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Abstract
We construct cocompact lattices in a product of trees
which are not virtually torsion-free. This gives the first
examples of hierarchically hyperbolic groups which are
not virtually torsion-free.
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1 INTRODUCTION

Hierarchically hyperbolic groups (HHGs) and spaces (HHSs) were introduced by Behrstock,
Hagen and Sisto in [4]. HHGs are known to have a number of properties such as having finite
asymptotic dimension [3, TheoremA], having a uniform bound on the conjugator length ofMorse
elements [1], and for virtually torsion-free HHGs, their uniform exponential growth is well under-
stood [2]. HHGs belong to the class of semihyperbolic groups [14, Corollary F] (see also [12]). In
particular, their finitely generated abelian subgroups are undistorted, they have solvable conju-
gacy problem, finitely many conjugacy classes of finite subgroups, and are of type FP∞.
That HHGs have only many finitely many conjugacy classes of finite subgroups implies that

every residually finite HHG is in fact virtually torsion-free. Thismotivates the question of whether
there exist any HHGs which are not virtually torsion-free. The question is of considerable interest
to specialists since, for example, a number of theorems about HHGs require the assumption of
virtual torsion-freeness (see, for instance, [2, Theorem 1.1] and [25, Theorem 1.2(3’)]).
In this paper we construct an infinite family of CAT(0) lattices acting faithfully and geometri-

cally on a product of trees. We then prove that each lattice Γ is an HHG and has no finite index
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torsion-free subgroups. This appears to be the first examples in the literature of cocompact lattices
in a product of trees which are not virtually torsion-free (non-cocompact examples were given by
Caprace and Rémy [11]).

Theorem A (Theorem 4.3). There exist uniform lattices in products of trees which are HHGs and
which are not virtually torsion-free.

To the author’s knowledge this is the first explicit example of an HHG which is not virtually
torsion-free. The author suspects that it is possible to apply the results of Hagen–Susse [15] to
Wise’s examples in [27] to obtain an HHG which is not virtually torsion-free; however, the con-
struction presented here is much more elementary and gives an explicit HHG structure.

2 DEFINITIONS

In this section we will give the relevant background on HHSs and HHGs for our endeavours. The
definitions are rather technical, so we will only focus on what we need, for a full account the
reader should consult [5, Definition 1.1, 1.21]. We will follow the treatment in [21, Section 2]. To
this end, an HHS is pair (𝑋, 𝔖) where 𝑋 is an 𝜖-quasigeodesic space and 𝔖 is a set with some
extra data which essentially functions as a coordinate system on 𝑋 where each coordinate entry
is a hyperbolic space. The relevant parts of the axiomatic formalisation are described as follows.

∙ For each domain 𝑈 ∈ 𝔖, there is a hyperbolic space 𝑈 and projection 𝜋𝑈 ∶ 𝑋 → 𝑈 that is
coarsely Lipschitz and coarsely onto [5, Remark 1.3].

∙ 𝔖 has a partial order ⊑, called nesting. Nesting chains are uniformly finite, and the length of
the longest such chain is called the complexity of (𝑋, 𝔖).

∙ 𝔖 has a symmetric relation⊥, called orthogonality. The complexity bounds pairwise orthogonal
sets of domains.

∙ The relations ⊑ and ⊥ are mutually exclusive. The complement of ⊑ and ⊥ is called transver-
sality and denoted as ⋔.

∙ Whenever 𝑈 ⋔ 𝑉 or 𝑈 ⊑ 𝑉, there is a bounded set 𝜌𝑈
𝑉

⊂ 𝑉. These sets and projections of ele-
ments 𝑥 ∈ 𝑋 are consistent in the following sense.
– 𝜌-consistency: Let 𝑈, 𝑉, 𝑊 ∈ 𝔖 such that 𝑈 ⊏ 𝑉 and 𝜌𝑉

𝑊
is defined, then 𝜌𝑈

𝑊
coarsely agrees

with 𝜌𝑉
𝑊
.

– If 𝑈 ⋔ 𝑉, then min{𝑑𝑈(𝜋𝑈(𝑥), 𝜌𝑉
𝑈

), 𝑑𝑉(𝜋𝑉(𝑥), 𝜌𝑈
𝑉

)} is bounded.

All coarsenessmay take to be uniform, so we can andwill fix a uniform constant 𝜖 [5, Remark 1.6].
We remind the reader that these axioms for an HHS are not a complete set but only recall the

structure we will need. For the full definition the reader should consult [5, Definition 1.1, 1.21].
The following definition of an HHG is, however, complete.
Let 𝑋 be the Cayley graph of a group Γ and suppose that (𝑋, 𝔖) is an HHS, and then (Γ, 𝔖) is

an HHG structure if it also satisfies the following.

(1) Γ acts cofinitely on 𝔖 and the action preserves the three relations. For each g ∈ 𝐺 and each
𝑈 ∈ 𝔖, there is an isometry g ∶ 𝑈 → g𝑈 and these isometries satisfy g ⋅ ℎ = gℎ;

(2) for all 𝑈, 𝑉 ∈ 𝔖 with 𝑈 ⋔ 𝑉 or 𝑉 ⊑ 𝑈 and all g , 𝑥 ∈ Γ, there is equivariance of the form
g𝜋𝑈(𝑥) = 𝜋g𝑈(g𝑥) and g𝜌𝑉

𝑈
(𝑥) = 𝜌

g𝑉
g𝑈

(𝑥).
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LATTICES, HIERARCHICAL HYPERBOLICITY, AND VIRTUAL TORSION-FREENESS 1415

Note that this is not the original definition of an HHG as given in [5]. Instead, we have adopted
the simpler axioms from [21]. Specifically, the axioms we have given require the equivariance to
be exact rather than coarse and so imply the original axioms. However, by [13, Section 2.1] if the
axioms given in [5] are satisfied, then one can modify the HHG structure to satisfy the axioms
given here.

3 HIERARCHICAL HYPERBOLICITY AND PRODUCTS

In this sectionwe provide a proof of the folklore result that a group acting geometrically on a prod-
uct of 𝛿-hyperbolic spaces with equivariant projections and without permuting isometric factors
is anHHG. Let𝑋 be a propermetric space and let𝐻 = Isom(𝑋), then𝐻 is a locally compact group
with the topology given by uniform convergence on compacta. Let Γ be a discrete subgroup of 𝐻.
We say that Γ is a uniform lattice if 𝑋∕Γ is compact.

Proposition 3.1. Let 𝑚 > 0, 𝑛 ⩾ 0 and let 𝐻 ⩽ Isom(𝔼𝑛) ×
∏𝑚

𝑖=1 Isom(𝑋𝑖) be a closed subgroup,
where each 𝑋𝑖 is a proper non-elementary 𝛿-hyperbolic space. Let Γ be a uniform𝐻-lattice. Suppose
that the projection 𝜋O(𝑛) ∶ Γ → O(𝑛) < Isom(𝔼𝑛) is trivial, then Γ is an HHG.

Proof. Let 𝑞 be a Γ-equivariant quasi-isometry Cay(Γ, A) → X given by the Švarc–Milnor lemma
[6, I.8.19]. If 𝑛 > 0, then for 𝑗 ∈ {1 − 𝑛, … , 0} let 𝑋𝑗 = 𝔼 and 𝐻𝑗 = Isom(𝔼). If 𝑛 > 0, then let
𝑖 ∈ {1 − 𝑛, … , 𝑚}, otherwise let 𝑖 ∈ {1, … , 𝑚}. Let 𝔖 be the HHS structure for the product 𝑋 =∏𝑚

𝑖=1−𝑛 𝑋𝑖 given by [5, Proposition 8.27]. As explained in the proof thereof every domain of 𝔖 is
either some 𝑋𝑖 for 𝑖 ∈ {1 − 𝑛, … , 𝑚} or bounded (in fact a point) and labelled by 𝐼 ⊆ {1 − 𝑛, … , 𝑚}

corresponding to some non-trivial subproduct of 𝑋 with at least two factors. The transversality
relation is given by pairs {𝐽, 𝐾} of subsets of 𝐼 with |𝐽|, |𝐾| ⩾ 2, and 𝐽 ∩ 𝐾 ≠ ∅. The nesting rela-
tion is given by inclusions of subproducts of𝑋, and every distinctly labelled pair of domainswhich
are not nested are orthogonal.
Note that𝔖 is finite and the action on𝔖 is trivial because Γ does not permute isometric factors

of 𝑋. Indeed, 𝐻 which contains Γ preserves the decomposition of 𝑋 and 𝜋O(𝑛)(Γ) is trivial. Every
domain of the structure is a point or one of the𝑋𝑖 . In the first case the Γ action is trivial and in the
second case Γ acts via 𝜋𝐻𝑖

∶ Γ → Isom(𝑋𝑖). This immediately yields the first axiom because 𝜋𝐻𝑖

is a homomorphism. The other 𝜌-consistency equivariance condition is established immediately
since any two domains that are not points are orthogonal to each other.
For the second axiom consider the following diagram where the vertical arrows are given by

applying the obvious group action:

We will verify the diagram commutes. Let 𝑥 ∈ Cay(Γ, A) and g ∈ Γ. Firstly, we evaluate the com-
posite map going down then across, we have

(g , 𝑥) ↦ g𝑥 ↦ 𝜋𝑋𝑖
(𝑞(g𝑥)).
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1416 HUGHES

Going the other way we have

(g , 𝑥) ↦ (𝜋𝐻𝑖
(g), 𝜋𝑋𝑖

(𝑞(𝑥))) ↦ 𝜋𝑋𝑖
(g𝑞(𝑥)) = 𝜋𝑋𝑖

(𝑞(g𝑥)),

where the last equality is given by the Γ-equivariance of 𝑞. In particular, g𝜋𝑋𝑖
(𝑥) = 𝜋g𝑋𝑖

(g𝑥) =

𝜋𝑋𝑖
(g𝑥). □

Lemma 3.2. If Γ is a finite-by-(HHG), then Γ is an HHG.

Proof. The group Γ splits as a short exact sequence

{1} ↣ 𝐹 ↣ Γ ↠ Λ ↠ {1}, (1)

whereΛ is anHHG and𝐹 is the finite kernel of the action on theHHS (Λ, 𝔖). Since𝐹 acts trivially
on 𝑋, it acts trivially on the HHG structure 𝔖 for Λ. The epimorphism 𝜑 ∶ Γ ↠ Λ induces an
equivariant quasi-isometry 𝜓 on the associated Cayley graphs. Thus, we may pre-compose every
map in the HHG structure with 𝜑 or 𝜓 to endow Γ with the structure of an HHG. □

We restate Proposition 3.1 in terms of groups acting geometrically on products of CAT(−1)

spaces. For an introduction to CAT(𝜅) groups and spaces, see [6]. We will assume some non-
degeneracy conditions on the CAT(0) spaces to avoid many technical difficulties associated with
the CAT(0) condition (see [10, Section 1.B] for a thorough explanation). A group 𝐻 acting on a
CAT(0) space 𝑋 is minimal if there is no 𝐻-invariant closed convex subset 𝑋′ ⊂ 𝑋. If Isom(𝑋) is
minimal, then we say that 𝑋 is minimal.

Corollary 3.3. Let Γ be a group acting properly cocompactly by isometries on a finite product of
proper minimal CAT(−1)-spaces. If Γ does not permute isometric factors, then Γ is an HHG.

Proof. The group Γ splits as in (1) whereΛ acts geometrically on a finite product of properminimal
CAT(−1)-spaces and𝐹 is the finite kernel of the action. By Proposition 3.1 we see thatΛ is anHHG
and so by Lemma 3.2 Γ is an HHG as well. □

The author suspects that it is possible to strengthen the corollary to allow for permuting iso-
metric factors, provided that the projection of Γ to O(𝑛) < Isom(𝔼𝑛) is contained in O𝑛(ℤ). To
prove a converse to this corollary one may need to investigate the commensurators of maximal
abelian subgroups of anHHG Γ. Indeed, theCAT(0) not biautomatic groups introduced by Leary–
Minasyan [20] and the groups constructed by the author in [17] (see also [18] and [16]) have undis-
torted maximal abelian subgroups which have infinite index in their commensurator and are not
virtually normal. All of these groups have a non-discrete projection to O(𝑛).

Question 3.4. Is a maximal abelian subgroup 𝐴 of an HHG Γ either finite index in its commen-
surator CommΓ(𝐴) or virtually normal?
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LATTICES, HIERARCHICAL HYPERBOLICITY, AND VIRTUAL TORSION-FREENESS 1417

4 NON-VIRTUALLY TORSION-FREE LATTICES

In this section we will construct a cocompact lattice in a product of trees which is not virtu-
ally torsion-free.
Let Λ be a Burger–Mozes simple group [7–9] acting on 1 × 2 splitting as an amalgamated

free product 𝐹𝑛 ∗𝐹𝑚
𝐹𝑛 with embeddings 𝑖, 𝑗 ∶ 𝐹𝑚 → 𝐹𝑛. This defines a group Λ which embeds

discretely into the product of 𝑇1 = Aut(1) and 𝑇2 = Aut(2)with compact quotient. For instance
one may take Rattaggi’s example of a lattice in the product of an 8-regular and 12-regular tree
which splits as 𝐹7 ∗𝐹73

𝐹7 [24] (see also [23]) or one of Radu’s examples [22].
Define 𝐴 = ℤ𝑝 ⋊ 𝐹𝑛 for 𝑝 prime such that the 𝐹𝑛-action is non-trivial.† Consider the embed-

dings �̃�, �̃� ∶ 𝐹𝑚 ↣ 𝐹𝑛 ↣ 𝐴 given by the composition of 𝑖 or 𝑗 with the obvious inclusion. Now, we
build a group Γ as an amalgamated free product 𝐴 ∗𝐹𝑚

𝐴, note that Γ surjects onto the original
Burger–Mozes group Λ with kernel the normal closure of the torsion elements. Let 3 denote the
Bass–Serre tree of Γ and let 𝑇3 denote the corresponding automorphism group.

Proposition 4.1. Γ is a uniform (𝑇1 × 𝑇3)-lattice which does not permute the factors.

This can be easily deduced by endowing Γ with a graph of lattices structure in the sense of [17,
Definition 3.2] and then applying [17, Theorem A]. Instead we will provide a direct proof.

Proof. The group Γ acts on its Bass–Serre tree 3 and also on 1 via the homomorphism 𝜓 ∶ Γ →

𝑇1 defined by taking the composition of the surjection Γ ↠ Λ and the projection 𝑇1 × 𝑇2 → 𝑇2.
The diagonal action on the product space 1 × 3 is properly discontinuous cocompact and by
isometries. Indeed, the action is clearly cocompact since 1∕Γ = 1∕Λ is a finite graph and 3∕Γ

is a finite graph by construction. The action is properly discontinuous since by construction the
only elements which fix a point in 1 × 3 are finite order and every torsion subgroup is finite.
The kernel of the action is trivial, since the only elements which could act trivially are the torsion
elements. However, these all clearly act non-trivially on 3 by elementary Bass-Serre theory. Thus,
the action is faithful. We conclude that Γ is a uniform (𝑇1 × 𝑇3)-lattice. □

It remains to show that Γ is not virtually torsion-free.

Proposition 4.2. The group Γ has no proper finite-index subgroups and contains torsion. In partic-
ular, Γ is not virtually torsion-free.

The author thanks Yves de Cornulier for the following argument.

Proof. Note that since𝐹𝑛 acts non-trivially onℤ𝑝, it follows that𝐹𝑛 normally generates𝐴. Because
the Burger–Mozes subgroup Λ < Γ is a simple group, every finite index normal subgroup of Γ

contains it. Thus, their intersection Γ(∞) =
⋂

[Γ∶Γ′]<∞ Γ′ contains Λ. It follows that both copies of
𝐹𝑛 are contained inΓ(∞). Now,𝐹𝑛 normally generates𝐴, soΓ(∞) = Γ. In particular,Γhas no proper
finite-index subgroups. Since 𝐴 is not torsion-free, we conclude that Γ is not virtually torsion-
free. □

† The key point here is that 𝐹𝑛 will normally generate𝐴; in particular, other finite groups with non-trivial 𝐹𝑛-action could
be used here.
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1418 HUGHES

To summarise we have the following theorem.

Theorem 4.3 (TheoremA). The group Γ is a cocompact lattice in a product of trees, is an HHG and
is not virtually torsion-free.

Proof. By Proposition 4.1 and Corollary 3.3 we see that Γ is an HHG. By Proposition 4.2 we see
that Γ is not virtually torsion-free. □

Remark 4.4. In [17, Corollary 8.7] the author gave a way to use A. Thomas’s construction in [26]
to promote lattices in products of trees to lattices in products of ‘sufficiently symmetric’ right-
angled buildings. Applying [17, Corollary 8.7] to one of the non-virtually torsion-free lattices Γ

we obtain a non-virtually torsion-free lattice Λ acting on a product of ‘sufficiently symmetric’
right-angled hyperbolic buildings each not quasi-isometric to a tree. Moreover, by Corollary 3.3
Λ is hierarchically hyperbolic. Finally, note that the methods in [17] have been used in [19] to
construct an HHG which is not biautomatic.
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