
www.theoryofgroups.ir

International Journal of Group Theory

ISSN (print): 2251-7650, ISSN (on-line): 2251-7669

Vol. x No. x (201x), pp. xx-xx.

c⃝ 201x University of Isfahan

www.ui.ac.ir

THE CHARACTER TABLE OF A SHARPLY 5-TRANSITIVE SUBGROUP OF

THE ALTERNATING GROUP OF DEGREE 12

NICK GILL∗ AND SAM HUGHES

Communicated by Gunnar Traustason

Abstract. We calculate the character table of a sharply 5-transitive subgroup of Alt(12), and of a

sharply 4-transitive subgroup of Alt(11). Our presentation of these calculations is new because we

make no reference to the sporadic simple Mathieu groups, and instead deduce the desired character

tables using only the existence of the stated multiply transitive permutation representations.

1. Introduction

Let Alt(n) denote the alternating group on n points. In this paper we will be interested in subgroups

of Alt(n) that are sharply k-transitive, for some integer k ≥ 4. Recall that a permutation group G

acting on a set Ω is sharply k-transitive if, first, G acts transitively on the set of k-tuples of distinct

elements of Ω and, second, the (point-wise) stabilizer of any k-tuple of distinct elements of Ω is trivial.

Notice that “1-transitivity” is the same as “transitivity”. In this paper we prove the following theorem.

Theorem 1.1.

(1) If G is a sharply 5-transitive subgroup of Alt(12), then its character table is given by Table 1.

(2) If G is a sharply 4-transitive subgroup of Alt(11), then its character table is given by Table 2.
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G12 112 24 26 33 34 42 2242 52 213161 62 2181 4181 21101 111A 111B

χ0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ1 11 3 −1 2 −1 3 −1 1 0 −1 1 −1 −1 0 0

χ2 11 3 −1 2 −1 −1 3 1 0 −1 −1 1 −1 0 0

χ3 16 0 4 −2 1 0 0 1 0 1 0 0 −1 ω ω

χ4 16 0 4 −2 1 0 0 1 0 1 0 0 −1 ω ω

χ5 45 −3 5 0 3 1 1 0 0 −1 −1 −1 0 1 1

χ6 54 6 6 0 0 2 2 −1 0 0 0 0 1 −1 −1

χ7 55 7 −5 1 1 −1 −1 0 1 1 −1 −1 0 0 0

χ8 55 −1 −5 1 1 −1 3 0 −1 1 −1 1 0 0 0

χ9 55 −1 −5 1 1 3 −1 0 −1 1 1 −1 0 0 0

χ10 66 2 6 3 0 −2 −2 1 −1 0 0 0 1 0 0

χ11 99 3 −1 0 3 −1 −1 −1 0 −1 1 1 −1 0 0

χ12 120 −8 0 3 0 0 0 0 1 0 0 0 0 −1 −1

χ13 144 0 4 0 −3 0 0 −1 0 1 0 0 −1 1 1

χ14 176 0 −4 −4 −1 0 0 1 0 −1 0 0 1 0 0

Table 1. The character table of G12, where ω = 1
2(−1 +

√
−11).

G11 111 24 33 42 52 213161 2181A 2181B 111A 111B

χ0 1 1 1 1 1 1 1 1 1 1

χ1 10 2 1 2 0 −1 0 0 −1 −1

χ2 10 −2 1 0 0 1 α α −1 −1

χ3 10 −2 1 0 0 1 α α −1 −1

χ4 11 3 2 −1 1 0 −1 −1 0 0

χ5 16 0 −2 0 1 0 0 0 β β

χ6 16 0 −2 0 1 0 0 0 β β

χ7 44 4 −1 0 −1 1 0 0 0 0

χ8 45 −3 0 1 0 0 −1 −1 1 1

χ9 55 −1 1 −1 0 −1 1 1 0 0

Table 2. The character table of G11, where α =
√
−2 and β = 1

2(−1 +
√
−11).
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A corollary of this theorem is that the subgroups in question are simple groups. This theorem is not

new – item (1) is a consequence of the fact that the sporadic simple Mathieu group M12 is the unique

sharply 5-transitive subgroup of Alt(12), and the fact that the character table of M12 is known; item

(2) is a consequence of the two analogous statements for the sporadic simple Mathieu group M11. Our

proof of the theorem is new, however, because it makes no reference whatsoever to the groups M11

and M12 but, instead, deduces the character table using nothing more than the stated assumptions

about sharp multiple transitivity.

The motivation in proving this theorem starts with Frobenius’ famous 1904 paper in which (amongst

many other things) he calculates the character table of M12 and M24 [2]. Understanding Frobenius’

methods is important because, in the late nineteenth century, there appeared to be some lingering

doubt as to the “existence” of the Mathieu groups (that is to say, people questioned whether the

permutations that Mathieu wrote down in his original paper [6] generated alternating groups, rather

than any genuinely “new” groups). As late as 1897, Miller published a paper claiming that M24 did

not exist [7], although he retracted this claim soon after [8].

In fact, studying Frobenius’ 1904 paper, it seems that Frobenius was in no doubt as to the existence

of the Mathieu groups and, indeed, he uses specific properties of these groups when he calculates their

character tables (see the MathOverflow discussion on this subject for more detail [4]). Nonetheless,

it is natural to ask whether, in principle, Frobenius could have calculated the character table of M12

using nothing more than the property of sharp 5-transitivity – the main result of this paper confirms

that the answer to this question is “yes”! In particular, note that the proof of Theorem 1.1 below uses

little more than the basics of character theory, all of which would have been available to Frobenius in

1904 – the results that we make use of are summarized at the start of §3.
There is interest from others in results similar to our main theorem; note, for example [5, §2.10],

where the authors calculate the character table of the Mathieu group M11 using only its simplicity,

and its order. Note that our hypothesis is slightly different and that we also deal with the Mathieu

groups M9 and M10 as well as the sporadic simple group M12. In addition, our methods are somewhat

more elementary: in [5], the theory of Frobenius-Schur indicators is employed; this theory was not

introduced until 1906 [10], some time after the publication of Frobenius’ 1904 paper.
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2. Conjugacy classes

In what follows we will consider groups G9, G10, G11 and G12. For i = 9, . . . , 12, the group Gi

denotes any sharply (i− 7)-transitive subgroup of Alt(i) on i points. In this section we calculate the

conjugacy class structure of G9, G10, G11 and G12.

We label conjugacy classes via the cycle structure of their elements. Where there is more than one

conjugacy class with the same cycle structure, they are distinguished with subscript Roman letters –

see, for instance, Table 3 which lists the conjugacy classes of G9, three of which contain elements of

type 42.

We remind the reader that a conjugacy class C of G is called real if any element of C is conjugate

to its inverse; similarly, a character of G is called real if it takes real values for all elements of G. The

connection between these two concepts is given in Theorem 3.4, and will be exploited in §3.

2.1. The conjugacy classes of G9. Let N be a minimal normal subgroup of G9. Since |G9| = 72,

and G9 is sharply 2-transitive on 9 points, N must be elementary-abelian of size 9; moreover N must

act regularly on the set {1, . . . , 9}. Now 2-transitivity implies that the stabilizer of the point 1, call it

H, acts transitively on the set {2, . . . , 9}; since H is of order 8, we conclude that H acts regularly on

the set {2, . . . , 9} and so H acts (by conjugation) regularly on the non-identity elements of N . This

action induces a 1-1 homomorphism H → Aut(N) = GL2(3).

Thus H is a group of order 8 that is isomorphic to a subgroup of GL2(3) that acts regularly on

the set of non-zero vectors in the associated vector space. An easy matrix calculation confirms that

H ∼= Q8; thus G ∼= (C3 × C3)⋊Q8.

The conjugacy classes of G9 can now be written down in Table 3. Note that all classes are real.

Type 19 24 33 42A 42B 42C

Size 1 9 8 18 18 18

Table 3. Conjugacy class sizes in G9

2.2. The conjugacy classes of G10. The group G = G10 has order 720, and elements that fix at

least one point must have cycle structure in the list given in Table 3, with the possibility of fusion for

the elements of cycle type 42.

When one considers the cycle type of fixed-point-free elements of G, one must exclude all elements

that have non-identity powers that fix elements and that are not of a type listed in Table 3. One

obtains immediately that the only possible new cycle types are 52 and 2181.

There must be an element g ∈ G of type 52, since 5 divides |G|. What is more, since CAlt(10)(g) = ⟨g⟩,
we conclude that CG(g) = ⟨g⟩ and so the conjugacy class containing g has size 144. Let P = ⟨g⟩,
a Sylow 5-subgroup of G10. Since CG(P ) = P , and NG(P )/CG(P ) ≲ Aut(P ) ∼= C4. We conclude

that NG(P ) has order dividing 20. Sylow’s theorems tell us that |G : NG(P )| ≡ 1 (mod 5) and we
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conclude that |NG(P )| = 20. Since all conjugates of P intersect trivially, we conclude that G contains

144 elements of order 5, hence there is precisely one conjugacy class of elements of type 52.

We now consider the elements of type 33 (these come from the G9 subgroup, see Table 3). For

elements of type 33, we observe first that an element of this type fixes a unique point and, since the

stabilizer of a point contains a unique Sylow 3-subgroup of G, we conclude that each element of type

33 lies in a unique Sylow 3-subgroup of G. Now we use the fact that the stabilizer of a point is maximal

in G to conclude that there are precisely 10 Sylow 3-subgroups and, therefore, 80 elements of type 33

in G.

All remaining elements, of which there are 450, must be of type 42 or 2181. Now let P be a Sylow

2-subgroup of G and observe that P has two orbits, of size 2 and 8. Let {9, 10} be the smaller orbit;

then the stabilizer of 9 is equal to the stabilizer of 10 and is equal to Q8, a Sylow 2-subgroup of G9.

The points in the other orbit each have stabilizers in P of size 2, and there are four distinct stabilizers;

this leaves four elements which must be fixed-point-free, and hence are of type 2181. What is more

these elements cannot be central in P , otherwise P would be abelian. We conclude that there are at

most two conjugacy classes in G of elements of type 2181, and they have size 90 (since they do not

commute with any non-identity elements of odd order).

In fact, it is clear that any Sylow 2-subgroup of G10 is characterized by its orbit of size 2. This

implies, first, that, since the same is true of elements of type 2181, each element of type 2181 is in

a unique Sylow 2-subgroup; it implies, second, that there are precisely 45 Sylow 2-subgroups of G10,

and so there are 180 elements of type 2181, split into two conjugacy classes of size 90.

Now there are at most three conjugacy classes in G of elements of type 42 containing a total of 270

elements; since these elements are real in G9, they are real in G10 and so the classes have even order.

One of these classes must be squares of elements of order 8, and so at least one conjugacy class has

size 90; the others have size 90 or 180. There are, therefore, two possibilities for elements of type 42:

three conjugacy classes of size 90, or two of size 90 and 180. Note that, since there are 180 elements

of type 2181, there are only 90 elements that are squares of these. Thus if there are three conjugacy

classes of size 90, then two of these must have a centralizer isomorphic to C4×C2. It is easy to check,

though, that this is not possible, given that all involutions are of type 24.

The conjugacy classes of G10 are summarized in Table 4. Note that we have asterisked the two

conjugacy classes that are not real – it is clear that they are the only conjugacy classes that have a

chance of being non-real; to see that they are not real, simply observe that there are no elements of

type 42 in Alt(8) that send an 8-cycle to its inverse.1

1It is well-known that the group G10 is, in fact, M10, the unique non-split extension of Alt(6). One can compare

our enumeration of the conjugacy classes of G10 with the enumeration of conjugacy classes of M10 that appears in the

ATLAS [1]; note that our class 42B is labeled 4C in the ATLAS; similarly the two classes of elements of order 8 are labeled

8C and D** in the ATLAS.
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Type 110 24 33 42A 42B 52 2181A
∗

2181B
∗

Size 1 45 80 90 180 144 90 90

Table 4. Conjugacy class sizes in G10

2.3. The conjugacy classes of G11. The group G = G11 has order 7920, and elements that fix

at least one point must have cycle structure given in Table 4, with the possibility of fusion for the

elements of cycle type 42 or 2181.

Taking into account the same sort of considerations as before, we obtain that any fixed-point-free

elements of G must have cycle type 111 or 213161.

An element, g, of type 111 has centralizer in Alt(11) equal to ⟨g⟩, hence the same is true in G11.

We conclude that a conjugacy class of this type has size 720. Recall, next, that in Alt(11) there are

exactly two conjugacy classes of elements of cycle type 111, so we deduce there are at least two in

G11. Moreover, a Sylow 11-subgroup of Alt(11) has a normalizer of size 55, hence NG(⟨g⟩) has size 11

or 55. If the former, then one immediately concludes that there are 10 conjugacy classes of this type;

this means that there are a total of 720 elements in G that are not of type 111. Since a point-stabilizer

of G11 has size 720 and does not contain any elements of type 111, we conclude that a point-stabilizer

of G11 is normal, a contradiction. Thus |NG(⟨g⟩)| = 55 and we conclude, furthermore, that there are

exactly two conjugacy classes in G of type 111.

We know that there is a unique conjugacy class of elements of type 52 in G10, hence the same is

true in G11. What is more these elements are self-centralizing, hence this class has size 1584.

Now consider an element, g, of type 33. It is clear that CG(g) contains an involution if and only if

there is an element of type 213161. If this is not the case, then the conjugacy class of type 33 has size

7920/9 = 880, and it is the only non-trivial conjugacy class that does not have size divisible by 3. But

now 7920− 880− 1 = 7039 is not divisible by 3, and we have a contradiction. Hence we conclude that

|CG(g)| is even, and contains an element of type 213161. Since the Sylow 2-subgroup of CAlt(11)(g) is

of size 2, we conclude that |CG(g)| = 18 and the conjugacy class of type 33 has size 440.

Let h be an element of type 24. Then g is central in a Sylow 2-subgroup of G, and is also centralized

by an element of type 33; it is easy to check that it is not centralized by a Sylow 3-subgroup of G,

hence the conjugacy class of involutions has size 7920/48 = 165.

Elements of type 2181 are self-centralizing, so these conjugacy classes have size 990; any fusion

of the two conjugacy classes would have to take place in a Sylow 2-subgroup and, since this Sylow

2-subgroup is the same as for G10, we know that there are two such conjugacy classes.

The remaining elements are of type 42 and of type 213161 and they make up the remaining 2310

elements. The size of the respective conjugacy classes is 7920/8 and 7920/6 and since these two

numbers sum to 2310 we know that there is a unique conjugacy class of each type.

The conjugacy classes of G11 are now written down in Table 5. Note that we have asterisked the

four conjugacy classes that are not real. It is clear that all the other classes are real, and it clear that
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the classes of type 111 are non-real, since they are non-real in Alt(11); similarly, the classes of type

2181 are non-real since they are non-real in G10 and any putative “reversing element” in G11 would

have to lie in G10.

Type 111 24 33 42 52 213161 2181A
∗

2181B
∗

111A
∗

111B
∗

Size 1 165 440 990 1584 1320 990 990 720 720

Table 5. Conjugacy class sizes in G11

2.4. The conjugacy classes of G12. The group G = G12 has order 95040, and elements that fix

at least one point must have cycle structure given in Table 5, with the possibility of fusion for the

elements of order 8 and 11.

Taking into account the same considerations as before, we obtain that any fixed-point-free elements

of G must have cycle type 21101, 3191, 4181, 62, 2242, 34, 26. In order to exclude elements of type

3191, we need a lemma:

Lemma 2.1. Let P be a Sylow 3-subgroup of G. Then P ∼= He(3).

Here He(3) is the Heisenberg group over the field of order 3, a group of order 27. Note that all

non-trivial elements of He(3) have order 3, hence there are no elements of order 9 in G.

Proof. Let G act sharply 5-transitively on Ω, a set of 12 points. Observe that |P | = 27. There are

five groups of order 27, three abelian and two non-abelian.

Let us suppose first that P is abelian. Suppose that Λ is an orbit of P in its action on {1, . . . , 12},
and let λ ∈ Λ. Then, since P is abelian, any elements that fixes λ must fix every element in Λ. Since

no element of G fixes more than 4 points, this means that |Λ| = 1 or 3. The group P must not fix

more than 4 points, thus there are at least two orbits of P of size 3, call these Λ1 and Λ2. Now the

orbit-stabilizer theorem asserts that P has a subgroup P1, of order 9, that fixes every element of Λ1;

similarly P has a subgroup P2, of order 9, that fixes every element of Λ2. But now P1∩P2 is non-trivial

(by order considerations) and an element in the intersection fixes at least the 6 points of Λ1∪Λ2. This

is a contradiction.

Suppose, then, that P is the non-abelian group of order 27 that is notHe(3). This is the extraspecial

group of exponent 9; it has center, Z, of order 3; it has a normal elementary-abelian subgroup, P0,

of order 9; and all the elements in P \ P0 are of order 9. Since all of the elements of order 9 are

fixed-point-free, and since a stabilizer of a point in G has order divisible by 9, we conclude that P0

stabilizes a point, indeed it must fix 3 points. But, since the elements of order 3 in P have cycle type

33 this implies that all elements of P of order 3 fix the same 3 points. This is impossible. □

The same argument as before gives two conjugacy classes of self-centralizing elements of type 111.

Similarly there is a single conjugacy class of self-centralizing elements of type 213161. In addition there

is an easy counting argument that says that the number of elements that fix exactly four points is
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12
4

)
× 7 = 3465. There are only two conjugacy classes that do this – of type 24 and 42; what is more,

using the fact that the stabilizer of 4 points is Q8, we see that there are six times as many elements

of type 42 as there are of type 24. This leaves us with 495 of type 24 and 2970 of type 42.

Let g be an element of type 52. Then |CG(g)| is even if and only if there is an element of type

21101. Suppose that this is not the case – then CG(g) is of order 5 and all other non-trivial conjugacy

classes have order divisible by 5. But 95040 − 1− 95040/5 is not divisible by 5, a contradiction. We

conclude that |CG(g)| = 10, and there exist elements of type 21101. What is more NG(⟨g⟩) must be a

group of size 40 with CG(g) a normal cyclic subgroup of order 10. If h is a generator of CG(g), then

NG(⟨g⟩) acts by conjugation on CG(g) = ⟨h⟩ and is transitive on the elements of order 10 in ⟨h⟩; we
conclude that there is a unique conjugacy class of elements of type 21101, and this conjugacy class has

size 9504.

Let us examine the Sylow 3-subgroup of G in more detail. The orbits of P must be of size 3 and 9,

and a count of elements in the stabilizers immediately yields that P contains 14 elements of type 33

and 12 that are fixed-point-free, i.e. of type 34. Since 14 ̸≡ 0 (mod 3), we conclude that the non-trivial

central elements of P are of type 33, and the centralizer of an element of type 33 is divisible by 27. In

addition, for g of type 33, |CAlt(12)(g)| is not divisible by 4, and so we conclude that |CG12(g)| = 54.

A straightforward counting argument tells us that there are 35310 fixed-point-free elements in G;

we currently have 47190 elements unaccounted for, of which the only type that is not fixed-point-free

are those of type 2181. We conclude that there are 11880 of these; on the other hand, consulting

Table 4, there are 90 elements in conjugacy class 2181A for the stabilizer of any two letters. Thus

each conjugacy class of this type has size
(
12
2

)
× 90 = 11880, and we conclude that there is a unique

conjugacy class of this type.

We are left with the fixed-point-free elements of G – there are 35310 of these, and they are of types

26, 34, 2242, 62, 4181 and 21101 (although we do not yet know if all of these occur). We already know

that there are 9504 elements of type 21101 and this leave us 25806 elements for the rest.

Our earlier calculations imply that the centralizer of an element of type 34 is divisible by 9 but

not 27; we conclude that the centralizer is of size 9, 18 or 36. Suppose that g is of type 34, and that

CG(g) is not of size 9 – then there is an element of type 26 that centralizes g and we conclude that G

contains an element h of type 62. Now CG(h) is of size at most 12. But now, since 1
9 = 1

12 + 1
36 , we

conclude that in any case there are at least |G|/9 = 10560 elements of type 34 or 62.

The remaining fixed-point-free elements of G all have order a power of 2. Let us, therefore, examine

P , a Sylow 2-subgroup of G. Since P is of size 64, we know that P does not fix any points; thus the

orbit structure of P is either 8−4 or 8−2−2 (since a Sylow 2-subgroup of G9 has orbit structure 8−1).

Suppose that the orbit structure is 8−2−2. If α is a point in an orbit of size 2, then Pα is a normal

index 2 subgroup of P , and so Pα fixes all points in the orbit. If β is in the other orbit, then Pβ does

likewise, and so Pα ∩ Pβ has size at least 16 and fixes 4 points, a contradiction.
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Thus the orbit structure is 8−4. Let Λ be the orbit of size 4, let Γ be the orbit of size 8, and let K

be the kernel of the action on Λ; then K ∼= Q8, the Sylow 2-subgroup of G9. Since N = NSym(8)(K)

has size 192 = 64×3, we conclude that P is isomorphic to a Sylow 2-subgroup of N . What is more

the natural map P → Sym(4), given by considering the action of P on Λ, yields that P/K ∼= D4, the

dihedral group of order 8.

Next observe that C = CSym(8)(K) is isomorphic to Q8, and Z(C) = Z(K); indeed all non-central

elements of C and K act on Γ as elements of type 4−4 that all square to the same element. Then the

non-central elements of C must be of type 4−4− 2−2 in the action on Ω; in particular C induces the

normal Klein 4-subgroup of Sym(4) in the action on Λ. But now one can easily check that the four

cosets of K in N \ C all contain an 8-cycle; since two of these cosets must induce a 4-cycle on Λ, we

conclude that G contains elements of type 8−4. These elements are self-centralizing in Alt(12), and

so likewise in G; what is more there are not enough elements left unaccounted for to allow for more

than one such conjugacy class. Thus there is a unique conjugacy class of type 8−4 and it has size

|G|/8 = 11880.

There are, in addition, elements of type 2242, and these have a centralizer of size at most 32; again,

a count of remaining elements leads us to conclude that there is a unique conjugacy class of elements

of this type and it has size |G|/32 = 2970.

At this stage, then, we have 83
720 |G| elements unaccounted for; these are of type 34, 62 and/or 26,

and we know that at least 80
720 |G| of them are of type 34 or 62. Thus there are at most |G|/240 elements

of type 26. If there are no elements of type 26 centralized by an element of order 3, then we conclude

that there is a unique conjugacy class of elements of type 26, and it must have size |G|/320. But this
also means that there are no elements of type 62, and that the elements of type 34 all have centralizers

of size 9. This does not yield the correct number of elements.

We conclude that there are elements of type 26 centralized by elements of order 3. By counting

remaining elements, we conclude that there is a unique conjugacy class of elements of type 62, and

it has size |G|/12; similarly, there is a unique conjugacy class of elements of type 34, and it has size

|G|/36.
There are, therefore, |G|/240 elements of type 26; let g be one such. Notice, first, that a Sylow

3-subgroup of G does not have a subgroup of order 9 for which all elements are of type 34; we conclude

that |CG(g)| is not divisible by 9. Next, notice by our arguments above, that we can take g ̸∈ Z(KC);

it is now an easy matter to check that |CP (g)| ≤ 16, where P is a Sylow 2-subgroup of G. Thus

|CG(g)| has size at most 240 and we conclude that there is exactly one conjugacy class of elements of

type 26.

We summarise what we have worked out in Table 6. Note that we have asterisked the two conjugacy

classes that are not real; it is clear that these are the only possible conjugacy classes that have a chance

of being non-real, and it is equally clear that they are non-real, since they are non-real in Alt(12).
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Type 112 24 26 33 34 42 2242 52 213161 62 2181 4181 21101 111A
∗

111B
∗

Size 1 495 396 1760 2640 2970 2970 9504 15840 7920 11880 11880 9504 8640 8640

Table 6. Conjugacy class sizes in G12

3. Character tables

In this section we work out the character tables of G9, G10, G11 and G12. To do this we will need

nothing more than the basics of ordinary character theory, along with enough information about the

ordinary characters of the symmetric group to calculate irreducible characters for G12.

As a reminder we note down five results that will be particularly useful in what follows.

Theorem 3.1. [3, p. 342] Let G act 2-transitively on a finite set Ω, let g ∈ G and define fix(g) to be

the set of points in Ω fixed by g. Then the function χ(g) = |fix(g)| − 1 is an irreducible character.

Theorem 3.2. [3, p. 196] Let G be a finite group and let g ∈ G. Let χ be a character of G, then

χ2(g) decomposes as the direct sum of two characters, a symmetric part 1
2(χ

2(g) + χ(g2)) and an

antisymmetric part 1
2(χ

2(g)− χ(g2)).

Theorem 3.3. [3, p. 236] Let G be a finite group, let H ≤ G and suppose that χ is a character of H.

For x ∈ G, we set ℓ to be the number of H-conjugacy classes making up H ∩ xG and, provided ℓ > 0,

we define

(3.1) (χ ↑ G)(x) = |CG(x)|
(

χ(x1)

|CH(x1)|
+ · · ·+ χ(xℓ)

|CH(xℓ)|

)
,

where x1, . . . , xℓ ∈ H are representative elements of the ℓ classes of H. If ℓ = 0, then we define

(χ ↑ G)(x) = 0. Then χ ↑ G is a character of G.

Theorem 3.4. [3, p. 264] The number of real characters of G is the same as the number of real

conjugacy classes of G.

Next we recall the definition of the inner product on characters: if χ and ϕ are characters of G,

then we define

⟨χ, ϕ⟩ =
k∑

i=1

χ(gi)ϕ(gi)

|CG(gi)|
.

The next theorem is a reminder of Schur’s Orthogonality Relations; in particular it tells us how to use

this inner product to recognise irreducible characters.

Theorem 3.5. [3, p. 161] Let χ1, . . . , χk be the irreducible characters of G and let g1, . . . , gk be

representative elements of the conjugacy classes of G, then for every r, s ∈ {1, . . . , k} we have:

⟨χr, χs⟩ = δrs;(3.2)

k∑
i=1

χi(gr)χi(gs) = δrs|CG(gr)|.(3.3)
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Note that (3.2) implies that if χ is a character of G such that ⟨χ, χ⟩ = 1, then χ is irreducible.

3.1. The character table of G9. We know that G9 has 6 conjugacy classes and hence 6 irreducible

characters. We also know that G9 has a normal subgroup N ∼= C3 × C3, with G/N ∼= Q8. We can

lift 3 linear characters and a 2 dimensional character from Q8. The final character χ5 is given by the

2-transitive action of G9 on 9 points (Theorem 3.1). The character table is given in Table 7.

G9 19 24 33 42A 42B 42C

χ0 1 1 1 1 1 1

χ1 1 1 1 −1 1 −1

χ2 1 1 1 1 −1 −1

χ3 1 1 1 −1 −1 1

χ4 2 −2 2 0 0 0

χ5 8 0 −1 0 0 0

Table 7. The character table of G9

3.2. The character table of G10. Note that G10 has 8 conjugacy classes, hence 8 irreducible char-

acters. Let χ0 denote the trivial character of G10 and let χ2 denote the irreducible character obtained

by applying Theorem 3.1 to the 3-transitive action of G10.

G10 110 24 33 42A 42B 52 2181A 2181B

χ0 1 1 1 1 1 1 1 1

χ2 9 1 0 1 1 −1 −1 −1

We will now try inducing characters from the point stabilizer G9. Let χ be a character of G9, then

using the centralizer orders and Theorem 3.3 we have:

(χ ↑ G10)(g) =



10χ(g) if g ∈ 110;

2χ(g) if g ∈ 24, 42A;

χ(gB) + χ(gC) if g ∈ 42B;

χ(g) if g ∈ 33;

0 otherwise.

(Here gB and gC are elements from the G9-classes 4
2
B and 42C respectively.) Let χA, χB and χC denote

the lifts of the characters χ1, χ2 and χ4 for G9 respectively (see Table 7).
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χA 10 2 1 −2 0 0 0 0

χB 10 2 1 2 −2 0 0 0

χC 20 −4 2 0 0 0 0 0

Taking inner products of the characters we find that χA is irreducible, ⟨χB, χB⟩ = 2 and ⟨χC , χC⟩ = 2.

To keep with our naming convention, relabel χA to χ4. Our next strategy will be to construct the anti-

symmetric parts of both χ2
2 and χ2

4, we will skip over the symmetric decomposition of these characters

because they do not yield information that is useful to our endeavours. Let χD and χE denote the

antisymmetric components of χ2
2 and χ2

4 respectively.

χD 36 −4 0 0 0 1 0 0

χE 45 −3 0 1 −1 0 0 0

Taking inner products of χD with both itself and χC we find that ⟨χD, χD⟩ = 3 and ⟨χC , χD⟩ = 2.

Let χ7 = χD − χC ; then ⟨χ7, χ7⟩ = 1 and, since χ7(1) > 0, we conclude that χ7 is an irreducible

character. Repeating the process with χE we find that ⟨χE , χE⟩ = 4, ⟨χ7, χE⟩ = 1, ⟨χB, χE⟩ = 1 and

⟨χC , χE⟩ = 2. Let χ3 = χE −χ7−χC = χE −χD, then ⟨χ3, χ3⟩ = 1 and, since χ3(1) > 0, we conclude

that χ3 is an irreducible character

χ3 9 1 0 1 −1 −1 1 1

χ7 16 0 −2 0 0 1 0 0

Finally, observe that ⟨χB, χ3⟩ = 1. Then χ1 = χB − χ3 is irreducible. Using Theorem 3.4 and

the fact that G10 has two non-real classes, we conclude that the remaining two characters occur as a

complex conjugate pair. These can, then, be calculated using the Schur orthogonality relations.

G10 110 24 33 42A 42B 52 2181A 2181B

χ0 1 1 1 1 1 1 1 1

χ1 1 1 1 1 −1 1 −1 −1

χ2 9 1 0 1 1 −1 −1 −1

χ3 9 1 0 1 −1 −1 1 1

χ4 10 2 1 −2 0 0 0 0

χ5 10 −2 1 0 0 0 ω ω

χ6 10 −2 1 0 0 0 ω ω

χ7 16 0 −2 0 0 1 0 0

Table 8. The character table of G10, where ω =
√
−2.

3.2.1. The structure of G10. Using the character table, the following result can be easily derived

about the structure of G10.
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Theorem 3.6. The group G10 is a non-split extension of C2 by a normal subgroup K = ker(χ1).

Proof. As the kernels of characters are normal subgroups we see that K ◁ G10 and moreover this is

the only non-trivial proper normal subgroup of G10. Observe that G10/K ∼= C2. Since there are no

involutions in G10 \K, we conclude that we have a non-split extension. □

3.3. The character table of G11. By assumption G11 acts 4-transitively on a set of size 11. By

considering the number of fixed points of each conjugacy class we obtain a 10 dimensional irreducible

character χ1 (Theorem 3.1).

G11 111 24 33 42 52 213161 2181A 2181B 111A 111B

χ0 1 1 1 1 1 1 1 1 1 1

χ1 10 2 1 2 0 −1 0 0 −1 −1

Now, let χS and χA be the symmetric and antisymmetric decomposition of χ2
1.

χS 55 7 1 3 0 1 1 1 0 0

χA 45 -3 0 1 0 0 -1 -1 1 1

A quick calculation gives ⟨χS , χS⟩ = 3 and ⟨χA, χA⟩ = 1. Moreover, ⟨χS , χ0⟩ = 1 and ⟨χS , χ1⟩ = 1.

Define χ8 = χA and χ7 = χS − χ0 − χ1 and note that ⟨χ7, χ7⟩ = 1. Hence we have found two new

irreducible characters of G11.

χ7 44 4 −1 0 −1 1 0 0 0 0

χ8 45 −3 0 1 0 0 −1 −1 1 1

3.3.1. Induction from G10. We will now try inducing characters from the 1-point stabilizer subgroup

G10. Let χ be a character of G10; then, using the centralizer orders and Theorem 3.3, we have:

(χ ↑ G11)(g) =



11χ(g) if g ∈ 110;

3χ(g) if g ∈ 24;

2χ(g) if g ∈ 33;

χ(gA) + 2χ(gB) if g ∈ 42;

χ(g) if g ∈ 52, 2181A, 2181B;

0 otherwise.

(Here gA and gB are elements from the G10-classes 42A and 42B respectively.) Let χ4 be the induced

character of the non-trivial linear character of G10 and let χ9 be the the anti-symmetric decomposition

of χ2
4.
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χ4 11 3 2 −1 1 0 −1 −1 0 0

χ9 55 −1 1 −1 0 −1 1 1 0 0

We find that ⟨χ4, χ4⟩ = 1 and ⟨χ9, χ9⟩ = 1, hence, they are both irreducible characters of G11.

3.3.2. Schur orthogonality. The remaining four characters come in complex conjugate pairs. We

can deduce this by using the fact that elements of cycle type 2181 and 111 are not real and applying

Theorem 3.4. Given that each pair will have the same dimension, we can attempt to calculate the

dimension of these 4 remaining characters. Let the dimension of the first pair be d1 and the dimension

of the second pair be d2.

We have d21+d21+d22+d22 = 712, hence d21+d22 = 356. By an exhaustive search we find that 356 can

be expressed as the sum of two squares in exactly one way, that is 356 = 102 + 162. It immediately

follows that d1 = 10 and d2 = 16.

Let χ2(1) = χ3(1) = 10 and χ5(1) = χ6(1) = 16. We will now use the column relations to calculate

the character values for the remaining conjugacy classes. We use the fact that χ(g) = χ(g−1), and let

the characters take the following values:

χ2 11 x1 x2 x3 x4 x5 x6 x6 x7 x7

χ3 11 x1 x2 x3 x4 x5 x6 x6 x7 x7

χ5 16 y1 y2 y3 y4 y5 y6 y6 y7 y7

χ6 16 y1 y2 y3 y4 y5 y6 y6 y7 y7

Substituting the column containing xi for i = 1, . . . , 5 and the first column of the character table into

(3.3) we can obtain values for xi and yi. We shall demonstrate this with x1 as follows

1 + 20 + 2× 10x1 + 33 + 2× 16y1 + 176− 135− 55 = 0

which simplifies to

(3.4) 5x1 + 8y1 = −10.

Substituting the column containing x1 into (3.3) twice gives

1 + 4 + 2x21 + 9 + 2y21 + 16 + 9 + 1 = 48

which simplifies to

(3.5) x21 + y21 = 4.

Solving (3.4) and (3.5), we obtain two solutions x1 = −2, y1 = 0 and x1 = 78
89 , y1 = −160

89 . The

second set of these cannot be expressed as a sum of 2nd roots of unity. Hence, x1 = −2 and y1 = 0.

Continuing in this manner we obtain:
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χ2 10 −2 1 0 0 1 x6 x6 x7 x7

χ5 16 0 −2 0 1 0 y6 y6 y7 y7

The remaining values x6, x7, y6, and y7 can be calculated by repeat applications of the row and

column relations. We find that x6 =
√
−2, x7 = −1, y6 = 0 and y7 = 1

2(−1 +
√
−11). Table 2 shows

the complete character table.

3.4. The character table of G12. We begin by noting that G12 has 15 conjugacy classes and 15

irreducible characters, one of which is the trivial character χ0.

3.4.1. The permutation character and tensor products. By assumption, G12 acts 5-transitively

on a set of size 12. Hence, by Theorem 3.1, we get the permutation character χ1.

G12 112 24 26 33 34 42 2242 52 213161 62 2181 4181 21101 111A 111B

χ0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ1 11 −1 3 2 −1 3 −1 1 0 −1 −1 1 −1 0 0

Now, let χS and χA be the symmetric and antisymmetric decomposition of χ2
1.

χS 66 10 6 3 0 6 2 1 1 0 2 0 1 0 0

χA 55 −1 −5 1 1 3 −1 0 −1 1 −1 1 0 0 0

A quick calculation gives ⟨χS , χS⟩ = 3 and ⟨χA, χA⟩ = 1. Moreover, ⟨χS , χ0⟩ = 1 and ⟨χS , χ1⟩ = 1.

Define χ8 = χA and χ6 = χS − χ0 − χ1. We have found two new irreducible characters of G12.

Squaring these characters, however, is not a viable plan; the characters obtained have dimensions

2916 and 3025.

χ6 54 6 6 0 0 2 2 −1 0 0 0 0 1 −1 −1

χ8 55 −1 −5 1 1 3 −1 0 −1 1 −1 1 0 0 0

3.4.2. Induction from G11. We will now try inducing characters from the subgroup G11. Let χ be

a character of G11; then using the centralizer orders and Theorem 3.3 we have:

(χ ↑ G12)(g) =



12χ(g) if g ∈ 112;

4χ(g) if g ∈ 24, 42;

3χ(g) if g ∈ 33;

2χ(g) if g ∈ 52;

χ(g) if g ∈ 213161, 111A, 11
1
B;

χ(gA) + χ(gB) if g ∈ 2181;

0 otherwise.
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(Here gA and gB are elements from the G11-classes 2
181A and 2181B respectively.) Inducing the trivial

character of G11 gives a character equal to χ0 + χ1. Inducing the integer valued 10-dimensional

character gives a character equal to χ1 +χ6 +χ8. Now, let χ12 be the induced character of a complex

valued 10-dimensional character of G11. We see that ⟨χ12, χ12⟩ = 1, therefore, χ12 is irreducible.

Let χV be the character obtained by inducing the 55-dimensional character of G11. Finally, let χB

be the induced complex valued 16-dimensional character of G11 and let ω = 1
2(−1 +

√
−11), then we

have:

χ12 120 −8 0 3 0 0 0 0 0 1 0 0 0 −1 −1

χV 660 −4 0 3 0 0 −4 0 0 −1 2 0 0 0 0

χB 192 0 0 −6 0 0 0 2 0 0 0 0 0 ω ω

Note that ⟨χB, χB⟩ = 2 and ⟨χV , χV ⟩ = 6, but the inner product of χB with any known irreducible is

0. We have ⟨χV , χ12⟩ = 1, but the inner product is 0 for any other known irreducibles. These do not

give us any new irreducible characters, but we will use these characters later.

3.4.3. Restriction from Sym(12). Using the Frobenius character formula, it is possible to construct

low dimensional characters of Sym(12) evaluated over the conjugacy classes of G12; recall that these

characters are labeled with partitions of 12. In this section we consider the restriction of some of these

characters to the group G12; for instance we note that (χ(11,1) ↓ G12) = χ1, (χ(10,2) ↓ G12) = χ2 and

(χ(10,1,1) ↓ G12) = χ3.

The table below gives six new characters that we have constructed in this way. Note that we abuse

notation here: given a partition, λ, of 12, we would normally write χλ for the associated character

of Sym(12) whereas here we write χλ for the restriction of the associated character to G12. Note too

that, for ease of notation, we let λA = (9, 1, 1, 1) and λB = (8, 1, 1, 1, 1).2

2The history of this sort of restriction is worth a note: a classical result of Frobenius asserts that if t is a natural

number with t < n/2, then a subgroup G < Sym(n) is 2t-transitive if and only if every character of Sym(n) labeled by

a partition (λ1, λ2, . . . , λa) with λ2 + · · · + λa ≤ t remains irreducible when restricted to G. This result appears in [2],

the same paper in which Frobenius calculates the character tables of M12 and M24; indeed Frobenius makes use of this

result in his calculation of these tables. Note that Theorem 3.1 is a special case of Frobenius’ result. A modern version

of Frobenius result, making use of the Classification of Finite Simple Groups, was given in a beautiful paper of Saxl [9]

– his theorem considers G, a subgroup of Sym(n) or of Alt(n) and χ, an ordinary character of Sym(n) or of Alt(n), and

he describes all pairs (χ,G) where the restriction of χ to G is irreducible. In our proof we do not make use of Frobenius’

(or Saxl’s) result – it is enough for us to be able to calculate the restriction of various characters of Sym(12) directly and

naively.
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G12 112 24 26 33 34 42 2242 52 213161 62 2181 4181 21101 111A 111B

χ(9,3) 154 10 −6 1 4 −2 −2 −1 1 0 0 0 −1 0 0

χλA
165 −11 5 3 3 1 1 0 1 −1 −1 −1 0 0 0

χ(8,4) 275 11 15 5 −4 −1 3 0 −1 0 −1 1 0 0 0

χ(7,5) 297 9 −15 0 0 5 −3 2 0 0 −1 −1 0 0 0

χ(3,2,1) 320 0 0 −4 −4 0 0 0 0 0 0 0 0 1 1

χλB
330 −6 10 6 −3 −2 −2 0 1 0 0 0 0 0 0

We first check the inner product of each character with itself and then with each of the known

irreducibles. We find that ⟨χλA
, χλA

⟩ = 2 and ⟨χλA
, χ12⟩ = 1, define χ5 = χλA

− χ12 and note that

⟨χ5, χ5⟩ = 1. Hence, we have found a new irreducible character of G12.

χ5 45 −3 5 0 3 1 1 0 0 −1 −1 −1 0 1 1

We find that ⟨χλB
, χλB

⟩ = 3 and that ⟨χλB
, χ12⟩ = 1, hence we define χX = χλB

−χ12. Similarly we

find that ⟨χ(8,4), χ(8,4)⟩ = 4 and that ⟨χ(8,4), χ6⟩ = 1, hence we define χY = χ(8,4) − χ6. Checking the

inner products of χX and χY with themselves and each other we obtain ⟨χX , χX⟩ = 2, ⟨χY , χY ⟩ = 3

and ⟨χX , χY ⟩ = 2. Define χ2 = χY − χX , we find that ⟨χ2, χ2⟩ = 1; we have found a new irreducible

character of G12.

χY 221 5 9 5 −4 −3 1 1 −1 0 −1 1 −1 1 1

χX 210 2 10 3 −3 −2 −2 0 1 −1 0 0 0 1 1

χ2 11 3 −1 2 −1 −1 3 1 0 −1 −1 1 −1 0 0

Let χS and χA be the symmetric and antisymmetric decomposition of χ2
2. We find that χS =

χ0 + χ2 + χ6 and χ9 = χA is a new irreducible.

χ9 55 −1 −5 1 1 3 −1 0 −1 1 1 −1 0 0 0

We will now check the inner product of every restricted character and χV with our known irreducible

characters of G12.

Character χ0 χ1 χ2 χ5 χ6 χ8 χ9 χ12

χ(9,3) 0 0 0 0 0 0 0 0

χλA
0 0 0 1 0 0 0 1

χ(8,4) 0 0 1 0 1 0 0 0

χ(7,5) 0 1 0 0 1 0 0 0

χ(3,2,1) 0 0 0 0 0 0 0 0

χλB
0 0 0 0 0 0 0 1

χV 0 0 0 1 0 0 0 1
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Define the following characters:

χC = χ(9,3)

χD = χ(7,5) − χ1 − χ6

χE = χ(3,2,1)

χF = χλB
− χ12

χW = χV − χ5 − χ12

The values of these are as follows.

G12 112 24 26 33 34 42 2242 52 213161 62 2181 4181 21101 111A 111B

χC 154 10 −6 1 4 −2 −2 −1 1 0 0 0 −1 0 0

χD 231 7 −9 −1 0 −1 −1 1 1 0 −1 −1 1 0 0

χE 320 0 0 −4 −4 0 0 0 0 0 0 0 0 1 1

χF 210 2 10 3 −3 −2 −2 0 1 −1 0 0 0 1 1

χW 485 5 5 −1 −1 −3 −3 0 −1 −1 1 1 0 1 1

Taking the inner products of each of these new characters with each other gives the following:

χC χD χE χF χW

χC 2 1 0 0 1

χD 1 2 1 0 1

χE 0 1 2 1 2

χF 0 0 1 2 2

χW 1 1 2 2 4

Note, first, that this table of values implies that each of these characters is the sum of distinct

irreducibles. Writing these irreducibles as α, β, γ, and so on, we see immediately that we can write

χC = α+ β;

χD = β + γ;

χE = γ + δ;

χF = γ + ϵ;

χW = α+ γ + δ + ϵ.

Now one obtains that α = 1
2(χW −χF +χC −χD). Once we have α it is an easy matter to obtain the

other four irreducibles using the equalities just given. We therefore have five new irreducibles which

we label as follows:

α = χ11, β = χ7, γ = χ14, δ = χ13, ϵ = χ10.
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Finally, we return to the character χB from earlier. We find that ⟨χB, χ14⟩ = 1, and so we define

χ3 = χB − χ14. Letting χ4 be the complex conjugate of χ3, we obtain our final two irreducibles. The

full character table is given in Table 1.

4. Final remarks

One can read off many properties of the groups G11 and G12 by looking at the character tables

that we have constructed. Note, for instance, that all of the irreducibles of the two groups have trivial

kernel; one concludes immediately that G11 and G12 are simple.

We saw above, in §2.1, that G9
∼= (C3 × C3) ⋊ Q8. We should note that, although we have not

deduced the isomorphism types of G10, G11 and G12, in each case it is well-known that they are unique

up to group isomorphism. Indeed G10
∼= M10, the unique non-split degree 2 extension of Alt(6), while

G11
∼= M11 and G12

∼= M12, the two smallest sporadic simple groups of Mathieu.

One wonders about proving the analogous theorem for the simple Mathieu group M24, the theorem

would be similar to: “If G is a 5-transitive subgroup of Alt(24) of order 244823040, then the character

table of G is as follows...” It would be desirable to prove such a theorem using methods similar to the

arguments laid out here, although one might expect that the details would be rather onerous.
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