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Abstract. For a finitely generated group G and collection of subgroups P we prove
that the relative Dehn function of a pair pG,Pq is invariant under quasi-isometry of
pairs. Along the way we show quasi-isometries of pairs preserve almost malnormality
of the collection and fineness of the associated coned off Cayley graphs. We also prove
that for a cocompact simply connected combinatorial G-2-complex X with finite edge
stabilisers, the combinatorial Dehn function is well-defined if and only if the 1-skeleton
of X is fine.

We also show that if H is a hyperbolically embedded subgroup of a finitely presented
group G, then the relative Dehn function of the pair pG,Hq is well-defined. In the
appendix, it is shown that show that the Baumslag-Solitar group BSpk, lq has a well-
defined Dehn function with respect to the cyclic subgroup generated by the stable letter
if and only if neither k divides l nor l divides k.

1. Introduction

The main objects of study in this article are pairs pG,Pq where G is a finitely gener-
ated group with a chosen word metric distG, and P is a finite collection of subgroups,
note that these assumptions will stand throughout the introduction.

Let hdistG denote the Hausdorff distance between subsets of G, and let G{P denote the
collection of left cosets gP for g P G and P P P .

For constants L ě 1, C ě 0 and M ě 0, an pL,C,Mq-quasi-isometry of pairs
q : pG,Pq Ñ pH,Qq is an pL,Cq-quasi-isometry q : GÑ H such that the relation

tpA,Bq P G{P ˆH{Q : hdistHpqpAq, Bq ăMu

satisfies that the projections to G{P and H{Q are surjective.
This article is part of the program of investigating which properties of pairs pG,Pq are

invariant under quasi-isometry of pairs. There are recent results in this direction. For ex-
ample, it is a consequence of the quasi-isometric rigidity of relative hyperbolicity [BDM09],
that if pG,Pq is a relatively hyperbolic pair, P is a collection of non-relatively hyperbolic
groups, and pG,Pq and pH,Qq are quasi-isometric pairs, then H is hyperbolic relative
to Q. Under natural assumptions, quasi-isometries of pairs between relatively hyperbolic
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pairs induce canonical homeomorphisms between their Bowditch boundaries [HH20] and
canonical isomorphisms of JSJ trees [HH19]. Outside the framework of relatively hyper-
bolic groups, it is known that quasi-isometries of pairs preserve the number of Bowditch’s
filtered ends [MS21].

For a pair pG,Pq, Osin introduced the notions of finite relative presentation and rel-
ative Dehn function ∆G,P as natural generalizations of their standard counterparts for
finitely generated groups, see [Osi06]. These notions characterise relatively hyperbolic
pairs pG,Pq as the ones which are relatively finitely presented and have relative Dehn
function bounded from above by a linear function. By quasi-isometric rigidity of relative
hyperbolicity, among relatively finitely presented pairs, quasi-isometries of pairs preserve
having linear relative Dehn function.

The main result of this article confirms the natural expectation that among relatively
finitely presented pairs, quasi-isometric pairs have equivalent relative Dehn functions.
This is not an elementary statement, as we describe below.

Convention 1.1 (∆G,P is well-defined). By ∆G,P is well-defined we mean that G is
finitely presented relative to P and the relative Dehn function ∆G,P takes only finite
values with respect to a finite relative presentation of G and P . From here on, when we
refer to a relative Dehn function, we always assume that it has been defined using a finite
relative presentation.

Let P be a collection of subgroups of group G. A refinement P˚ of P is a set of
representatives of conjugacy classes of the collection of subgroups tCommGpgPg

´1q : P P

P and g P Gu where CommGpP q denotes the commensurator of the subgroup P in G.

Theorem A. Let pG,Pq Ñ pH,Qq be a quasi-isometry of pairs and let P˚ be a refinement
of P. If the relative Dehn function ∆H,Q is well-defined, then ∆G,P˚ is well-defined and
∆G,P˚ — ∆H,Q.

A phenomenon that occurs for pairs pG,Pq is that being relatively finitely presented
does not imply that the relative Dehn function is well-defined. This is in sharp contrast
with the standard framework where a finitely presented group always has a well-defined
Dehn function. The proof of Theorem A provides an insight into this phenomenon via
the following results on which our argument relies on.

In the framework of relatively hyperbolic groups, Bowditch introduced the notion of
fine graph [Bow12]. A simplicial graph Γ is fine if for every n ě 0 and every edge e
in Γ there are finitely many circuits of length less than or equal to n which contain
e. This is weaker than the graph being locally finite. The relationship between this
notion and isoperimetric functions was made explicit by Groves and Manning [GM08,
Proposition 2.50, Question 2.51]. The following result can be interpreted as a homotopical
version of [Mar16, Theorem 1.3] where an analogous statement is proved for homological
Dehn functions.
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Theorem B (Theorem 2.1). Let X be a cocompact simply connected combinatorial G-2-
complex with finite edge stabilisers. The combinatorial Dehn function ∆X of X takes only
finite values if and only if the 1-skeleton of X is a fine graph.

It is obvious that being fine is not a property preserved by quasi-isometries in the class
of graphs. For a pair pG,Pq, together with a finite generating set S of G, one can assign
a connected and cocompact G-graph known as the coned-off Cayley graph Γ̂pG,P , Sq;
a notion introduced by Farb [Far98], see Definition 4.2. It is an observation that the
quasi-isometry type of Γ̂pG,P , Sq is independent of the finite generating set S; throughout
the introduction Γ̂pG,Pq denotes the coned-off Cayley graph with respect to some finite
generating set of G. In this framework, under some assumptions, we are able to prove
that fineness is preserved under quasi-isometry of pairs in the class of coned-off Cayley
graphs. A collection of subgroups P of a group G is reduced if for any P,Q P P and g P G,
then P and gQg´1 being commensurable subgroups implies P “ Q and g P P .

Theorem C (Theorem 5.15). Let q : pG,Pq Ñ pH,Qq be a quasi-isometry of pairs. Sup-
pose P and Q are reduced. Then there is an induced quasi-isometry of graphs q̂ : Γ̂pG,Pq Ñ
Γ̂pH,Qq, and if Γ̂pH,Qq is a fine graph then Γ̂pG,Pq is a fine graph.

The condition that the coned-off Cayley graph Γ̂pG,Pq is fine forces the collection P to
be almost malnormal (see Definition 6.4). It is an observation that any almost malnormal
collection of infinite subgroups is reduced. We prove that the property of being almost
malnormal is preserved under quasi-isometry of pairs up to taking a refinement.

Theorem D (Theorem 6.11). Let q : pG,Pq Ñ pH,Qq be a quasi-isometry of pairs. If Q
is an almost malnormal collection of infinite subgroups, then any refinement P˚ of P is
almost malnormal and q : pG,P˚q Ñ pH,Qq is a quasi-isometry of pairs.

The previous results can be linked to Osin’s definition of relative Dehn function ∆G,P

of a relatively finitely presented pair pG,Pq via the following result. A connected graph Γ

is called fillable if, when considering Γ with the length metric obtained by regarding each
edge as an segment of length one, there is an integer k such that the coarse isoperimetric
function fΓ

k takes only finite values, see Section 3 for definitions.

Theorem E (See Theorem 4.16). If pG,Pq is a relatively finitely presented pair, then

(1) Γ̂pG,Pq is fillable.
(2) The relative Dehn function ∆G,P is well-defined if and only if Γ̂pG,Pq is fine graph.

Conversely, if Γ̂pG,Pq is fine and fillable, then pG,Pq is a relatively finitely presented pair
and hence ∆G,P is well-defined.

The following result is a re-statement of a result of Osin [Osi06, Theorem 2.53], see
Proposition 4.8. This statement allow us translate his definition of relative Dehn function
to the realm of coarse isoperimetric functions of coned-off Cayley graphs.
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Theorem F (Osin). Let G be a group and let P be a collection of subgroups. Suppose
that ∆G,P is well-defined. Then ∆G,P is equivalent to the coarse isoperimetric function
f

Γ̂pG,Pq
N of Γ̂pG,Pq for all sufficiently large integers N .

Let us describe the argument proving Theorem A using the results that have been
stated.

Proof of Theorem A. Let us first observe that we can assume that the collections P and Q
contain only infinite subgroups. First note that if P8 and Q8 are the collections obtained
by removing finite subgroups from P and Q respectively, then q : pG,P8q Ñ pH,Q8q is a
quasi-isometry of pairs as well. Moreover, for an arbitrary pair pK,Lq, adding or removing
a finite subgroup of K to L preserves having well-defined relative Dehn function, and if
the functions are well-defined they are equivalent, see for example [Osi06, Theorem 2.40].

Assume that P and Q consist only of infinite subgroups. Since pH,Qq is relatively
finitely presented and ∆H,Q is well-defined, Theorem E implies that Γ̂pH,Qq is fillable and
fine. Since Γ̂pH,Qq is a fine graph, it follows that Q is an almost malnormal collection.
Then Theorem D implies that P˚ is an almost malnormal collection. Hence, both Q and
P˚ are reduced collections and q : pG,P˚q Ñ pH,Qq is a quasi-isometry of pairs. Now we
can invoke Theorem C to obtain a quasi-isometry q̂ : Γ̂pG,P˚q Ñ Γ̂pH,Qq and also obtain
that Γ̂pG,P˚q is fine. It is an standard result in the literature that being fillable is a
property preserved by quasi-isometry in the class of connected graphs, and any two quasi-
isometric graphs have equivalent coarse isoperimetric functions (see for instance [BH99,
Proposition III.H.2.2]). The quasi-isometry q̂ implies that Γ̂pG,P˚q is fillable and both
Γ̂pG,P˚q and Γ̂pH,Qq have equivalent coarse isoperimetric inequalities. Then Theorem E
implies that pG,Pq is relatively finitely presented and ∆G,P is well-defined. The proof
concludes by invoking Theorem F. �

In the class of finitely generated groups, being finitely presented is a quasi-isometry
invariant. We do not know the answer to the following general question:

Question 1.2. Suppose that q : pG,Pq Ñ pH,Qq is a quasi-isometry of pairs and pH,Qq
is relatively finitely presented. Is pG,Pq relatively finitely presented?

There is a rich class of pairs pG,Pq with well-defined relative Dehn function. Hyperbol-
ically embedded subgroups were introduced in [DGO17] by Dahmani, Guirardel and Osin.
Given a group G, X Ă G and H ď G, let H ãÑh pG,Xq denote that H is a hyperbolically
embedded subgroup of G with respect to X.

Theorem G (Theorem 7.2). Let G be a finitely presented group and H ď G be a subgroup.
If H ãÑh G then the relative Dehn function ∆G,H is well-defined.

In the context of Theorem G, the relative Dehn function ∆G,P is bounded from above by
a linear function if and only if G is hyperbolic relative to H, see [Osi06]. It is well known
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that the class of pairs pG,Hq such that H ãÑh G properly extends relative hyperbolicity,
for examples see [DGO17].

In a preliminary version of this manuscript, we asked whether there exist pairs pG,Pq
such that ∆G,P is well-defined, but P is not hyperbolically embedded in G. In this regard,
consider the Baumslag-Solitar groups BSpk, lq “ xa, t | takt´1 “ aly, where k, l P Zzt0u. In
Example 3 we show that BSpk, lq does not have a well-defined Dehn function with respect
to the cyclic subgroup generated by the stable letter t if either k divides l or l divides k.
On the other hand, in the appendix Ashot Minasyan shows that the converse holds, that
is, if neither k - l nor l - k then ∆BSpk,lq,xty is well-defined.

Acknowledgements. The authors thank Ashot Minasyan for comments on an earlier
version of the manuscript, and for pointing out a necessary correction in the proof of
Theorem G. The authors also thank Anthony Genevois for comments and pointing us
to his work with Tessera, see Example 2. The first author would like to thank his PhD
supervisor Professor Ian Leary. The second author thanks Noel Brady for discussions on
the topics of the article. The first author was supported by the Engineering and Phys-
ical Sciences Research Council grant number 2127970. The second author acknowledges
funding by the Natural Sciences and Engineering Research Council of Canada, NSERC.
The third author was supported by grant PAPIIT-IA101221. All three authors would
like to thank the organisers of the online seminar Algebra at Bicocca, without which this
collaboration would not have happened.

2. Combinatorial Dehn functions and fine graphs

The goal of this section is to prove Theorem B. We use the notion of disk diagram in a
combinatorial complex, for definitions see for example [MW02]. We begin by recalling the
definition of a combinatorial Dehn function, then we prove each direction of Theorem B
individually as Lemma 2.3 and Lemma 2.4. Note that Lemma 2.4 does not require the
hypothesis of finite edge stabilisers.

Suppose X is a combinatorial 2-complex and let c : S1 Ñ X be a circuit in Xp1q that
is null-homotopic in X. Then there is D a disk diagram i : D2 Ñ X spanning c, that is,
i is a combinatorial map and ipBD2q “ c. Let AreapDq denote the number of faces of D
and define

δXpcq :“ mintAreapDq : D is a disk spanning cu,

the combinatorial Dehn function ∆X of X is defined to be

∆Xpnq :“ maxtδXpcq : c is a circuit in Xp1q, null-homotopic in X, with |c| ď nu.

Unless otherwise stated all graphs in this article are assumed to be simplicial. We recall
the following definition due to Bowditch [Bow12, Proposition 2.1]. A graph Γ is fine if
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for every n ě 0 and every edge e in Γ there are finitely many circuits of length less than
or equal to n which contains e.

Theorem 2.1 (Theorem B). Let X be a cocompact simply connected combinatorial G-
2-complex with finite edge stabilisers. The combinatorial Dehn function ∆X of X takes
only finite values if and only if the 1-skeleton of X is a fine graph.

The next three lemmas prove the theorem. The method is essentially a van Kampen
diagram approach to the proof of [Mar16, Theorem 1.3]. The first lemma is a triviality.

Lemma 2.2. Let X be a cocompact simply connected combinatorial G-2-complex with
finite edge stabilisers, then each edge is contained in finitely many 2-cells.

The next lemma proves the “only if” direction of Theorem 2.1.

Lemma 2.3. Let X be a cocompact simply connected combinatorial G-2-complex with
finite edge stabilisers. If the combinatorial Dehn function ∆X of X is well-defined then
Xp1q is a fine graph.

Proof. Let D be a cellular 2-disc. We say D is golden if D has a an enumeration of its
2-cells f1, ..., fk with the property that Bfi`1 contains a 1-cell of the subcomplex induced
by f1 Y ¨ ¨ ¨ Y fi, and there is a cellular map D Ñ X.

Let R be a 2-cell and f1 : R Ñ X, then a simple counting argument yields there are
only finitely many golden disks with at most n ě 0 faces making the following diagram
commute:

R X

D

f1

Observe that by taking the minimal area filling for a circuit c of length n in X gives rise
to a golden disk D with at most ∆Xpnq many 2-cells. Now, there are only finitely many 2-
cells containing a given edge e, so by the previous paragraph there are only finitely many
golden discs D containing e with at most ∆Xpnq many 2-cells. In particular, for each
n ě 0 there are only finitely many circuits in X of length less than or equal n containing
e. It follows that Xp1q is a fine graph. �

The next lemma proves the “if” direction of Theorem 2.1. Note that we can drop the
hypothesis of finite edge stabilisers.

Lemma 2.4. Let X be a cocompact simply connected combinatorial G-2-complex. If Xp1q

is a fine graph then the combinatorial Dehn function ∆X of X is well-defined.

Proof. Let Yn denote the set of circuits of length less than or equal to n in X.
Claim: Yn is a G-set with finitely many orbits.
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Let te1, . . . , eru be edges representing the orbits of the G-action on Xp1q. Every circuit
in X of length less than or equal to n can be translated to contain some ei, the claim now
follows from fineness of Xp1q. ˛

Let An be an upper bound for the area of a circuit of length less than or equal to n in
X, this is well-defined by the previous claim. Let γ be a closed path without backtracks
in X, then γ can be expressed as a concatenation of closed paths γ1 . . . γk, such that
1 ď k ď Lenpγq, for i “ 1, . . . , k we have Lenpγiq ď Lenpγq and each γi is a circuit. Now,
filling each γi we have

Areapγq ď
k
ÿ

i“1

Areapγiq ď

k
ÿ

i“1

ALenpγiq ď kALenpγq ď LenpγqALenpγq.

This yields a finite upper bound for ∆Xp`q and so we conclude that ∆X is well-defined. �

3. Coarse isoperimetric functions

To prove quasi-isometry invariance we will use the less general version of ε-fillings for
graphs and 2-complexes defined in [Osi06]. The original definition, set up for essentially
arbitrary metric spaces, can be found in [BH99, Chapter III.H.2]. The main result of
this section is Proposition 3.2 - a generalisation of a result of Osin [Osi06, Theorem 2.53]
alluded to in the introduction.

Let X be a 2-complex. A singular combinatorial loop c : S1 Ñ X is a combinatorial
structure on S1 and a continuous map such that for every open n-cell of S1, either f |e is
a homeomorphism onto an open cell of X, or else fpeq is contained in the pn´1q-skeleton
of X.

Let c be a combinatorial cycle in X. An ε-filling of c is a pair pP,Φq consisting of a
triangulation P of a 2-disc D2 and a singular combinatorial map Φ : P p1q Ñ Xp1q, such
that Φ|S1 “ c and the image under Φ of each face of P is a set of diameter at most ε.
Define |Φ| to be the number of faces of Φ and

Areaεpcq :“ mint|Φ| : φ an ε-filling of cu.

The coarse isoperimetric function of X is then defined to be

fXε p`q :“ suptAreaεpcq : Lenpcq ď `u.

Definition 3.1. For two functions f, g : NÑ N, we say that f is asymptotically less than
g, and we write f ĺ g if there exist constants C,K,L P N such that

fpnq ď CgpKnq ` Ln.

Further we say f is asymptotically equivalent to g, and write f — g if f ĺ g and g ĺ f .
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Proposition 3.2. Let X be a cocompact simply connected combinatorial G-2-complex. If
∆X takes only finite values, then for N P N large enough fXN takes only finite values and
fXN — ∆X .

Proof. Since X is a cocompact G-2-complex there are only finitely many G-orbits of 2-
cells in X. Let tD1, . . . , Dnu denote a representative set of orbits and let N be an integer
greater than the maximum diameter of each disc Di for i “ 1, . . . , n.

First, we will show fXN ĺ ∆X . Let c : S1 Ñ X be a singular combinatorial loop of
length `. Let Φ : D Ñ X be a disk diagram of minimal area that fills c : S1 Ñ X.
Barycentric subdividing D twice to obtain D2 yields a simplicial disk such that the image
of each face in X has diameter less than N , i.e. pD2,Φq is an N -filling of c. It follows
that Areaεpcq ď 12N∆XpLenpcqq. In particular, fXN ĺ ∆X .

It remains to show that ∆X ĺ fXN . Consider an N -filling pP,Φq of a combinatorial loop
c in Xp1q. Considering pP,Φq as a 3N -filling we may assume that each 0-cell of P maps
to a 0-cell of X and each 1-cell of P maps to an edge path in X of length at most N .
Thus, after subdividing P at most N times we may assume that Φ is cellular on P p1q. For
each 2-cell of the subdivided P , its boundary map determines a cellular loop in X with
length bounded by 3N . Now, we fill each such loop with some disc diagram D Ñ X to
obtain a diagram for c in X which has area at most ∆Xp3Nqf

X
3NpLenpcqq. In particular

we conclude that ∆Xpnq ĺ ∆Xp3Nqf
X
3Npcq. �

A connected graph Γ is fillable if, when considering Γ with the length metric obtained
by regarding each edge as an segment of length one, there is an integer k such that the
coarse isoperimetric function fΓ

k takes only finite values.

Proposition 3.3. [BH99, Proposition III.H.2.2] If Γ and Γ1 are quasi-isometric connected
graphs such that Γ is fillable, then Γ1 is fillable and fΓ

k — fΓ1

k for large enough k.

Remark 3.4. If a connected graph Γ is fillable, then there is a positive integer m such
that the complex obtained by attaching 2-cells to all circuits of length less than or equal
to m is simply connected.

4. Relative Dehn functions of groups

Definition 4.1 (Finite relative presentation). Let G be a group, P an arbitrary collection
of subgroups of G, and let S be a subset of G. We say that G is generated by S relative
to P if G is generated by the set S “ S \

Ů

PPPpP ´ t1uq, equivalently, the natural
homomorphism

(1) F “ F pSq ˚ ˚
PPP

P Ñ G

is surjective. In the case that S is finite, G is relatively finitely generated with respect to
P .
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Let R Ď F be a set that normally generates the kernel of the above homomorphism,
then we say

(2) G “ xS,P | Ry

is a presentation of G relative to P . If both S and R are finite we say G is relatively
finitely presented with respect to P , or just, relatively finitely presented if the collection P
is clear from the context, and (1) is a relative finite presentation.

Definition 4.2 (Coned-off Cayley graph). Let G be a group, let P be an arbitrary
collection of subgroups of G, and let S be a generating set of G. Denote by G{P the set
of all cosets gP with g P G and P P P . The coned-off Cayley graph of G with respect to
P is the graph Γ̂pG,P , Sq with vertex set GYG{P and edges are of the following type

‚ tg, gsu for s P S,
‚ tx, gP u for g P G, P P P and x P gP .

We call vertices of the form gP cone points.

Note that Γ̂pG,P , Sq contains the Cayley graph of G with respect to the generating set
S, and the quasi-isometry type of Γ̂pG,P , Sq is independent of the finite generating set S
of G. This justifies the notation Γ̂pG,Pq that we use throught the article.

Definition 4.3 (Relative Dehn function of a relative presentation). Let G “ xS,P | Ry

be a relative presentation. For a word W over the alphabet S “ S \
Ů

PPPpP ´ t1uq

representing the trivial element in G, there is an expression

(3) W “

k
ź

i“1

f´1
i Rifi

where Ri P R and fi P F .
We say a function f : N Ñ N is a relative isoperimetric function of the presentation

G “ xS,P | Ry if, for any n P N, and any word W as above of length ď n, one can write
W as in (3) with k ď fpnq. The smallest relative isoperimetric function of G “ xS,P | Ry
is called the relative Dehn function of G with respect to P , and it is denoted ∆G,P .

Definition 3.1 and Theorem 4.4 below justify the notation ∆G,P for the relative Dehn
function of G with respect to P .

Theorem 4.4. [Osi06, Theorem 2.34] Let G be a finitely presented group relative to P.
Let ∆1 and ∆2 be the relative Dehn functions associated to two finite relative presentations.
If ∆1 takes only finite values, then ∆2 takes only finite values, and ∆1 — ∆2.

Definition 4.5 (Osin-Cayley graph and Osin-Cayley complex). Assume G has a relative
presentation as in (2). We call the Cayley graph ΓpG,Sq with S “ S \

Ů

PPPpP ´ t1uq

the Osin-Cayley graph and we denote it by Γ̄pG,P , Sq. Note that in general this graph is
not simplicial.
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For each P P P , denote by RP the set of all words in the alphabet P´t1u that represent
the identity in P , that is, we have the presentation P “ xP ´ t1u | RP y. Also we have
the following presentation

F “ xS,
ğ

PPP
pP ´ t1uq |

ğ

PPP
RP y.

The Osin-Cayley complex X̄pG,P , Sq is the 2-complex with 1-skeleton Γ̄pG,P , Sq and
we attach:

‚ One 2-cell for each loop labelled with a word in R, which we call from now on
R-cells.

‚ One 2-cell for each loop labelled by a word in
Ů

PPP RP , which we call from now
on P-cells.

Remark 4.6. By [Osi06, Definition 2.31] the relative Dehn function ∆G,P can be de-
scribed as follows. For any combinatorial loop γ : S1 Ñ X̄pG,P , Sq, the relative area
Arearel

pγq of γ is the number of R-cells in a minimal disk diagram for γ, where minimal-
ity is with respect to the number of R-cells. Then

∆G,Ppnq “ maxtArearel
pγq : γ is a loop in X̄pG,P , Sq of length at most nu.

Definition 4.7 (A natural quasi-isometry between Γ̄pG,P , Sq and Γ̂pG,P , Sq). Assume
G is generated by S relatively to P . Let

ϕ : Γ̄pG,P , Sq Ñ Γ̂pG,P , Sq

be the map defined as follows. Add a vertex at the midpoint of each edge e “ tg, ghu of
Γ̄pG,P , Sq with h P P , p P P , and label in P . Consider the inclusion of the vertex set
of Γ̄pG,P , Sq into the vertex set of Γ̂ “ Γ̂pG,P , Sq. Observe that this map extends to a
G-equivariant cellular map between Γ̄pG,P , Sq and Γ̂pG,P , Sq. Specifically, for an edge
e “ tg, ghu with h P P and label in P of Γ̄pG,P , Sq, the midpoint of e maps to the vertex
gP ; an edge tg, gsu with label in S is an edge that is common to both Γ̄pG,P , Sq and
Γ̂pG,P , Sq. Observe that the map ϕ : Γ̄pG,P , Sq Ñ Γ̂pG,P , Sq is indeed a p1, 1q-quasi-
isometry.

Proposition 4.8. Let G be a group and let P be a collection of subgroups. If ∆G,P is
well-defined, then ∆G,P — f

Γ̂pG,Pq
N for all sufficiently large integers N .

Proof. This is a re-statement of Osin’s result [Osi06, Theorem 2.53] modulo the fact that
Γ̂pG,P , Sq and the Cayley graph Γ̄pG,P , Sq are quasi-isometric graphs, see Definition 4.7.

�

Definition 4.9 (Coned-off Cayley complex X̂pG,P , Sq). Consider the finite relative pre-
sentation G “ xS,P | Ry. For F “ F pSq ˚ ˚PPP P we consider the splitting as the
fundamental group of the graph of groups Y that consists of a vertex v labelled with the
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trivial group, one vertex vP labelled with each P P P respectively, one edge eP that joins
v with vP for each P P P labelled with the trivial group, and one edge es for each s P S
labelled with the trivial group. Let T be the Bass-Serre tree of Y, see [Ser03].

Since each subgroup P of F survives in the quotient G, we have that N “ xxRyy acts
freely on T . Also note that G acts on the quotient X1 “ T {N . We leave the reader to
verify that X1 is G-homeomorphic to the coned-off Cayley graph Γ̂pG,P , Sq.

The coned-off Cayley complex X̂pG,P , Sq of G is a 2-dimensional G-complex with 1-
skeleton X1 defined as follows. Since the natural morphisms P Ñ G with P P P are
injective, the subgroup xxRyy intersects trivially with every P P P . Thus the action of
xxRyy on the Bass-Serre tree T is free, and the quotient map ρ : T Ñ T {N is a covering
map. Fix a vertex x0 of T and consider it as a base point. Then any element g of xxRyy
induces a unique path αg from x0 to gx0. Let γg “ ρ˝αg be the closed path in X̂1 induced
by αg based at ρpx0q. This induces an isomorphism N Ñ π1pX1, ρpx0qq defined by g ÞÑ γg.
For g P G and h P N , let g ¨γh be the translated closed path in X1 without an initial point,
i.e., these are cellular maps from S1 Ñ X1. Consider the G-set Ω “ tg.γr | r P R, g P Gu

of closed paths in X1. The complex X̂ is then obtained by attaching a 2-cell to X1 for
every closed path in Ω. In particular, the pointwise G-stabilizer of a 2-cell of X̂ coincides
with the pointwise G-stabilizer of its boundary path. The natural isomorphism from N to
π1pX

p1q, ρpx0qq implies that X̂ is simply connected. Moreover, the G-action is cocompact
since R is finite.

p1

p2

p3

p4

p5

p6

p1

p2p3

p4

p5 p6

P

Figure 1. The image of the boundary of a P-cell on Γ̄pG,P, Sq under the
quasi-isometry φ.

Definition 4.10 (A natural map between X̄pG,P , Sq and X̂pG,P , Sq). There exists a G-
map ϕ : X̄pG,P , Sq Ñ X̂pG,P , Sq that extends the natural quasi-isometry ϕ : Γ̄pG,P , Sq Ñ
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Γ̂pG,P , Sq. In particular, we have a commutative diagram

Γ̄pG,P , Sq Γ̂pG,P , Sq

X̄pG,P , Sq X̂pG,P , Sq.

ϕ

ϕ

Specifically every R-cell in X̄pG,P , Sq is sent homeomorphically to the corresponding 2-
cell in X̂pG,P , Sq, while every P-cell in X̄pG,P , Sq is collapsed to a star-like 1-complex
as we see in Figure 1.

Remark 4.11. The following statements are straightforward to verify from the definition
of ϕ : X̄pG,P , Sq Ñ X̂pG,P , Sq and Figure 1. Denote by ∆X̂ the combinatorial Dehn
function of X̂pG,P , Sq.

(1) Let γ̂ : S1 Ñ X̂pG,P , Sq be a loop with no backtracks in the coned-off Cayley
complex. Then we can pull-back γ̂ to a loop γ : S1 Ñ X̄pG,P , Sq in such a way
that the following diagram commutes

S1

D!γ

zz

γ̂

$$

Γ̄pG,P , Sq
ϕ

// Γ̂pG,P , Sq.

Let D Ñ X̄pG,P , Sq be a disk diagram filling a combinatorial loop γ : S1 Ñ

X̄pG,P , Sq. Then there exists a disk diagram D̂ Ñ X̂pG,P , Sq so that the follow-
ing diagram commutes

S1
γ
// X̄pG,P , Sq

ϕ
// X̂pG,P , Sq

BD // D //

OO

D̂.

OO

(2) Let γ : S1 Ñ X̄pG,P , Sq be a combinatorial loop of length n, then we can push it
to a loop γ̂ “ ϕ ˝ γ : S1 Ñ X̂pG,P , Sq of length at most 2n, that is, we have the
following commutative diagram

S1

γ

zz

ϕ˝γ

$$

Γ̄pG,P , Sq
ϕ

// Γ̂pG,P , Sq

.
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Let D̂ Ñ X̂pG,P , Sq be a disk diagram filling the cycle γ̂ “ ϕ ˝ γ. Then there
exists a disk diagram D Ñ X̄ such that the following diagram commutes

X̄pG,P , Sq
ϕ
// X̂pG,P , Sq S1

γ̂
oo

D //

OO

D̂

OO

BD̂._?
oo

(3) In both items above, Arearel
pDq “ AreapD̂q.

Proposition 4.12. Let G “ xS,P | Ry be a finite relative presentation, and let ∆G,P and
X be the corresponding relative Dehn function and coned-off Cayley complex respectively.
Then ∆G,Ppnq — ∆Xpnq for every n P N.

Proof. Let γ̂ : S1 Ñ X̂pG,P , Sq be a loop of length n with no backtracks in the coned-off
Cayley complex. By the first item of Remark 4.11 and considering a minimal relative area
disk diagram D Ñ X̄pG,P , Sq filling a pull-back cycle γ̂ : S1 Ñ Γ̂pG,P , Sq of γ, it follows
that

∆G,Pp|γ̂|q ě ∆G,Pp|γ|q ě Arearel
pDq “ AreapD̂q ě Areapγ̂q

where the equality comes from the third item of Remark 4.11. Therefore ∆G,Ppnq ě ∆X̂pnq

for all n P N. Analogously, let γ : S1 Ñ X̄pG,P , Sq be a combinatorial loop. By the second
item of Remark 4.11 and considering a minimal area disk diagram D̂ Ñ X̂pG,P , Sq filling
γ̂ “ ϕ ˝ γ, it follows that

Arearel
pγq ď Arearel

pDq “ AreapD̂q ď ∆X̂p|γ̂|q ď ∆X̂p2|γ|q

and hence ∆G,Ppnq ď ∆X̂p2nq for all n P N.
�

The following corollary is a direct consequence of Theorem 2.1 and Proposition 4.12.

Corollary 4.13. Let G be finitely presented relative to a collection of subgroups P. The
following statements are equivalent:

(1) The relative Dehn function ∆G,P takes only finite values.
(2) The graph Γ̂pG,Pq is fine.

In the proof of [GM08, Proposition 2.50] is implicit that p1q implies p2q of the previous
theorem.

The following corollary is a straightforward consequence of Proposition 4.12 and Propo-
sition 3.2.

Corollary 4.14. Let G be a group finitely presented relative to a finite collection of
subgroups P. If ∆G,P takes only finite values, then Γ̂pG,Pq is fillable for some integer m.
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Proposition 4.15. Let G be a group finitely generated by S with respect to P. If
Γ̂pG,P , Sq is connected, fine, cocompact, and k-fillable, then G is finitely presented relative
to P.

Proof. Fix a vertex x0 of Γ̂ with trivial stabiliser. Since Γ̂ is fine and there are finitely
many G-orbits of edges, there are finitely many G-orbits of circuits of length at most k.
Let tγ1, . . . , γ`u be a collection of representatives, and after translations assume that each
γi contains the vertex x0 corresponding to the identity element of G. Then each γi defines
an element of the fundamental group π1pΓ̂, x0q.

Since Γ̂ “ Γ̂pG,Pq is cocompact, the collection P is finite. Let G̃ be the free product
F pSq ˚˚PPP P , and let T be the corresponding Bass-Serre tree of G̃. Consider the short
exact sequence,

1 Ñ N ãÑ G̃
ϕ
ÝÑ GÑ 1

where ϕ is the homomorphism induced by the inclusion S Y
Ťn
i“1 Pi into G. Since Γ̂

is connected, it is an observation that Γ̂ can be identified with the quotient T {N . The
quotient map ρ : T Ñ Γ̂ is equivariant with respect to ϕ : G̃Ñ G. Let x̃0 be a vertex of T
such that ρpx̃0q “ x0. Since the restriction of ϕ to each Pi is injective, the action of N on
T is free. In particular, ρ is a universal covering map. Note that x̃0 has trivial G̃-stabiliser.
Hence, via liftings, ρ yields a bijection ψ between the elements of G̃ (or equivalently the
G̃-orbit of x̃0) and the set of homotopy classes of paths in Γ̂ with initial vertex x0 and
terminal vertex in the G-orbit of x0. In particular, a well known fact of covering space
theory, shows that the restriction ψ : N Ñ π1pΓ̂, x0q is a group isomorphism. Let ri P N
be defined by ψpriq “ γi (a similar argument to this was used in [CHK20]).

Since Γ̂ is k-fillable, the complex X̂ obtained by attaching 2-cells with boundary paths
the circuits of length at most k is simply connected. That implies that π1pΓ̂, x0q is
generated by the closed paths arising as concatenations of the form αg ¨ γi ¨ ᾱg for g P G̃,
where αg is the projection via ρ of the unique path from x̃0 to g.x̃0. Equivalently, N is
generated by the elements grig´1 for g P G̃. We have shown that N is normally generated
by R “ tr1, . . . , r`u and therefore xS,P |Ry is a finite relative presentation of G. �

Summarising the results of this section we obtain Theorem 4.16 below.

Theorem 4.16 (Theorem E). Let G be a group finitely generated relative to a finite
collection of subgroups P. If G is finitely presented relative to P, then

(1) Γ̂pG,Pq is fillable.
(2) The relative Dehn function ∆G,P is well-defined if and only if Γ̂pG,Pq is fine graph.

Conversely, if Γ̂pG,Pq is fine and fillable, then G is finitely presented relative to P and
hence ∆G,P is well-defined.

Proof. This follows from Corollary 4.13, Corollary 4.14 and Proposition 4.15. �

Note that Theorem E from the introduction is a particular case Theorem 4.16.
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5. Fineness and quasi-isometries of pairs

In this section we will prove Theorem C from the introduction. The heart of the argu-
ment is establishing Proposition 5.6 which gives conditions on a quasi-isometry of pairs
q : pG,Pq Ñ pH,Qq to induce a quasi-isometry of coned off Cayley graphs. The remainder
of the section then works towards replacing the geometric-set-theoretic conditions on q

with algebraic conditions on P and Q. This yields Proposition 5.12. Finally, we give a
proof of Theorem C.

Another equivalent definition of Bowditch’s fine graphs is used in this section [Bow12,
Proposition 2.1].

Definition 5.1 (Fine). Let Γ be a graph and let v be a vertex of Γ. Let

TvΓ “ tw P V pΓq | tv, wu P EpΓqu.

denote the set of the vertices adjacent to v. For x, y P TvΓ, the angle metric =vpx, yq is
the length of the shortest path in the graph Γztvu between x and y, with =vpx, yq “ 8 if
there is no such path. The graph Γ is fine at v if pTvΓ,=vq is a locally finite metric space.
The graph Γ is fine at C Ď V pΓq if Γ is fine at v for all v P C. The graph Γ is a fine graph
if it is fine at every vertex.

Definition 5.2 (Quasi-isometry of Pairs). Consider two pairs pG,Pq and pH,Qq where
G and H are finitely generated groups with chosen word metrics distG and distH with
respect to some finite generating sets. Denote the Hausdorff distance between subsets of
H by hdistH . An pL,Cq-quasi-isometry q : GÑ H is an pL,C,Mq-quasi-isometry of pairs
q : pG,Pq Ñ pH,Qq if the relation

9q “ tpA,Bq P G{P ˆH{Q : hdistHpqpAq, Bq ăMu

satisfies that the projections into G{P and H{Q are surjective.

Remark 5.3. Note that in Definition 5.2 the notion of a quasi-isometry of pairs is in-
dependent of the chosen finite generating sets for G and H. In the case where we want
to keep track of specific generating sets we use the following notation. If G and H are
groups generated by finite generating sets S0 and T0 respectively, by a quasi-isometry of
pairs pG,P , S0q Ñ pH,Q, T0q we mean a quasi-isometry of pairs pG,Pq Ñ pH,Qq with
respect to the word metrics induced by S0 and T0.

Remark 5.4. If P is a finite collection, then the metric space pG{P , hdistq is locally
finite. Indeed, fixing P P P and r ą 0, there are finitely many left cosets in G{P such
that hdistpP, gP q ă r. Moreover, the left G-action on G{P by multiplication on the left
preserves the Hausdorff distance hdist between subsets of G and hence it is an action by
isometries.
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Remark 5.5. If q : pG,Pq Ñ pH,Qq is an pL,C,Mq-quasi-isometry of pairs, and 9q is a
function G{P Ñ H{Q, then

1

L
hdistpA,Bq ´ C ´ 2M ď hdistp 9qpAq, 9qpBqq ď L hdistpA,Bq ` C ` 2M.

In particular, 9q : pG{P , hdistq Ñ pH{Q, hdistq is a quasi-isometry.

The main technical result of this section is the following proposition. Note that given
a connected graph Γ we consider the vertex set as a metric space with metric induced
by the path metric. In particular, a quasi-isometry between graphs is a function of the
vertex sets satisfying the usual axioms.

Proposition 5.6. Let G and H be groups, let S Ă G and T Ă H, and let S0 Ă S and
T0 Ă T be finite generating sets of G and H respectively. Consider collections P and Q
of subgroups of G and H respectively. Let q : GÑ H be a function.

Suppose q is a quasi-isometry ΓpG,Sq Ñ ΓpH,T q, is a quasi-isometry of pairs pG,P , S0q Ñ

pH,Q, T0q, and 9q is a bijection G{P Ñ H{Q.

(1) If q̂ “ q Y 9q, then q̂ is a quasi-isometry Γ̂pG,P , Sq Ñ Γ̂pH,Q, T q.
(2) If Γ̂pH,Q, T q is fine at cone vertices, then Γ̂pG,P , Sq is fine at cone vertices.

Remark 5.7. There are algebraic conditions on P and Q that imply that 9q is a bijection,
see Proposition 5.12.

Corollary 5.8. Suppose that q : pG,Pq Ñ pH,Qq is an quasi-isometry of pairs and 9q is
a bijection. Then q̂ : Γ̂pG,Pq Ñ Γ̂pH,Qq is a quasi-isometry, and if Γ̂pH,Qq is a fine
graph, then Γ̂pG,Pq is a fine graph.

Proof of Proposition 5.6. Suppose q : ΓpG,Sq Ñ ΓpQ, T q is a pL̄, C̄q-quasi-isometry and
q : pG,P , S0q Ñ pH,Q, T0q is a pL,C,Mq-quasi-isometry of pairs.

For any path α “ rv0, v1, . . . , v`s in Γ̂pG,P , Sq, let q̂pαq denote a path in Γ̂pH,Q, T q
from q̂pv0q to q̂pv`q obtained as the concatenation of paths β0, . . . , β`´1 where βi is a path
from q̂pviq to q̂pvi`1q defined as follows:

(1) If vi and vi`1 are elements of G, then βi is a geodesic in ΓpH,T q from qpviq to
qpvi`1q. Since q : ΓpG,Sq Ñ ΓpQ, T q is a pL̄, C̄q-quasi-isometry, βi has length
bounded by L̄` C̄.

(2) Suppose vi P G and vi`1 P G{P . Observe that vi is an element of the left coset
vi`1. Since q : pG,P , S0q Ñ pH,Q, T0q is an pL,C,Mq-quasi-isometry of pairs,
there is a geodesic of length at most M in ΓpH,T0q from qpviq to an element w
of the left coset 9qpvi`1q. Let βi be the concatenation of this geodesic in ΓpH,T0q

followed by the edge between w and the cone vertex 9qpvi`1q. Observe that βi is a
path of length at most M ` 1 in Γ̂pH,Q, T q.

(3) If vi P G{P and vi`1 P G then βi is defined in an analogous way as in the previous
case, and also has length at most M ` 1.
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Observe that
|q̂pαq| ď pL̄` C̄ `M ` 1q|α|.

The above inequality applied in the case that α is a geodesic between vertices x and y of
Γ̂pG,P , Sq implies that

distΓ̂pH,Q,T qpq̂pxq, q̂pyqq ď pL̄` C̄ `M ` 1q distΓ̂pG,P,Sqpx, yq

for any pair of vertices x, y of Γ̂pG,P , Sq. By symmetry an analogous inequality holds
for vertices of Γ̂pH,Qq. Since 9q is a bijection, the definition of q̂pαq shows that α passes
through a cone vertex A if and only if q̂pαq passes through the cone vertex 9qpAq. We
summarise this discussion in the following lemma.

Lemma 5.9. There are constants L̂ ě 1 and Ĉ ě 0 such that:

(1) The function q̂ is a pL̂, Ĉq-quasi-isometry from Γ̂pG,P , Sq to Γ̂pH,Q, T q.
(2) Let α be a path in Γ̂pG,P , Sq.

(a) For any A P G{P, α passes through the cone vertex A if and only if q̂pαq
passes through the cone vertex 9qpAq.

(b) |q̂pαq| ď L̂ |α|.

We prove the contrapositive of the second statement of the proposition. Suppose that
Γ̂pG,P , Sq is not fine at cone vertices. Then there is P P P such that pTPΓ,=P q is not
locally-finite. Let r ą 0 and let tgiu Ď P be an infinite subset such that =P pgi, gjq ď r

for every i, j. Let αi,j be a path in Γ̂pG,P , Sq from gi to gj of length at most r that does
not contain the cone vertex P . Let Q denote the left coset 9qpP q. Let γi be a geodesic
in ΓpH,T0q from an element hi of Q to qpgiq such that distHphi, qpgiqq “ distHpQ, qpgiqq.
Since q is a pL,C,Mq quasi-isometry of pairs, each γi has length at most M .

Let us prove that the set thiu is infinite. Suppose, for contradiction, that thiu is a
finite set. Since T0 is a finite generating set, ΓpH,T0q is a locally finite graph and hence
it admits only finitely many paths of length at most M with initial vertex in thiu. Since
each γi has length at most M and initial vertex in thiu, it follows that the set tqpgiqu
is finite and in particular, bounded. Since q is a quasi-isometry ΓpG,S0q Ñ ΓpG, T0q, it
follows that the set tgiu is a bounded subset of vertices in the locally finite graph ΓpG,S0q,
hence the set tgiu is finite, a contradiction.

To conclude the proof, we show that Γ̂pH,Q, T q is not fine at the cone vertex Q. Since
thiu is an infinite subset of Q, it is enough to show that =Qphi, hjq ď rL̂`M for any i, j.
Consider the path βi,j from hi to hj obtained as the concatenation of the path γi from hi to
q̂pgiq, followed by the path q̂pαi,jq from q̂pgiq to q̂pgjq, and then the path γ̄j from q̂pgjq to hj.
The paths γi and γj have length bounded byM , and they do not contain the cone vertex Q
as they are paths in ΓpH,T0q; the path q̂pαi,jq has length at most rL̂ and does not contain
the cone vertex Q by Lemma 5.9. Therefore =Qphi, hjq ď |γi| ` |q̂pαi,jq| ` |γj| ď 2M ` rL̂

as desired. �



RELATIVE FILLING FUNCTIONS 18

P

TPΓ

Γ̂pG,P , Sq

gi gj

αi,j

ď r

1 1

Q

TQΓ

Γ̂pH,Q, T q

q̂pgiq q̂pgjq

q̂pαi,jq

ď rL̂

ďM ďM

Figure 2. Illustration of the proof of Proposition 5.6

The goal for the remainder of this section is to give algebraic conditions on P and Q
to ensure 9q is a bijection. The following key definition will provide such a criteria.

Definition 5.10 (Reduced Collection). A collection of subgroups P of a group G is
reduced if for any P,Q P P and g P G, then P and gQg´1 being commensurable subgroups
implies P “ Q and g P P .

Remark 5.11. If P is a reduced collection of subgroups of a group G, then P “

CommGpP q for any P P P .

Proposition 5.12. Let q : pG,Pq Ñ pH,Qq be a pL,C,Mq-quasi-isometry of pairs. Then

(1) 9q is a surjective function G{P Ñ H{Q if Q is reduced.
(2) 9q is a bijection G{P Ñ H{Q if P and Q are reduced.

There are different versions of the following lemma in the literature: [MSW11, Lemma
2.2], [Mar09, Lemma 4.7] and [Hru10, Proposition 9.4], the statement below is taken from
the later reference. For A Ă G, NkpAq denotes the closed neighborhood of A in pG, distGq.

Lemma 5.13. Let G be a finitely generated group with word metric distG. Let gP and
fQ are arbitrary left cosets of subgroups of G. Then for any k ą 0 there is M ą 0 such
that

NkpgP q XNkpfQq Ď NMpgPg
´1
X fQf´1

q.

Lemma 5.14. Let G be a finitely generated group with a word metric distG, let P and Q
be subgroups, and let g P G. Then P and gQg´1 are commensurable subgroups if and only
if hdistGpP, gQq ă 8.
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Proof. Suppose K is a finite index subgroup of P and gQg´1. Then hdistpK,P q ă 8 and
hdistpK, gQg´1q are finite. Since hdistpgQg´1, gQq ď distp1, gq ă 8, it follows that

hdistpP, gQq ď hdistpP,Kq ` hdistpK, gQg´1
q ` hdistpgQg´1, gQq ă 8.

Conversely, suppose hdistpP, gQq is finite. Then P Ă P X NkpgQq for some k, and
therefore Lemma 5.13 implies that P Ď NMpP X gQg´1q for some M . It follows that
P X gQg´1 is a finite index subgroup of P . In an analogous way one shows that P X
gQg´1 is a finite index subgroup of gQg´1. Whence, P and gQg´1 are commensurable
subgroups. �

Proof of Proposition 5.12. To prove the first statement, we only need to show that the
relation 9q is a function. Suppose that Q is reduced and the pairs pA, h1Q1q and pA, h2Q2q

belong to 9q. Then h1Q1, h2Q2 P H{Q and hdistHph1Q1, h2Q2q ă 8. Lemma 5.14 implies
that h1Q1h

´1
1 and h2Q2h

´1
2 are commensurable subgroups. Since Q is reduced, it follows

that Q1 “ Q2 and h2 P h1Q1. In particular, h1Q1 “ h2Q2 and hence 9q is a function. The
second statement of the lemma follows from the first one. �

We are now ready to prove Theorem C from the introduction.

Theorem 5.15 (Theorem C). Let q : pG,Pq Ñ pH,Qq be a quasi-isometry of pairs.
Suppose P and Q are reduced finite collections. Then there is an induced quasi-isometry
of graphs q̂ : Γ̂pG,Pq Ñ Γ̂pH,Qq, and if Γ̂pH,Qq is a fine graph then Γ̂pG,Pq is a fine
graph.

Proof. The result follows from applying Proposition 5.12 to Corollary 5.8. �

6. Almost malnormal collections and quasi-isometries of pairs

In this section we will prove Theorem D from the introduction. First, we introduce a
refinement P˚ of a collection P . In Proposition 6.2 we show under mild hypothesis pG,Pq
and pG,P˚q are quasi-isometric pairs under the identity map.

Definition 6.1. Let P be a collection of subgroups of group G. A refinement P˚ of P is a
set of representatives of conjugacy classes of the collection of subgroups tCommGpgPg

´1q : P P

P and g P Gu.

Proposition 6.2. Let P˚ be a refinement of a finite collection of subgroups P of a finitely
generated group G. If P is a finite index subgroup of CommGpP q for every P P P, then
pG,Pq and pG,P˚q are quasi-isometric pairs via the identity map on G.

Proof. Let P “ tP1, . . . , Pku. Since CommGpgPg
´1q “ gCommGpP qg

´1, we can assume
that every subgroup in P˚ is of the form CommGpP q for some P P P . Let q : G Ñ G

be the identity map. Since q is a p1, 0q-quasi-isometry, it is enough to show that there is
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M ą 0 such that the relation

9q “ tpA,Bq P G{P ˆG{P˚ : hdistpA,Bq ăMu

satisfies that it projects surjectively on G{P and on G{P˚.
For any Pi P P , note that hdistpPi,CommGpPiqq ă 8 since Pi has finite index in

CommGpPiq. Let
M1 “ maxthdistpPi,CommGpPiqq : 1 ď i ď ku.

By definition of P˚, for any Pi, there isQi P P˚ and gi P G such that CommpPiq “ giQig
´1
i .

In particular hdistpCommGpPiq, giQiq is finite. Let

M2 “ maxthdistpCommGpPiq, giQiq : 1 ď i ď ku.

Let M ą M1 `M2. Then for any gPi P G{P , pgPi, ggiQiq P 9q. On the other hand, if
gQ P G{P˚ then Q “ CommGpP q for some P P P and hence pgP, gQq P 9q. �

Remark 6.3. Note that in the previous proposition if P is infinite the map 9q : G{P Ñ

G{P˚ must be finite-to-one. Otherwise after conjugating, there will be a sequence of
subgroups Pi ď CommGpP0q such that |CommGpP0q : Pi| Ñ 8, in particular, the sequence
of Hausdorff distances hdistpCommGpP0q, Piq is not bounded.

Definition 6.4. A collection of subgroups P of a group G is almost malnormal if for any
P, P 1 P P and g P G, either gPg´1 X P 1 is finite, or P “ P 1 and g P P .

Remark 6.5. If P is an almost malnormal collection of infinite subgroups of a group G,
then P is reduced.

Remark 6.6. If a group G acts by automorphisms on a fine graph Γ such that edge
stabilizers are finite and P is a collection of representatives of conjugacy classes of vertex
stabilizers, then P is an almost malnormal collection.

Proposition 6.7. Let q : pG,Pq Ñ pH,Qq be a quasi-isometry of pairs. If Q is an
almost malnormal finite collection of infinite subgroups and P is a finite collection, then
any refinement P˚ of P is almost malnormal.

The proof of Proposition 6.7 relies on the following lemmas.

Lemma 6.8. Let P be a collection of subgroups of a group G. Suppose P is a finite index
subgroup of CommGpP q for every P P P. Then any refinement P˚ of P is a reduced
collection.

Proof. Since commensurable subgroups have equal commensurator, CommGpCommGpP qq

equals CommGpP q for every P P P . Let P1, P2 P P and g P G, and suppose CommGpP1q
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and gCommGpP2qg
´1 are commensurable subgroups.

CommGpP1q “ CommGpCommGpP1qq

“ CommGpgCommGpP2qg
´1
q

“ CommGpCommGpgP2g
´1
qq

“ CommGpg
´1P2gq

“ gCommGpP2qg
´1.

Hence P˚ is reduced. �

Lemma 6.9. Let P be a finite collection of infinite subgroups of a finitely generated group
G. Then P is almost malnormal if and only if for any A,B P G{P, either A “ B or
NnpAq XNnpBq is a finite subset of G for every n.

Proof. Suppose that P is an almost malnormal collection of infinite subgroups. Let
g1P1, g2P2 P G{P and suppose that Nnpg1P1q X Nnpg2P2q is an infinite (and hence un-
bounded) subset of G for some integer n. By Lemma 5.13, there is an integer m such that
Nnpg1P1q XNnpg2P2q Ă Nmpg1P1g

´1
1 X g2P2g

´1
2 q. It follows that g1P1g

´1
1 X g2P2g

´1
2 is an

infinite subgroup and hence P1 “ P2 and g´1
1 g2 P P1 by almost malnormality. Therefore

g1P1 “ g2P2.
Conversely, suppose that for any A,B P G{P , either A “ B or NnpAq X NnpBq is a

finite set for every n. Let P, P 1 P P and g P G and suppose that gPg´1XP 1 is an infinite
subgroup. It follows that there is n ą 0 such that NnpgP q XNnpP

1q is an infinite subset
of G. Hence gP “ P 1 and in particular P “ P 1 and g P P . �

Lemma 6.10. Let q : pG,Pq Ñ pH,Qq be a quasi-isometry of pairs. Suppose that P and
Q are finite collections, and Q is reduced. If Q is finite index in CommHpQq for every
Q P Q, then P is finite index in CommGpP q for every P P P.

Proof. Since Q is reduced, 9q is a function from G{P Ñ G{Q. Since both P and Q
are finite collections, it follows that 9q : pG{P , hdistq Ñ pH{Q, hdistq is a quasi-isometry
between locally finite metric spaces. Suppose that P P P has infinite index in CommGpP q.
Lemma 5.14 implies that there is an infinite collection of left cosets A “ tgiP : i P Iu such
that hdistpgiP, gjP q ă 8 for any i, j P I. By local finiteness of pG{P , hdistq, the collection
A is an unbounded subset of G{P . It follows that B “ t 9qpgiP q : i P Iu is an unbounded
subset of H{Q. Since Q is a finite collection, and 9qpgiP q “ hiQi for some hi P H and
Qi P Q, the pigeon hole principle implies that we can assume that all Qi’s are a fixed
Q P Q. By Lemma 5.14, the subgroup Q has infinite index in CommHpQq. �

Proof of Proposition 6.7. Suppose that q : pG,Pq Ñ pG,Qq is a quasi-isometry of pairs.
Since Q is an almost malnormal collection of infinite subgroups, it is a reduced collection
and every element of Q has finite index in its commensurator. Since P and Q are finite
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collections, Lemma 6.10 implies that every element of P has finite index in its commensu-
rator. Let P˚ be a refinement of P in G. By Proposition 6.2 there is a quasi-isometry of
pairs p : pG,P˚q Ñ pG,Pq. Then the composition r “ p˝q is an pL,C,Mq-quasi-isometry
of pairs pG,P˚q Ñ pH,Qq. Lemma 6.8 implies that P˚ is a reduced collection. Therefore
9r is a bijection G{P˚ Ñ H{Q by Proposition 5.12. To conclude that P˚ is an almost
malnormal we verify the hypothesis of Lemma 6.9.
Claim: P˚ is a finite collection of infinite subgroups.
Since P is finite, then P˚ is finite. Every element of P˚ is a conjugate of a subgroup

of the form CommGpP q for some P P P , hence it is enough to show that P contains only
infinite subgroups. Observe that any P P P is an infinite subgroup since hdistp 9qpP q, Qq ă
8 for some Q P H{Q and every subgroup in Q is infinite. ˛
Claim: For any A,B P G{P˚, either A “ B or NnpAq XNnpBq is a finite subset of G

for every n.
Let A,B P G{P˚ and suppose that A ‰ B. Since 9r : G{P˚ Ñ H{Q is a bijection, it

follows that 9rpAq and 9rpBqq are distinct elements ofH{Q. SinceQ is an almost malnormal
collection, Lemma 6.9 implies that for any integerm the intersectionNmp 9rpAqqXNmp 9rpBqq

is a finite (and hence bounded) subset of H. Since r : GÑ H is a quasi-isometry, it follows
that for every n, the intersection NnpAq XNnpBq is a bounded (and hence finite) subset
of G. ˛ �

Theorem 6.11 (Theorem D). Let q : pG,Pq Ñ pH,Qq be a quasi-isometry of pairs. If Q
is an almost malnormal finite collection of infinite subgroups and P is a finite collection,
then any refinement P˚ of P is almost malnormal and q : pG,P˚q Ñ pH,Qq is a quasi-
isometry of pairs.

Proof. The result follows from Proposition 6.2 and Proposition 6.7. �

7. Examples and non-examples

In this section we show that there are examples of pairs pG,Hq with well-defined relative
Dehn function outside of the context of relatively hyperbolic groups. Hyperbolically
embedded subgroups were introduced in [DGO17] by Dahmani, Guirardel and Osin. Given
a group G, X Ă G and H ď G, let H ãÑh pG,Xq denote that H is a hyperbolically
embedded subgroup of G with respect to X. There is a characterisation in [MR21] of
H being hyperbolically embedded into G that fits into the context of our Theorem E,
namely, in terms of fine vertices in coned-off Cayley graphs (see Definition 5.1).

Proposition 7.1. [MR21, Proposition 1.4] Let G be a group, X Ă G and H ď G. Then
H ãÑh pG,Xq if and only if Γ̂pG,H,Xq is connected, hyperbolic, and fine at cone vertices.

The following theorem provides our examples.
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Theorem 7.2 (Theorem G). Let G be a finitely presented group and H ď G be a subgroup.
If H ãÑh G then the relative Dehn function ∆G,H is well-defined.

The proof of the theorem is discussed after the following lemma.

Lemma 7.3. Let G be a finitely generated group and H a finitely presented subgroup.
Then G is finitely presented if and only if G is finitely presented relative to H.

Proof. Suppose that G has a finite presentation xA | Ry. Let RH be the collection of
all relations in H over the generating set H ´ t1u, that is, H “ xH ´ t1u | RHy. Let
th1, . . . , hku be a finite generating set of H. Then, there is a word wi over the alphabet
A that represents hi. Observe that

xA\ pH ´ t1uq | R,RH , h1 “ w1, . . . , hk “ wky

yields a finite relative presentation of G with respect to H.
Conversely, suppose that xA,H | Ry is a finite relative presentation of G with respect to

H, and let xB | T y be a finite presentation ofH. Then xA\B,H | R\T, h1 “ w1, . . . , hk “

wky is a finite relative presentation of G with respect to H, where th1, . . . , hku Ă H is a
finite generating set of H and wi is a word over B that represents the element hi (after
choosing an isomorphism F pBq{xxT yy Ñ H). This relative presentation yields a standard
presentation xA\B\pH´t1uq | R\T \RH\th1 “ w1, . . . , hk “ wkuy of G, where RH is
the collection of all relations in H over the generating set H ´t1u. Since the th1, . . . , hku

generate H, using Tietze transformations one obtains that xA \ B | R \ T \ th1 “

w1, . . . , hk “ wkuy is a presentation of G which is finite. �

Proof of Theorem 7.2. First, note that the theorem is trivial in the case that H is a finite
subgroup of G. Indeed, any finite subgroup is hyperbolically embedded by definition and
a finite relative presentation of a group with respect to a finite subgroup is in fact a finite
presentation. In particular, the relative Dehn function coincides with the Dehn function
and the Dehn function of a finitely presented group is always well-defined.

Since G is finitely presented and H ãÑh G, it follows from [DGO17, Corollary 4.32] that
H is finitely presented. Hence, by Lemma 7.3, G is finitely presented relative to H.

Let S be a finite generating set of G. In view of Theorem E(2), to conclude that ∆G,H

is well-defined, it is enough to prove that Γ̂pG,P , Sq is a fine graph.
Suppose that H ãÑh pG,Xq for some X Ă G. Without loss of generality, assume

that X contains the finite generating set S, see [DGO17, Corollary 4.27]. It follows
that Γ̂pG,H, Sq is a subgraph of Γ̂pG,H,Xq. Since S is finite, observe that every vertex
of Γ̂pG,H, Sq has either finite degree or is cone-vertex. By Proposition 7.1, the graph
Γ̂pG,H,Xq is fine at every cone vertex, and hence so is Γ̂pG,H, Sq. Therefore Γ̂pG,H, Sq

is a fine graph. �
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Example 1. In [Gen19] the author shows that amongst graph products of finite groups
various eccentric subgroups (see loc. cit. for a definition) are quasi-isometrically rigid in
the sense of [MS21]. Let G be a graph product of finite groups that is not virtually cyclic
or a direct product of two infinite groups, then G is acylindrically hyperbolic. Suppose
H is an eccentric subgroup, then H ãÑh G if and only if H is almost malnormal. In
particular, if H is almost malnormal, then by Theorem 7.2, we see that ∆G,H is well-
defined. Moreover, for any graph product of finite groups G1 quasi-isometric to G, there
exists a subgroup H 1 ă G1, such that ∆G1,H 1 — ∆G,H .

The following example demonstrates that ∆G,P being well-defined is not implied by P
being a qi-characteristic collection in the sense of [MS21].

Example 2. Let F be a finite group and let H be a finitely presented one-ended group.
Consider the wreath product G “ F oH. In work of Genevois and Tessera [GT21, Proof
of Theorem 7.1], they show that an quasi-isometry of q : G Ñ G is a quasi-isometry of
pairs q : pG,Hq Ñ pG,Hq. Moreover, H is an almost malnormal subgroup and in fact is
qi-characteristic in the sense of [MS21], see [GT21, Theorem 1.18]. However the coned-off
Cayley graph of G with respect to H is not fine, so the group G can not have a well-defined
Dehn function by Theorem 4.16. To prove this, suppose F is the group with two elements
and let H be a group with an element of infinite order a. Consider the wreath product
G “ F oH. If F has non-trivial element x, then G has a relative presentation

xx,H | x2, rx, gxg´1
s for all G´ teuy.

Let us observe that the coned-off Cayley graph Γ̂pG,H, txuq is not fine. Consider the edge
te,Hu. We will show that there infinitely many circuits of length twelve that contain this
edge, each of them induced by a word

wn “ xanxa´nxanxa´n

which represents the identity. For an arbitrary integer n ą 0, the sequence of vertices

γn “ rH, e, x, xH, xa
n, xanx, xanxH, xanxa´n, anxa´n, anxH, anx, an, Hs

is a closed path of length twelve in Γ̂ containing the edge te,Hu; the only non-trivial
adjacency follows from xanxa´n “ anxa´n. It follows that γn is a circuit since one
can show that the left cosets H, xH, xanxH, anxH are all distinct. On the other hand,
anxH “ amxH if and only if n “ m, and therefore γn ‰ γm if m ‰ n. Note, we do not
know the existence of a finite relative presentation for G with respect to H, but observe
that we do not use this in the remark.

Finally, we will show the relative Dehn function of BSpk, lq with respect to the stable
letter is not well-defined if either k or l divides the other one.
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Example 3. Let G “ BSpk, lq “ xa, t |takt´1 “ aly. We claim that if k | l or l | k, then
∆G,xty is not well-defined. As in the previous example we will show that the coned-off
Cayley graph Γ̂pG, xty, ta, tuq is not fine and apply Theorem 4.16.

Without loss of generality let ` “ km and consider wn “ tnakt´natna´kt´na´1. Observe
that wn “ 1G since tnakt´n “ ak`

n and tna´kt´n “ a´k`
n . The word wn describes a circuit

of length 2k ` 6 in Γ̂pG, xty, ta, tuq because the four left cosets xty, tnakxty “ ak`
n
xty,

tnakt´naxty “ ak`
n`1xty, and tnakt´na´kxty “ axty are all distinct. In particular, the

coned-off Cayley graph Γ̂pG, xty, ta, tuq is not fine.

Appendix A. Relative Dehn functions of Baumslag-Solitar groups

by Ashot Minasyan

For two non-zero integers k, l we define the Baumslag-Solitar group BSpk, lq by the pre-
sentation

BSpk, lq “ xa, t | takt´1
“ aly.

Evidently BSpk, lq is finitely presented relative to its cyclic subgroup xty and we can
consider the relative presentation

(4) BSpk, lq “ xa, xty | Ry,

where R consists of all cyclic permutations of the relator takt´1a´l and its inverse.
Let F “ F pa, tq be the free group freely generated by ta, tu. The generating set tauYxty

of F gives rise to the relative word length }¨}tauYxty for words over the alphabet tau˘1Yxty.
The goal of this appendix is to provide a characterisation for the Dehn function of

BSpk, lq with respect to xty to be well-defined (we shall use the definitions of the relative
area and relative Dehn functions from Remark 4.6).

Theorem A.1. Let G “ BSpk, lq, for some non-zero integers k, l. The relative Dehn
function ∆G,xty is well-defined if and only if k does not divide l and l does not divide k.

Proof. The necessity has already been proved in Example 3, using Theorem 4.16. Below
we give a different argument, based on the results of Osin [Osi06].

Throughout the argument we will use the following well-known elementary facts about
G “ BSpk, lq: the elements a and t have infinite order and xay X xty “ t1u in G.

Assume, without loss of generality, that k divides l, so that l “ km, for somem P Zzt0u.
Arguing by contradiction, suppose that the Dehn function ∆G,xty is well-defined. Then,
by [Osi06, Proposition 2.36], xty is a malnormal subgroup of G (i.e., gxtyg´1 X xty “ t1u

for any g P Gzxty).
If l “ ˘k then t2akt´2 “ ak, so that a´kt2ak “ t2 P a´kxtyak X xty “ t1u, contradicting

to the fact that t has infinite order in G. Therefore we can further assume that |k| ‰ |l|,
so that |m| ą 1.
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For any s P N we have tsakt´s “ am
sk in G, whence the commutator word

Ws “ rt
sakt´s, as “ tsakt´satsa´kt´sa´1

represents the trivial element of G. Note that }Ws}tauYxty “ 2k ` 6, so, since the Dehn
function ∆G,xty is well-defined, there exists a constant C ě 0 such that

ArearelpWsq ď C, for all s P N.

For each s P N let qs be the cycle in the Cayley graph ΓpG, tau Y xtyzt1uq based
at the identity element and labelled by the word Ws. By the definition of Ws, qs is a
concatenation of eighth subpaths p1, p2, . . . , p8, where p1 is the edge labelled by tk, p2 has
length |k| and is labelled by ak, and so on: see Figure 3.

p1
ts

p2 ak

p3
t−s

p4

a p5
ts

p6a−k

p7
t−s

p8

a−1

1

Figure 3. The cycle qs (markings inside the polygon represent the labels of the
subpaths p1, . . . , p8)

Using Osin’s terminology from [Osi06, Section 2.2], we see that p1, p3, p5 and p7 is the
list of xty-components of q. Let us show that p1 is an isolated component of qs. Indeed,
if p1 is connected to p3 then the label of p2, ak, must represent an element of xty in G.
The latter is impossible since xay X xty “ t1u in G and ak ‰ 1. Similarly, p1 cannot be
connected to p7. Finally, if p1 is connected to p5 then the label of the path p1p2p3p4 must
represent an element of xty in G. However, this label is equal to tsakt´sa, which simplifies
to amsk`1 in G. This again yields a contradiction because msk ` 1 ‰ 0 (which is true as
|m| ą 1 and s P N).

Therefore we can apply [Osi06, Lemma 2.27] to the cycle qs, claiming that

|ts|Ω ďMArearelpWsq,

where Ω “ tt, t´1u and M “ maxt}R}tauYxty | R P Ru “ |k| ` |l| ` 2. It follows that
s ď MC for all s P N. This contradiction shows that the Dehn function ∆G,xty is not
well-defined, so the necessity statement of the theorem has been proved.

The proof of the sufficiency occupies the rest of the appendix and will be completed in
Theorem A.8 below. �
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Remark A.2. Theorem A.1 implies that the relative Dehn function of the group G “

BSp2, 3q with respect to the cyclic subgroup xty is well-defined. However, we note that
xty ãÑh G so the converse of Theorem G is false. In fact, G does not contain any proper
infinite hyperbolically embedded subgroups: see Theorem 1.2 and Example 7.4 in [Osi16].

A.1. Notation. We will use Z to denote the set of all integers, N “ t1, 2, . . . u – the set
of natural numbers and N0 “ NY t0u. Given a prime p and an integer n P Zzt0u, we will
write

νppnq “ maxts P N0 | p
s divides nu P N0.

Evidently, νppnq ď logpp|n|q and νppmnq “ νppmq ` νppnq, for all m,n P Zzt0u.
Further on k, l will be some fixed non-zero integers and G will be the Baumslag-Solitar

group BSpk, lq, equipped with the relative presentation (4). For two words W,W 1 over
the alphabet tau Y xty we will write W G

“W 1 if W and W 1 represent the same element of
G.

A.2. Some terminology. By the Normal Form Theorem for free products, we know
that any word W over the alphabet tau˘1 Y xty is equal in F “ F pa, tq to a unique freely
reduced word, which has the form

(5) au0tv1au1 . . . tvmaum , where m ě 0, u0, um P Z, u1, . . . , um´1, v1, . . . , vm P Zzt0u,

and tv1 , . . . , tvm P xtyzt1u are treated as single letters from the alphabet tau˘1 Y xty. We
will call the number m the syllable length of W and will denote it slpW q. Observe that
slpW q ď }W }tauYxty for any freely reduced word W .

Definition A.3 (Reduction of the first type). Suppose that W is a word of the form (5).
If for some i P t1, . . . ,m ´ 1u, we have vi ą 0, vi`1 ă 0 and ui P kZzt0u then we can
perform a reduction of the first type on W as follows.

Set s “ ui{k P Z and observe that, by applying a defining relation from presentation
(4) |s| times, we get

tauit´1 G
“
`

takt´1
˘s G
“ als in G.

Therefore W equals in G to the word

(6) W 1
“ au0tv1au1 . . . aui´1tvi´1alstvi`1`1aui`1 . . . tvmaum .

We will say that W 1 has been obtained from W by applying a reduction of the first type
at place i, writing W 1

ÝÑ
i
W 1.

We can similarly define basic reductions of the second type.

Definition A.4 (Reduction of the second type). Suppose that W is a word of the form
(5). If for some i P t1, . . . ,m´ 1u, we have vi ă 0, vi`1 ą 0 and ui P lZzt0u then we can
perform a reduction of the second type on W as follows.
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Set s “ ui{l P Z and observe that, by applying a defining relation from presentation
(4) |s| times, we get

t´1auit
G
“
`

t´1alt
˘s G
“ aks in G.

Therefore W equals in G to the word

(7) W 1
“ au0tv1au1 . . . aui´1tvi`1alstvi`1´1aui`1 . . . tvmaum .

We will say thatW 1 has been obtained fromW by applying a reduction of the second type
at place i, writing W 2

ÝÑ
i
W 1.

When the type of the reduction does not matter we will simply write W ÝÑ
i
W 1. Note

that after applying a reduction (of any type) to a freely reduced word W the resulting
word W 1 satisfies slpW 1q ď slpW q. Moreover, if slpW 1q “ slpW q then the word W 1 (from
(6) or (7)) is again freely reduced in the above sense.

Definition A.5 (Trimming chain). Let W be a freely reduced word over the alphabet
tau˘1 Y xty and i P t1, . . . , slpW q ´ 1u. For any ` P N, a trimming chain of the first type
at place i of length ` is a sequence of reductions

W “ W0
1
ÝÑ
i
W1

1
ÝÑ
i
. . .

1
ÝÑ
i
W`´1

1
ÝÑ
i
W`,

where slpW q “ slpW1q “ ¨ ¨ ¨ “ slpW`´1q and slpW`q ă slpW q.
A trimming chain of the second type at place i of length `,

W “ W0
2
ÝÑ
i
W1

2
ÝÑ
i
. . .

2
ÝÑ
i
W`´1

2
ÝÑ
i
W`,

is defined similarly.

A.3. Technical lemmas. From now on we assume that k - l and l - k. In this case we
can choose some primes p, q P N such that νppkq ą νpplq and νqplq ą νqpkq.

Lemma A.6. Let W be the word given by (5) with slpW q “ m ą 0. If W represents the
trivial element of G then there is i P t1, . . . ,m´1u such that either W admits a trimming
chain of the first type at place i of length at most νppuiq or it admits a trimming chain of
the second type at place i of length at most νqpuiq.

Proof. We will prove the statement by induction on the total number of t’s occurring in
W , i.e., on the number vpW q “

řm
r“1 |vr|.

Since W G
“ 1, by Britton’s lemma ([LS77, Section IV.2]), the number vpW q must be at

least 2, and if vpW q “ 2 then slpW q “ m “ 2 and either v1 “ 1, v2 “ ´1 and u1 P kZzt0u
(i.e., W admits a reduction of the first type) or v1 “ ´1, v2 “ 1 and u1 P lZzt0u (i.e.,
W admits a reduction of the second type). Without loss of generality, let us assume that
we are in the former case. Applying a reduction of the first type to W we obtain a word
W 1 with slpW 1q “ 0 ă slpW q, so W 1

ÝÑ
i
W 1 is a trimming chain of the first type at place
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1 of length 1. Moreover, 1 ď νppu1q, as p | k | u1, so the base of induction has been
established.

Suppose now that vpW q ą 2. By Britton’s lemma,W admits a reduction (of some type)
at some place i P t1, . . . , slpW q´1u, and again, without loss of generality, we assume that
it is a reduction of the first type (the other case is similar). Let W 1 be the word (6)
resulting in this reduction.

If slpW 1q ă slpW q then W
1
ÝÑ
i
W 1 is a trimming chain of the first type of length 1 ď

νppuiq, as required. So we can further assume that slpW 1q “ slpW q “ m, whence W 1 is
again freely reduced and vpW 1q “ vpW q ´ 2 ă vpW q. By induction, W 1 must admit a
trimming chain (of one of the two types) at some place j P t1, . . . ,m´ 1u of length ` P N.
If j ‰ i then we can perform the same trimming chain on W since uj is not affected by
the original reduction W

1
ÝÑ
i
W 1 and slpW 1q “ slpW q. The desired inequality on ` will

then follow by induction.
Now let us suppose that j “ i. Since slpW 1q “ slpW q, the trimming chain at place i

for W 1 must have the same type as the original reduction from W to W 1, thus we have a
trimming chain

W 1
“ W0

1
ÝÑ
i
W1

1
ÝÑ
i
. . .

1
ÝÑ
i
W`´1

1
ÝÑ
i
W`.

By precomposing this trimming chain with the original reduction W
1
ÝÑ
i
W 1, we obtain

a trimming chain of the first type at place i of length ` ` 1 for W . By induction and
the construction of W 1 (see (6)), we have ` ď νpplsq, where s “ ui{k P Zzt0u. Since
νppkq ě νpplq ` 1, we can conclude that

`` 1 ď νpplsq ` 1 “ νpplq ` νppsq ` 1 ď νppkq ` νppsq “ νppksq “ νppuiq.

Thus we have established the step of induction, and so the statement is proved. �

Denote

(8) α “ maxt|l{k|, |k{l|u ą 1.

Lemma A.7. Let W be a word of the form (5), representing the trivial element of G.
Suppose that

(9) W “ W0ÝÑ
i
W1ÝÑ

i
. . .ÝÑ

i
W`´1ÝÑ

i
W`

is a sequence of reductions (of the same type) at place i P t1, . . . , slpW q ´ 1u, where ` P N
and slpW q “ slpW1q “ ¨ ¨ ¨ “ slpW`´1q. Denote n “ }W }tauYxty P N, then

(10) }W`}tauYxty ď α` n and ArearelpW q ď ArearelpW`q `
α` ´ 1

α ´ 1
n.

Proof. Without loss of generality we will assume that all of the reductions in the sequence
(9) are of the first type. We will argue by induction on `.
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Suppose, first, that ` “ 1 and W1 “ au0tv1au1 . . . aui´1tvi´1alstvi`1`1aui`1 . . . tvmaum ,
where s “ ui{k. Then

n “ }W }tauYxty “ m`
m
ÿ

r“0

|ur| and }W1}tauYxty ď m`
m
ÿ

r“0,r‰i

|ur| ` |ls|.

Since |ls|{|ui| “ |l{k| ď α and α ą 1, we see that }W1}tauYxty ď αn. The word W1 can
be obtained from the word W by applying a defining relation from the presentation (4)
|s| times, so, since |s| ď |ui| ď n, we have

ArearelpW q ď ArearelpW1q ` |s| ď ArearelpW1q ` n.

Now assume that ` ě 2 and set n1 “ }W1}tauYxty. By induction, we know that

(11) }W`}tauYxty ď α`´1 n1 and ArearelpW1q ď ArearelpW`q `
α`´1 ´ 1

α ´ 1
n1.

We have shown above that n1 ď αn and ArearelpW q ď ArearelpW1q ` n. Combining this
with inequalities (11), we obtain (10). �

A.4. Proof of the sufficiency in Theorem A.1.

Theorem A.8. Let G be the Baumslag-Solitar group BSpk, lq, for some k, l P Zzt0u. If
neither of k, l divides the other one then the relative Dehn function ∆G,xty is well-defined.

Proof. Choose primes p, q P N as in the beginning of Subsection A.3 and let α ą 1 be
defined by (8).

To prove that ∆G,xty is well-defined it is sufficient to show that there is a function
h : N0 ˆ N0 Ñ N0 such that for all m,n P N0 if W is a freely reduced word over the
alphabet tau˘1 Y xty, representing the trivial element of G and satisfying slpW q “ m and
}W }tauYxty “ n, then

ArearelpW q ď hpm,nq.

(Since slpW q ď }W }tauYxty, the function f : N0 Ñ N0, fpnq “ maxthpm1, n1q | 0 ď m1, n1 ď

nu will serve as a relative isoperimetric function of G with respect to xty.)
The proof will use induction on m. By Britton’s lemma, a freely reduced word W of

syllable length at most 1 cannot represent the trivial element of G, hence we can define
hp0, nq “ hp1, nq “ 0, for all n P N0.

Now suppose that m ě 2 and the values of the desired function hps, nq have been found
for all s P t0, . . . ,m´ 1u and all n P N0. Take any n P N0. If there are no freely reduced
words W such that slpW q “ m, }W }tauYxty “ n and W G

“ 1 in G then we set hpm,nq “ 0.
Otherwise, let W be such a word (in particular, n ě m ě 2q.

If W is given by (5) then, according to Lemma A.6, W admits a trimming chain

W “ W0ÝÑ
i
W1ÝÑ

i
. . .ÝÑ

i
W`´1ÝÑ

i
W`
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at some place i P t1, . . . ,m ´ 1u of length ` P N, where ` ď maxtνppuiq, νqpuiqu. Since
|ui| ď n, we see that ` ď maxtlogppnq, logqpnqu “ logrpnq, where r “ mintp, qu.

Define β “ logrpαq ` 1 and observe that

α` n ď αlogrpnq n “ rlogrpαq logrpnq n “ nlogrpαq`1
“ nβ, and

α` ´ 1

α ´ 1
n ď

1

α ´ 1
α` n ď

1

α ´ 1
nβ.

Thus inequalities (10), given by Lemma A.7, imply that

(12) }W`}tauYxty ď nβ and ArearelpW q ď ArearelpW`q `
1

α ´ 1
nβ.

Since m1 “ slpW`q ă slpW q, by induction we have ArearelpW`q ď hpm1, n1q, where
n1 “ }W`}tauYxty. In view of (12), after defining

hpm,nq “ max

"

hpm1, n1q `

Z

1

α ´ 1
nβ

^
ˇ

ˇ

ˇ

ˇ

0 ď m1
ď m´ 1, 0 ď n1 ď nβ

*

P N0,

we shall have ArearelpW q ď hpm,nq.
Thus we have found the required function h : N0ˆN0 Ñ N0, so the proof is complete. �

Remark A.9. The argument from the proof of Theorem A.8 gives a double exponential
upper bound for ∆G,xty:

∆G,xtypnq ĺ nβ
n

, for all n P N0,

where β ą 1 is the constant from that proof.
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