{A} / A$. Since \widehat{A} / A is k-divisible, we can divide by k and obtain $f(g)=g y-y$ for $y=x^{\prime} / k$. Thus, $f=0$.

Since $H^{1}(H ; \widehat{A} / A)=0$, we see that D is an inner derivation, that is there exists a $b \in \hat{A}$ such that $D(h)=h b h^{-1} b^{-1} A$ for every $h \in H$. It follows that $b h b^{-1} \in G$, since $D(h)=x_{h} A=h b h^{-1} b^{-1} A$, which implies $g_{h} b h b^{-1} \in A \subseteq$ G. Hence, $b \mathrm{Hb}^{-1} \subseteq G$ as desired. This implies the surjectivity of ψ.

Proposition 2.4. Let G be a finitely generated virtually free abelian group and H be a finitely generated residually finite group such that $\widehat{G} \cong \widehat{H}$. Then, $\mathcal{C F}(G)=\mathcal{C F}(H)$.
Proof. Since $\hat{G} \cong \hat{H}$ is virtually abelian and $H \hookrightarrow \hat{H}$ it follows that H is a virtually free abelian group. Hence, by Proposition 2.3 we have order isomorphisms $\mathcal{C F}(G) \rightarrow \mathcal{C F}(\widehat{G}) \rightarrow \mathcal{C F}(\hat{H}) \rightarrow \mathcal{C F}(H)$. Let α denote the composite isomorphism and note that for any $[A] \in \mathcal{C F}(G)$ and $B \in \alpha([A])$ we have $A \cong B$.

Lemma 2.5. Let G be a crystallographic group with point group P. Then G is symmorphic if and only if G has a subgroup isomorphic to P.

Proof. Let $1 \hookrightarrow \mathbb{Z}^{n} \hookrightarrow G \xrightarrow{\pi} P \rightarrow 1$ be the short exact sequence associated to G. If there exists a group homomorphism $\varphi: P \rightarrow G$ such that $\pi \circ \varphi=i d_{P}$, then φ is injective and therefore G has a subgroup $\varphi(P) \cong P$.

For the other direction let $H \leqslant G$ be a subgroup such that $H \cong P$. Since the kernel of π is torsion free, the map $\pi_{\mid H}: H \rightarrow P$ is injective and therefore an isomorphism since $|H|=|P|$. We define $\phi:=\pi_{\mid H}^{-1}$. It is straightforward to verify that ϕ is a section.

Proposition 2.6. Let G be an n-dimensional crystallographic group with point group P and H be a finitely generated residually finite group. If $\widehat{G} \cong \hat{H}$,
then H is an n-dimensional crystallographic group with point group isomorphic to P. Moreover,
(1) G is symmorphic if and only if H is symmorphic.
(2) G is torsion free if and only if H is torsion free.

Proof. Let H be a finitely generated residually finite group with $\widehat{G} \cong \hat{H}$. By [GZ11, Proposition 2.10] follows that H is a virtually free abelian group of rank n with quotient isomorphic to P.

By Lemma 2.1 the crystallographic group G does not have non-trivial finite normal subgroups, thus by Proposition 2.3 we know that \widehat{G} does not have non-trivial finite normal subgroups. Hence, \widehat{H} and therefore H does not have any non-trivial finite normal subgroups either. Thus, by Lemma 2.1 we see that H is an n-dimensional crystallographic group.

Now, Proposition 2.4 implies that G is torsion free if and only if H is torsion free. Further, G has a subgroup isomorphic to P if and only if H has a subgroup isomorphic to P. Thus, by Lemma 2.5 we obtain that G is symmorphic if and only if H is symmorphic.
Theorem 2.7. [RT10, Theorem 6] Let G be a crystallographic group. Then $Z(G) \cong \mathbb{Z}^{n}$, where n is the rank of the abelianization of G.
Proposition 2.8. Let G be an n-dimensional crystallographic group. Then \widehat{G} is centreless if and only if G is centreless.
Proof. We have $Z(G) \subseteq Z(\widehat{G})$ (see [BRS23, Lemma 2.1]). Hence, if \widehat{G} is centreless, then G is centreless as well.

Now, assume that $Z(G)$ is trivial. By Theorem 2.7 we know that G has finite abelianization, thus the commutator subgroup $[G, G$] has finite index in G and therefore $\overline{[G, G]}=\widehat{[G, G]}$ has finite index in \widehat{G}. It follows that $\widehat{G}^{\mathrm{ab}}$ is finite.

The profinite completion \widehat{G} has a normal subgroup N isomorphic to $\widehat{\mathbb{Z}^{n}}$ such that $\widehat{G} / N \cong P$ where P is the point group of G. Let $m=|P|$.

Assume for a contradiction that \widehat{G} has a non-trivial centre. By Proposition 2.3 we know that \widehat{G} does not have non-trivial finite normal subgroups, hence the torsion part of the centre of \widehat{G} is trivial. Thus there exists a non-trivial $n_{0} \in N \cap Z(\widehat{G})$.

Now we consider the transfer map $\operatorname{tr}: \widehat{G} \rightarrow N$ defined by Schur in [Sch02] as follows: let g_{1}, \ldots, g_{m} be a set of left coset representatives of N in \widehat{G}. For $g \in \widehat{G}$ and $i=1, \ldots, m$, there exists $n_{i} \in N$ such that $g g_{i}=g_{j} n_{i}$ for some g_{j}. We define $\operatorname{tr}(g):=n_{1}+\ldots+n_{m}$. In particular we have: $\operatorname{tr}\left(n_{0}\right)=m \cdot n_{0}$, thus the order of $\operatorname{tr}\left(n_{0}\right)$ is infinite. Hence, \widehat{G} has an infinite abelian quotient which contradicts the fact that the abelianization of \widehat{G} is finite.
Proposition 2.9. Let G be a virtually free abelian group of rank $n \geqslant 1$ with quotient P and H be a finitely generated residually finite group. If $\widehat{G} \cong \widehat{H}$, then G is just infinite if and only if H is just infinite.
Proof. By Proposition 2.6 we have that H is a crystallographic group. Since $\widehat{G} \cong \widehat{H}$, the point groups P and P^{\prime} are in the same \mathbb{Q}-class by [PPW21, page 558]. A result of Ratcliffe-Tschantz [RT10, Theorem 11] shows that a crystallographic group is just infinite if and only if the corresponding representation
of the point group $P \rightarrow \mathrm{GL}_{n}(\mathbb{Z})$ is \mathbb{Z}-irreducible. Moreover, by [CR62, page 497] we have that \mathbb{Z}-irreducibility is equivalent to \mathbb{Q}-irreducibility. Since \mathbb{Q} irreducibility is preserved by conjugation in $\mathrm{GL}_{n}(\mathbb{Q})$, it follows that G is just infinite if and only if H is just infinite.

3. Proof of Theorem 1.1

The following lemma follows from [Dav08, Proposition 17.2.1], [PV24, Theorem 3.4], and Lemma 2.1.

Lemma 3.1. A Coxeter group W_{Γ} is crystallographic if and only if every connected component of Γ is isomorphic to one of the graphs in Figure 1.

Proof of Theorem 1.1. We first prove the result for the irreducible crystallographic Coxeter groups. Let $\widetilde{\mathrm{X}}_{n}$ be one of the graphs in Figure 1 and let $W=W_{\widetilde{\mathrm{x}}_{n}}$. Then $W \cong Q\left(\mathrm{X}_{n}^{\vee}\right) \rtimes W_{\mathrm{X}_{n}}$, where $Q\left(\mathrm{X}_{n}^{\vee}\right) \cong \mathbb{Z}^{n}$ is the corresponding coroot lattice and $W_{\mathrm{x}_{n}}$ is the corresponding finite Coxeter group. We denote by $Q\left(\mathrm{x}_{n}\right)$ the corresponding root lattice and by $P\left(\mathrm{x}_{n}\right)$ the weight lattice. See [Kan01, pages 81 and 118] for the definitions of these lattices and for the Coxeter graphs of type X_{n}. Note that by Lemma 3.1 the Coxeter group W is an n-dimensional crystallographic group.

Let G be a finitely generated residually finite group such that $\widehat{W} \cong \widehat{G}$. If $n \leqslant 4$, then $W \cong G$ by Remark 1.3. Now we assume that $n \geqslant 5$. By Proposition 1.2 it follows that G is an n-dimensional symmorphic crystallographic group whose point group is in the same \mathbb{Q}-class as $W_{\mathrm{x}_{n}}$ and $W^{\mathrm{ab}} \cong G^{\mathrm{ab}}$. We consider two cases:

Case 1: Assume that $\widetilde{\mathrm{X}}_{n}$ is not of type $\widetilde{\mathrm{B}}_{n}$ or $\widetilde{\mathrm{C}}_{n}$.
Since $n \geqslant 5$ the Coxeter graph $\widetilde{\mathrm{X}}_{n}$ is of type $\tilde{\mathrm{A}}_{n}, \widetilde{\mathrm{D}}_{n}, \widetilde{\mathrm{E}}_{6}, \widetilde{\mathrm{E}}_{7}$ or $\widetilde{\mathrm{E}}_{8}$. Thus the corresponding root lattice $Q\left(\mathrm{X}_{n}\right)$ is equal to the coroot lattice $Q\left(\mathrm{X}_{n}^{\vee}\right)$, see [Kan01, pages 102-105]. Hence $W \cong Q\left(\mathrm{X}_{n}\right) \rtimes W_{\mathbf{x}_{n}}$.

By [Fei98, Theorem 1], there exists a $W_{\mathrm{x}_{n}}$ invariant lattice L such that $G \cong L \rtimes W_{\mathrm{x}_{n}}$ and $Q\left(\mathrm{X}_{n}\right) \subseteq L \subseteq P\left(\mathrm{X}_{n}\right)$. Thus W is a normal subgroup of G of index $\left|L / Q\left(\mathrm{X}_{n}\right)\right|$. Note that $W^{\mathrm{ab}} \cong W_{\mathrm{X}_{n}}^{\mathrm{ab}} \cong \mathbb{Z}_{2}$ by [MV24, Propositions 2.2 and 2.3]. Since $G^{\mathrm{ab}} \cong W^{a b} \cong \mathbb{Z}_{2}$, it follows that $L / Q\left(\mathrm{X}_{n}\right)$ is trivial or is isomorphic to \mathbb{Z}_{2}.

The lattice $Q\left(\mathrm{x}_{n}\right)$ is a normal subgroup of G, thus $G / Q\left(\mathrm{x}_{n}\right) \cong L / Q\left(\mathrm{X}_{n}\right) \rtimes$ $W_{\mathbf{x}_{n}}$. Since $\left|L / Q\left(\mathrm{X}_{n}\right)\right| \leqslant 2$, the semidirect product is indeed a direct product. Thus $G / Q\left(\mathrm{X}_{n}\right) \cong L / Q\left(\mathrm{X}_{n}\right) \times W_{\mathrm{X}_{n}} \rightarrow L / Q\left(\mathrm{X}_{n}\right) \times W_{\mathrm{X}_{n}}^{\mathrm{ab}} \cong L / Q\left(\mathrm{X}_{n}\right) \times \mathbb{Z}_{2}$. Since $G^{\mathrm{ab}} \cong W^{\mathrm{ab}} \cong \mathbb{Z}_{2}$ we conclude that $L / Q\left(\mathrm{x}_{n}\right)$ is trivial and therefore $G \cong W$.

Case 2: Assume that $\widetilde{\mathrm{X}}_{n}$ is of type $\widetilde{\mathrm{B}}_{n}$ or $\widetilde{\mathrm{C}}_{n}$.
First we note that $W_{\mathrm{B}_{n}}=W_{\mathrm{C}_{n}}$. Further, the irreducible affine Coxeter group $W_{\widetilde{\mathrm{x}}_{n}}$ does not have a quotient isomorphic to $\left(\mathbb{Z}_{2}^{2}\right) \rtimes W_{\mathrm{B}_{n}}$ or $\mathbb{Z}_{4} \rtimes W_{\mathrm{B}_{n}}$ by [Max98, Proposition 7.2].

By [Fei98, Theorem 1], there exist $W_{\mathrm{B}_{n}}$ invariant lattices $L_{1} \subseteq L_{2} \subseteq L_{3}$ such that $\left|L_{i} / L_{i-1}\right|=2$ for $i=2,3$ and $W_{\widetilde{\mathrm{B}}_{n}} \cong L_{l} \rtimes W_{\mathrm{B}_{n}}, W_{\widetilde{\mathrm{C}}_{n}} \cong L_{k} \rtimes W_{\mathrm{B}_{n}}$ and $G \cong L_{m} \rtimes W_{\mathrm{B}_{n}}$ for $k, l, m \in\{1,2,3\}$. Moreover, $L_{3} / L_{1} \cong \mathbb{Z}_{4}$ if n is odd and $L_{3} / L_{1} \cong \mathbb{Z}_{2}^{2}$ if n is even. Thus the group $L_{3} \rtimes W_{\mathrm{B}_{n}}$ has a quotient isomorphic to $\mathbb{Z}_{2}^{2} \rtimes W_{\mathrm{B}_{n}}$ if n is odd and $\mathbb{Z}_{4} \rtimes W_{\mathrm{B}_{n}}$ if n is even, namely $\left(L_{3} \rtimes W_{\mathrm{B}_{n}}\right) / L_{1}$.

Further, the group $L_{2} \rtimes W_{\mathrm{B}_{n}}$ has a quotient isomorphic to \mathbb{Z}_{2}^{3}. More precisely: the abelianization of the point group $W_{\mathrm{B}_{n}}$ is \mathbb{Z}_{2}^{2}. Hence, $L_{2} \rtimes$ $W_{\mathrm{B}_{n}} \rightarrow\left(L_{2} \rtimes W_{\mathrm{B}_{n}}\right) / L_{1} \cong L_{2} / L_{1} \rtimes W_{\mathrm{B}_{n}} \rightarrow \mathbb{Z}_{2} \times W_{\mathrm{B}_{n}}^{\mathrm{ab}} \cong \mathbb{Z}_{2}^{3}$.

Note that the abelianization of $W_{\widetilde{\mathbb{B}}_{n}}$ is isomorphic to \mathbb{Z}_{2}^{2}. Thus $W_{\widetilde{\mathbf{B}}_{n}} \cong$ $L_{1} \rtimes W_{\mathrm{B}_{n}}$.

Since $W_{\widetilde{\mathrm{C}}_{n}}$ does not have a quotient isomorphic to $\mathbb{Z}_{2}^{2} \rtimes W_{\mathrm{B}_{n}}$ or $\mathbb{Z}_{4} \rtimes W_{\mathrm{B}_{n}}$ we know that $W_{\widetilde{C}_{n}} \cong L_{2} \rtimes W_{\mathrm{B}_{n}}$. Thus the groups $W_{\widetilde{\mathrm{B}}_{n}} \cong L_{1} \rtimes W_{\mathrm{B}_{n}}$ and $W_{\widetilde{\mathrm{C}}_{n}} \cong L_{2} \rtimes W_{\mathrm{B}_{n}}$ can be distinguished from $L_{3} \rtimes W_{\mathrm{B}_{n}}$ by their finite quotients.
Further, the abelianization of $W_{\widetilde{C}_{n}}$ is \mathbb{Z}_{2}^{3}, thus the group $W_{\widetilde{\mathrm{B}}_{n}}$ can be distinguished from $W_{\widetilde{\mathrm{C}}_{n}}$ by the abelianisation. Finally, we obtain $G \cong W_{\widetilde{\mathrm{x}}_{n}}$.

It remains to deal with the case of a non-trivial direct product. Let $W_{\Gamma_{1}}, \ldots, W_{\Gamma_{n}}$ be irreducible affine Coxeter groups. Assume that $\widehat{W_{\Gamma_{1}}} \times$ $\ldots \times \widehat{W_{\Gamma_{n}}} \cong \widehat{G}$. By Proposition 1.2, G is a symmorphic crystallogrphic group. We may decompose G as a direct product of directly indecomposable groups G_{1}, \ldots, G_{m}, thus $G \cong G_{1} \times \ldots \times G_{m}$ and each G_{i} is a symmorphic crystallographic group for $i=1, \ldots, m$. Now, applying [GZ11, Proposition 2.17 (2)] we obtain $n=m$ and that there exists $\sigma \in \operatorname{Sym}(m)$ such that $\widehat{W_{\Gamma_{i}}} \cong \widehat{G_{\sigma(i)}}$. Since irreducible affine Coxeter groups are profinitely rigid we obtain $W_{\Gamma_{i}} \cong G_{\sigma(i)}$. Thus $W_{\Gamma_{1}} \times \ldots \times W_{\Gamma_{m}} \cong G$.

References

[BCR16] M. R. Bridson, M. D. E. Conder, and A. W. Reid. Determining Fuchsian groups by their finite quotients. Israel J. Math., 214(1):1-41, 2016. 10.1007/s11856-016-1341-6. Cited on Pages 1 and 3.
[BMRS21] Martin R. Bridson, D. B. McReynolds, Alan W. Reid, and Ryan Spitler. On the profinite rigidity of triangle groups. Bull. Lond. Math. Soc., 53(6):18491862, 2021. 10.1112/blms.12546. Cited on Page 1.
[Bri71] Robert C. Brigham. On the isomorphism problem for just-infinite groups. Communications on pure and applied mathematics, XXIV:789-796, 1971. Cited on Page 2.
[BRS23] Martin R. Bridson, Alan W. Reid, and Ryan Spitler. Absolute profinite rigidity, direct products, and finite presentability, 2023. arXiv:2312.06058. Cited on Page 5.
[CHMV23] S. M. Corson, S. Hughes, P. Möller, and O. Varghese. Higman-Thompson groups and profinite properties of right-angled Coxeter groups, 2023. arXiv:2309.06213 [math.GR]. Cited on Pages 1 and 4.
[CR62] C. W. Curtis and I. Reiner. Representation Theory of finite groups and associative algebras, volume 11 of Pure and Applied Mathematics. Interscience Publishers, New Yourk, 1962. Cited on Page 6.
[Dav08] Michael W. Davis. The geometry and topology of Coxeter groups, volume 32 of London Mathematical Society Monographs. Princeton University Press, 2008. Cited on Page 6.
[DFPR82] J. D. Dixon, E. W. Formanek, J. C. Poland, and L. Ribes. Profinite completions and isomorphic finite quotients. Journal of Pure and Applied Algebra, 23:227-231, 1982. Cited on Page 3.
[Fei98] Walter Feit. Integral representations of Weyl groups rationally equivalent to the reflection representation. J. Group Theory, 1(3):213-218, 1998. 10.1515/jgth.1998.013. Cited on Page 6.
[FNP80] H. Finken, J. Neubüser, and W. Plesken. Space groups and groups of primepower order. II. Classification of space groups by finite factor groups. Arch. Math. (Basel), 35(3):203-209, 1980. 10.1007/BF01235339. Cited on Page 2.
[GS78] Fritz Grunewald and Daniel Segal. Conjugacy in polycyclic groups. Comm. Algebra, 6(8):775-798, 1978. 10.1080/00927877808822268. Cited on Page 4.
[GZ11] Fritz Grunewald and Pavel Zalesskii. Genus for groups. J. Algebra, 326:130168, 2011. 10.1016/j.jalgebra.2010.05.018. Cited on Pages 2, 5, and 7.
[Kan01] Richard Kane. Reflection groups and invariant theory, volume 5 of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer-Verlag, New York, 2001. 10.1007/978-1-4757-3542-0. Cited on Page 6.
[KW93] Peter H. Kropholler and John S. Wilson. Torsion in profinite completions. J. Pure Appl. Algebra, 88(1-3):143-154, 1993. 10.1016/0022-4049(93) 90018-0. Cited on Page 4.
[Max98] George Maxwell. The normal subgroups of finite and affine Coxeter groups. Proc. London Math. Soc. (3), 76(2):359-382, 1998. 10.1112/S0024611598000112. Cited on Page 6.
[MV24] Philip Möller and Olga Varghese. On quotients of Coxeter groups. J. Algebra, 639:516-531, 2024. 10.1016/j.jalgebra.2023.09.048. Cited on Pages 1 and 6.
[PPW21] Paweł Piwek, David Popović, and Gareth Wilkes. Distinguishing crystallographic groups by their finite quotients. J. Algebra, 565:548-563, 2021. 10.1016/j.jalgebra.2020.06.033. Cited on Pages 2 and 5.
[PV24] Luis Paris and Olga Varghese. Narrow normal subgroups of Coxeter groups and of automorphism groups of coxeter groups. Journal of Group theory, 27:255-274, 2024. Cited on Page 6.
[Rei18] Alan W. Reid. Profinite rigidity. In Proceedings of the International Congress of Mathematicians - Rio de Janeiro 2018. Vol. II. Invited lectures, pages 11931216. World Sci. Publ., Hackensack, NJ, 2018. Cited on Page 2.
[RS22] Yuri Santos Rego and Petra Schwer. The galaxy of Coxeter groups, 2022. arXiv:2211.17038 [math. GR], arXiv:2211.17038 [math.GR]. Cited on Page 1.
[RT10] John G. Ratcliffe and Steven T. Tschantz. Fibered orbifolds and crystallographic groups. Algebr. Geom. Topol., 10(3):1627-1664, 2010. 10.2140/agt.2010.10.1627. Cited on Page 5.
[Sch02] I. Schur. Neuer beweis eines satzes über endliche gruppen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pages 1013-1019, 1902. Cited on Page 5.

Samuel M. Corson, Matematika Saila, UPV/EHU, Sarriena S/n, 48940 Leioa-Bizkaia (Spain)

Email address: sammyc973@gmail.com
Sam Hughes, Mathematical Institute, Andrew Wiles Building, Observatory Quarter, University of Oxford, Oxford, OX2 6GG (United Kingdom)

Email address: sam.hughes@maths.ox.ac.uk
Philip Möller, Department of Mathematics, University of Münster, EinSteinstrasse 62, 48149 Münster (Germany)

Email address: philip.moeller@uni-muenster.de
Olga Varghese, Institute of Mathematics, Heinrich-Heine-University DüsSeldorf, Universitätsstraße 1, 40225, Düsseldorf (Germany)

Email address: olga.varghese@hhu.de

[^0]: Date: $23^{\text {rd }}$ April, 2024.
 Mathematical subject classification 2020. 20F55, 20H15, 20E18.
 Key words and phrases. Affine Coxeter groups, crystallographic groups, profinite rigidity.

