PROFINITE RIGIDITY OF FIBRING

SAM HUGHES AND DAWID KIELAK

Abstract

We introduce the classes of TAP groups, in which various types of algebraic fibring are detected by the non-vanishing of twisted Alexander polynomials. We show that finitely presented LERF groups lie in the class $\operatorname{TAP}_{1}(R)$ for every integral domain R, and deduce that algebraic fibring is a profinite property for such groups. We offer stronger results for algebraic fibring of products of limit groups, as well as applications to profinite rigidity of Poincaré duality groups in dimension 3 and RFRS groups.

1. Introduction

Our understanding of profinite properties of fundamental groups of compact 3 -manifolds has seen a lot of recent progress. One particularly noteworthy statement is the theorem of Bridson-McReynolds-Reid-Spitler [BMRS20] saying that the fundamental groups of some hyperbolic 3-manifolds (including the Weeks manifold) are profinitely rigid in the absolute sense, that is, each is distinguished from every other finitely generated residually finite group by its set of finite quotients.

Restricting attention solely to 3 -manifold groups, we have two remarkable results: First, Jaikin-Zapirain [JZ20] showed that if the profinite completion of the fundamental group of a compact orientable aspherical 3-manifold is isomorphic to that of $\pi_{1}(\Sigma) \rtimes \mathbb{Z}$ with Σ a compact orientable surface, then the manifold fibres over the circle. Second, Liu [Liu20] proved that there are at most finitely many finite-volume hyperbolic 3-manifolds with isomorphic profinite completions of their fundamental groups. Both theorems rely in a crucial way on the following result of Friedl-Vidussi.

Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford, OX2 6GG, UK

E-mail addresses: sam.hughes@maths.ox.ac.uk, kielak@maths.ox.ac.uk.

Theorem 1.1 ([FV11b, Theorem 1.1]). Let R be a Noetherian unique factorisation domain (UFD). Let M be a compact, orientable, connected 3-manifold with empty or toroidal boundary. An epimorphism $\varphi: \pi_{1}(M) \rightarrow \mathbb{Z}$ is induced by a fibration $M \rightarrow \mathbb{S}^{1}$ if and only if for every epimorphism $\alpha: \pi_{1}(M) \rightarrow Q$ with finite image the associated first twisted Alexander polynomial $\Delta_{1, R}^{\varphi, \alpha}$ over R is non-zero.

The result relies in a key way on a special case proved by FriedlVidussi in an earlier work [FV08], where the group $\pi_{1}(M)$ is additionally assumed to be locally extended residually finite (LERF, or subgroup separable). Once this is established, the above result follows by a series of arguments based on the work of Wilton-Zalesskii [WZ10] and Wise [Wis12].

The interest in fibring has surpassed its roots in manifold topology finding numerous applications within the realm of geometric group theory, for example in the construction of subgroups of hyperbolic groups with exotic finiteness properties [JNW21, IMM20, IMM21, IMP21, Fis22, IP22], exotic higher rank phenomena [Kro18, Hug22], the existence of uncountably many groups of type FP [Lea18b, Lea18a, KLS20, BL20], a connection between fibring of RFRS groups and ℓ^{2}-Betti numbers [Kie20b, Fis21], and the construction of analogues of the Thurston polytope for various classes of groups [FL17, FT20, Kie20a].

The version of Theorem 1.1 for LERF groups $\pi_{1}(M)$ is the starting point for our investigations. First, we introduce the notion of TAP groups (standing for Twisted Alexander Polynomial), that is groups in which the twisted Alexander polynomials control algebraic fibring, see Definition 3.1. We then show that in fact all finitely presented LERF groups are TAP - see Theorem 3.8 for the precise (more general) statement. This amounts to showing the following.

Theorem A. Let G be a finitely presented LERF group and let R be an integral domain. An epimorphism $\varphi: G \rightarrow \mathbb{Z}$ is algebraically fibred if and only if for every epimorphism $\alpha: G \rightarrow Q$ with finite image the associated first twisted Alexander polynomial over R is non-zero.

Here, a group is algebraically fibred if it admits an epimorphism to \mathbb{Z} with a finitely generated kernel. Also, we are talking about vanishing of Alexander polynomials over arbitrary integral domains, which might
seem worrying, as the definition of the polynomial requires R to be a UFD. It does however make sense to talk about vanishing even when the polynomial is itself not well-defined, see Definition 2.8.

We use the above to show that for finitely presented LERF groups, algebraic fibring is a profinite property.

Theorem B. Let G_{A} and G_{B} be finitely presented LERF groups with isomorphic profinite completions. The group G_{A} is algebraically fibred if and only if G_{B} is.

Again, this is really a corollary of the more general Corollary 4.14 combined with Remark 3.9.

An even more general (and more technical) result is given by Theorem 4.12, where we deal with algebraic semi-fibring of higher degree (see Definition 2.4). It allows us to show the following.

Theorem C. Let \mathbb{F} be a finite field. Let G_{A} and G_{B} be profinitely isomorphic finite products of limit groups. The group G_{A} is $\mathrm{FP}_{n}(\mathbb{F})$ -semi-fibred if and only if G_{B} is.

Theorem B finds another application in the study of profinite rigidity of Poincaré duality groups.

Theorem D. Let G_{A} be a LERF PD_{3}-group. Let G_{B} be the fundamental group of a closed connected hyperbolic 3-manifold. If $\widehat{G_{A}} \cong \widehat{G_{B}}$, then G_{A} is the fundamental group of a closed connected hyperbolic 3manifold.

Finally, Theorem 5.11 implies that for a cohomologically good RFRS group G of type F , the profinite completion of G detects the degree of acyclicity of G with coefficients in the skew-field $\mathcal{D}_{\mathbb{F} G}$ introduced by Jaikin-Zapirain; here \mathbb{F} is a finite field. The skew-field $\mathcal{D}_{\mathbb{F} G}$ can be thought of as an analogue of the Linnell skew-field in positive characteristic, and hence can be used to define a positive-characteristic version of ℓ^{2}-homology.

Acknowledgements. This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 850930). The first author thanks Martin Bridson for a helpful conversation.

2. Preliminaries

Throughout, all rings are associative and unital, and ring morphisms preserve units. All modules are left-modules, unless stated otherwise. In particular, resolutions will be left-resolutions, and hence coefficients in homology will be right-modules (and quite often bimodules).
2.1. Bieri-Neumann-Strebel invariants. Let R be a ring, G a group, and $\varphi: G \rightarrow \mathbb{R}$ a non-trivial homomorphism. Observe that

$$
G_{\varphi}=\{g \in G \mid \phi(g) \geqslant 0\}
$$

is a monoid.
Definition 2.1 (Homological finiteness properties). We say that a monoid M is of type $\mathrm{FP}_{n}(R)$ if the trivial M-module R admits a resolution C_{\bullet} by projective $R M$-modules in which C_{i} is finitely generated for all $i \leqslant n$.

Since every group is a monoid, the definition readily applies to groups as well.

The definition above is standard; we will sporadically mention also other standard finiteness properties, like type $\operatorname{FP}(R)$ and F . Note that G is of type $\mathrm{FP}_{1}(R)$ if and only if it is finitely generated, and if it is finitely presented then it is of type $\mathrm{FP}_{2}(R)$ for every ring R.

Definition 2.2. We say that φ lies in the nth $B N S$ invariant over R, and write $\varphi \in \Sigma^{n}(G ; R)$, if G_{φ} is of type $\mathrm{FP}_{n}(R)$.

We set $\Sigma^{\infty}(G ; R)=\bigcap_{n} \Sigma^{n}(G ; R)$.
The first BNS invariant $\Sigma^{1}(G ; R)=\Sigma^{1}(G)$ is independent of R. It was introduced by Bieri-Neumann-Strebel in [BNS87]. The higher (homological) invariants defined above were introduced by Bieri-Renz [BR88] for $R=\mathbb{Z}$. The definition for general R appears for example in the work of Fisher [Fis21]. Fisher's paper also contains the following straight-forward generalisation of the work of Bieri-Renz.

Theorem 2.3 ([Fis21, Theorem 6.5], [BR88, Theorem 5.1]). Suppose that $\varphi: G \rightarrow \mathbb{Z}$ is a non-trivial homomorphism. The kernel $\operatorname{ker} \varphi$ is of type $\mathrm{FP}_{n}(R)$ if and only if $\{\varphi,-\varphi\} \subseteq \Sigma^{n}(G ; R)$.

Definition 2.4. A non-trivial character $\varphi: G \rightarrow \mathbb{Z}$ is $\mathrm{FP}_{n}(R)$-fibred if ker φ is of type $\mathrm{FP}_{n}(R)$. An $\mathrm{FP}_{1}(R)$-fibred character will be also called algebraically fibred; this last notion is independent of R.
Similarly, an integral character in $\Sigma^{n}(G ; R) \cup-\Sigma^{n}(G ; R)$ will be called $\mathrm{FP}_{n}(R)$-semi-fibred, and a character in $\Sigma^{1}(G) \cup-\Sigma^{1}(G)$ will be called algebraically semi-fibred.

A group G will be called algebraically fibred if it admits an algebraically fibred character.

The invariant $\Sigma^{1}(G)$ admits a number of alternative definitions. Let us now discuss one of them.

Definition 2.5. Let B be a group, let $A, C \leqslant B$, and suppose that there exists an isomorphism $\iota: A \rightarrow C$. The $H N N$ extension $B *_{\iota}$ with base group B and associated subgroups A and C is defined by

$$
B *_{\iota}=B *\langle t\rangle /\left\langle\left\langle\left\{t^{-1} a t=\iota(a): a \in A\right\}\right\rangle\right\rangle .
$$

The HNN extension is ascending if $C=B$ and descending if $A=B$. If it is ascending but not descending, it is properly ascending.

Proposition 2.6 ([Bro87]). Let G be a finitely generated group. An epimorphism $\varphi: G \rightarrow \mathbb{Z}$ lies in $\Sigma^{1}(G)$ if and only if there exists an isomorphism $\rho: G \rightarrow B *_{\iota}$ where B is finitely generated, the HNN extension $B *_{\iota}$ is descending, and φ is equal to the composition of ρ with the quotient map $B *_{\iota} \rightarrow B *_{\iota} /\langle\langle B\rangle\rangle=\langle t\rangle=\mathbb{Z}$.

An observant reader will notice that Brown's original statement uses ascending, rather than descending HNN extensions. This has to do with left/right conventions for modules used in the definition of $\Sigma^{1}(G)$.
2.2. Twisted Alexander polynomials. The following definitions are taken from Friedl and Vidussi's survey [FV11a]. However, we have taken liberty to phrase them in terms of group homology as opposed to the homology of a topological space with twisted coefficients.

Let R be an integral domain and $R\left[t^{ \pm 1}\right]$ the ring of Laurent polynomials over R in an indeterminate t. Let $\alpha: G \rightarrow Q$ be a finite quotient of G. This induces an $R G$-bimodule structure on the free R-module $R Q$ induced by left and right multiplication precomposed with α - another way to say it is that $R Q$ is a quotient ring of $R G$, and this way
becomes an $R G$-bimodule. Let $\varphi \in H^{1}(G ; \mathbb{Z})$ be a cohomology class considered as a homomorphism $\varphi: G \rightarrow \mathbb{Z}$. Consider $R Q\left[t^{ \pm 1}\right]$ equipped with the $R G$-bimodule structure given by

$$
g \cdot x=t^{\varphi(g)} \alpha(g) x, \quad x \cdot g=x t^{\varphi(g)} \alpha(g)
$$

for $g \in G, x \in R Q\left[t^{ \pm 1}\right]$. Note that $R Q\left[t^{ \pm 1}\right]=R(\mathbb{Z} \times Q)$, and the action is multiplication precomposed with $\varphi \times \alpha$, as above.

For $n \in \mathbb{Z}$, we define the nth twisted (homological) Alexander module of φ and α to be $H_{n}\left(G ; R Q\left[t^{ \pm 1}\right]\right)$, where $R Q\left[t^{ \pm 1}\right]$ has the non-trivial module structure described above. Observe that $H_{n}\left(G ; R Q\left[t^{ \pm 1}\right]\right)$ also has the structure of a left $R\left[t^{ \pm 1}\right]$-module. We will denote the module by $H_{n, R}^{\varphi, \alpha}$. If G is of type $\mathrm{FP}_{n}(R)$, then the nth twisted Alexander module is a finitely generated $R\left[t^{ \pm 1}\right]$-module. Moreover, it is zero whenever $n<0$ or n is greater than the cohomological dimension of G over R.

More generally, given two group homomorphisms $\alpha: G \rightarrow Q$ and $\varphi: G \rightarrow Z$, we will sometimes use $H_{n, R}^{\varphi, \alpha}$ to denote $H_{n}(G ; R(Z \times Q))$ with the $R G$-bimodule structure on $R(Z \times Q)$ being multiplication precomposed with $\varphi \times \alpha$.

For any integral domain S and any finitely generated S-module M, define the rank of M to be $\operatorname{rk}_{S} M=\operatorname{dim}_{\operatorname{Frac}(S)} \operatorname{Frac}(S) \otimes_{S} M$, where $\operatorname{Frac}(S)$ denotes the classical field of fractions (that is, the Ore localisation) of S. When S is additionally a UFD, the order of M is the greatest common divisor of all maximal minors in a presentation matrix of M with finitely many columns. The order of M is well-defined up to a unit of S and depends only on the isomorphism type of M.

Suppose that G is of type $\mathrm{FP}_{n}(R)$, with R being a UFD. The nth twisted Alexander polynomial $\Delta_{n, R}^{\varphi, \alpha}(t)$ over R with respect to φ and α is defined to be the order of the nth twisted (homological) Alexander module of φ and α, treated as a left $R\left[t^{ \pm 1}\right]$-module. Note that $R\left[t^{ \pm 1}\right]$ is a UFD since R is.

Since we will be concerned with the vanishing of $\Delta_{n, R}^{\varphi, \alpha}(t)$, let us record a number of equivalent statements. From now on we drop the requirement on R being a UFD.

Lemma 2.7. Let R be an integral domain, and let $F=\operatorname{Frac}(R)$. The following are equivalent:
(1) $\mathrm{rk}_{R\left[t^{ \pm 1}\right]} H_{n, R}^{\varphi, \alpha}=0$;
(2) $H_{n, R}^{\varphi, \alpha}$ is a torsion $R\left[t^{ \pm 1}\right]$-module.
(3) $H_{n, F}^{\varphi, \alpha}$ is a torsion $F\left[t^{ \pm 1}\right]$-module.
(4) $H_{n, F}^{\varphi, \alpha}$ is a finitely generated F-module.

If additionally R is a UFD, then these are equivalent to
(5) $\Delta_{n, R}^{\varphi, \alpha}(t) \neq 0$.

Sketch proof. We offer only a sketch, since these equivalences are standard.

Items (2) and (3) are equivalent since F is a flat R-module. Items (3), (4), and (1) are equivalent thanks to the classification theorem for finitely generated modules over a PID, since $F\left[t^{ \pm 1}\right]$ is a PID; one also needs to note that $\operatorname{Frac}\left(R\left[t^{ \pm 1}\right]\right)=\operatorname{Frac}\left(F\left[t^{ \pm 1}\right]\right)$.

The equivalence of (5) with the other ones is explained in [Tur01, Remark 4.5.2].

Definition 2.8. Let R be an integral domain, $\varphi: G \rightarrow \mathbb{Z}$ be a homomorphism, and $\alpha: G \rightarrow Q$ be a homomorphism with finite image. We say that φ has non-vanishing nth Alexander polynomial twisted by α if $\mathrm{rk}_{R\left[t^{ \pm 1}\right]} H_{n, R}^{\varphi, \alpha}=0$. If this holds for $\alpha=\operatorname{tr}: G \rightarrow\{1\}$, we say that the nth Alexander polynomial in dimension n does not vanish; if the statement holds for all choices of α, we say that φ has non-vanishing nth twisted Alexander polynomials.

Lemma 2.7 shows that in this definition we may replace R by $\operatorname{Frac}(R)$.
Lemma 2.9. The nth Alexander polynomial of φ twisted by α vanishes if and only if the nth (untwisted) Alexander polynomial of $\left.\varphi\right|_{\operatorname{ker} \alpha}$ vanishes. Moreover, if R is a UFD then the corresponding twisted Alexander polynomials are equal.

Proof. We need to compare the $R\left[t^{ \pm 1}\right]$-modules $H_{n}\left(G ; R Q\left[t^{ \pm 1}\right]\right)$ and $H_{n}\left(\operatorname{ker} \alpha ; R\left[t^{ \pm 1}\right]\right)$. Shapiro's lemma shows that these modules are isomorphic, since $R Q\left[t^{ \pm 1}\right]$ is isomorphic to the induced right $R G$-module of the right $R(\operatorname{ker} \alpha)$-module $R\left[t^{ \pm 1}\right]$.

The following result is well known for 3-manifolds and has appeared in several places [KL99, CR12, GKM05, FK06]; in fact, it appears to date back to work of Milnor [Mil68]. We include a proof in the group theoretic setting for completeness.

Proposition 2.10. Let R be an integral domain. Let G be a group of type $\mathrm{FP}_{n}(R)$ and let $\varphi: G \rightarrow \mathbb{Z}$ be a non-trivial character. If φ is $\mathrm{FP}_{n}(R)$-fibred, then its k th twisted Alexander polynomials do not vanish for $k \leqslant n$.

Proof. Since φ is $\mathrm{FP}_{n}(R)$-fibred, G splits as a semi-direct product $A \rtimes \mathbb{Z}$ with A of type $\mathrm{FP}_{n}(R)$. Now, let $\alpha: G \rightarrow Q$ be an epimorphism of G onto a finite group and let $R Q\left[t^{ \pm 1}\right]$ be the right $R G$-module with action given by φ and α. Applying [Bro94, III.6.2 and III.8.2] yields that $H_{\bullet}\left(G ; R Q\left[t^{ \pm 1}\right]\right) \cong H_{\bullet}(A ; R Q)$ as R-modules. Now, since A is of type $\mathrm{FP}_{n}(R)$ and Q is finite it follows that $H_{k}(A ; R Q)$ for $k \leqslant n$ is a finitely generated R-module. Such a module cannot contain a copy of $R\left[t^{ \pm 1}\right]$, and therefore $H_{k}\left(G ; R Q\left[t^{ \pm 1}\right]\right)$ is a torsion $R\left[t^{ \pm 1}\right]$-module. We are done by Lemma 2.7.

Proposition 2.11. Let G be a group of type $\mathrm{FP}_{n}(R)$, and let $\varphi: G \rightarrow \mathbb{Z}$ be an $\mathrm{FP}_{n}(R)$-semi-fibred character. The kth twisted Alexander polynomials of φ are non-zero for all $k \leqslant n$.

Proof. Since G is of type $\mathrm{FP}_{n}(R)$, we find a projective resolution C_{\bullet} of the trivial G-module R with C_{k} a finitely generated $R G$-module for every $k \leqslant n$. We replace φ by $-\varphi$ if needed, and assume that $\varphi \in \Sigma^{n}(G ; R)$; note that this replacement does not affect the vanishing of twisted Alexander polynomials.

Using Fisher's version of Sikorav's theorem [Fis21, Theorem 5.3], we find a partial chain contraction for C_{\bullet} over the Novikov ring $\operatorname{Nov}(R G, \varphi)$ in the following sense: Denote the differentials of $C_{\mathbf{\bullet}}$ by $\partial_{i}: C_{i} \rightarrow C_{i-1}$. We find $\operatorname{Nov}(R G, \varphi)$-module morphisms

$$
A_{i}: \operatorname{Nov}(R G, \varphi) \otimes_{R G} C_{i} \rightarrow \operatorname{Nov}(R G, \varphi) \otimes_{R G} C_{i+1}
$$

such that for every $i \leqslant n$ we have $A_{i-1} \partial_{i}^{\prime}+\partial_{i+1}^{\prime} A_{i}=$ id where $\partial_{i}^{\prime}=$ $\mathrm{id}_{\operatorname{Nov}(R G, \varphi)} \otimes_{R G} \partial_{i}$, and $A_{-1}=0, \partial_{-1}^{\prime}=0$. Here the Novikov ring $\operatorname{Nov}(R G, \varphi)$ is the ring of twisted Laurent power series with coefficients in $R(\operatorname{ker} \varphi)$ and with variable $t \in G$ with $\varphi(t)=1$, where the twisting is given by the conjugation action of t on $\operatorname{ker} \varphi$; multiplication in $\operatorname{Nov}(R G, \varphi)$ induces a right $R G$-module structure on $\operatorname{Nov}(R G, \varphi)$.

Now let $\alpha: G \rightarrow Q$ be an epimorphism with Q finite. Dividing G by the normal subgroup $K=\operatorname{ker} \alpha \cap \operatorname{ker} \varphi$ induces a ring morphism

$$
\beta: \operatorname{Nov}(R G, \varphi) \rightarrow \operatorname{Nov}(R(G / K), \psi)
$$

where $\psi: G / K \rightarrow \mathbb{Z}$ is induced by φ. Applying β to the entries of the matrices A_{i} shows that

$$
H_{i}(G ; \operatorname{Nov}(R(G / K), \psi))=0
$$

for all $i \leqslant n$.
The ring $\operatorname{Nov}(R(G / K), \psi)$ is isomorphic to $\bigoplus_{Q} \operatorname{Nov}(R($ ker $\alpha / K), \psi)$ as an $R(\operatorname{ker} \alpha / K)$-module, and hence also as an $R(\operatorname{ker} \alpha)$-module, and so

$$
H_{i}(\operatorname{ker} \alpha ; \operatorname{Nov}(R(\operatorname{ker} \alpha / K), \psi))=0
$$

for all $i \leqslant n$. Arguing with chain contractions as before, we see that

$$
H_{i}(\operatorname{ker} \alpha ; \operatorname{Nov}(\operatorname{Frac}(R)(\operatorname{ker} \alpha / K), \psi))=0
$$

for all $i \leqslant n$.
Now, $\operatorname{ker} \alpha / K \cong \mathbb{Z}$, and therefore $\operatorname{Nov}(\operatorname{Frac}(R)(\operatorname{ker} \alpha / K), \psi))$ is the field of Laurent power series in a single variable t and coefficients in $\operatorname{Frac}(R)$, where $t \in \operatorname{ker} \alpha$ is mapped by ψ to a generator of \mathbb{Z}. This field contains the field $R(t)$ of rational functions in a single variable and coefficients in R in the obvious way. Since $R(t)$ is a right $R(\operatorname{ker} \alpha)$-submodule of $\operatorname{Nov}(\operatorname{Frac}(R)(\operatorname{ker} \alpha / K), \psi))$, and since $\operatorname{Nov}(\operatorname{Frac}(R)(\operatorname{ker} \alpha / K), \psi))$ is a flat $R(t)$-module as both are skewfields, we conclude that

$$
0=H_{i}(\operatorname{ker} \alpha ; R(t))
$$

Now, using flatness of localisations, we obtain

$$
H_{i}(\operatorname{ker} \alpha ; R(t))=H_{i}\left(\operatorname{ker} \alpha ; R\left[t^{ \pm 1}\right]\right) \otimes_{R\left[t^{ \pm 1]}\right]} R(t)
$$

and therefore $H_{i}\left(\operatorname{ker} \alpha ; R\left[t^{ \pm 1}\right]\right)$ is a torsion $R\left[t^{ \pm 1}\right]$-module. We are now done thanks to Lemmata 2.7 and 2.9.

Example 2.12. The Baumslag-Solitar group

$$
\mathrm{BS}(1, n)=\left\langle a, t \mid t a t^{-1}=a^{n}\right\rangle
$$

has $H^{1}(G ; \mathbb{R}) \cong \mathbb{R}$ with basis given by the character

$$
\varphi: \mathrm{BS}(1, n) \rightarrow\langle t\rangle \cong \mathbb{Z}
$$

killing a. The BNS invariant $\Sigma^{1}(\mathrm{BS}(1, n))$ consists only of the ray $\{\lambda \varphi \mid \lambda \in(0, \infty)\}$. It follows that for every integral domain R and every finite quotient $\alpha: \operatorname{BS}(1, n) \rightarrow Q$, the twisted Alexander polynomials do not vanish. (In fact, the polynomials can be computed by hand rather easily.) Note that $\mathrm{BS}(1, n)$ splits as $\mathbb{Z}[1 / n] \rtimes \mathbb{Z}$, where \mathbb{Z} acts as multiplication by n, so $\operatorname{ker}(\varphi)$ is not finitely generated.

3. TAP GROUPS

3.1. The definition.

Definition 3.1. Let R be a integral domain. We say that a group G of type $\mathrm{FP}_{n}(R)$ is in the class $\operatorname{TAP}_{n}(R)$ if for every non-trivial character $\varphi \in H^{1}(G ; \mathbb{Z})$ the following property holds:
φ is $\mathrm{FP}_{n}(R)$-semi-fibred if and only if for each $i \leqslant n$ its twisted ith Alexander polynomials do not vanish.
We allow $n=\infty$ in the above definition.
The definition is best motivated and explained by the following slogan: "A group is in $\operatorname{TAP}_{n}(R)$ if and only if twisted Alexander polynomials detect algebraic semi-fibring over R up to dimension n ".

Note that in view of Example 2.12 it is more natural to use semifibring rather than fibring in the definition above.

Example 3.2. Theorem 1.1 by Friedl-Vidussi shows that fundamental groups of compact, orientable, connected 3-manifolds with empty or toroidal boundary are in $\operatorname{TAP}_{1}(R)$, and hence in $\operatorname{TAP}_{\infty}(R)$, since the first BNS invariants of compact 3 -manifold groups are symmetric [BNS87, Corollary F], and since finitely generated fundamental groups of 3 -manifolds are of type F_{∞}, and therefore $\mathrm{FP}_{\infty}(R)$ over every R this follows from Scott's compact core theorem [Sco73].

Example 3.3. A non-example is given by $G=S \imath \mathbb{Z}$ where S is an infinite simple group. Note that such a group has an obvious map $\varphi: G \rightarrow \mathbb{Z}$ and this map is a basis for $H^{1}(G ; \mathbb{R}) \cong \mathbb{R}$. The group G admits an automorphism that acts as on $H^{1}(G ; \mathbb{R})$ as minus
the identity, and hence the BNS invariants of G must be symmetric. Therefore $\Sigma^{1}(G ; R)$ is empty since $\operatorname{ker} \varphi=\bigoplus_{\mathbb{Z}} S$ is not finitely generated. Now, every finite quotient of G is cyclic and the corresponding kernel is isomorphic to $S^{n} \downarrow \mathbb{Z}$ for some n; the Alexander polynomial of such a group is equal to 1 , since the relevant R-module is $H_{1}\left(S^{n} \imath \mathbb{Z} ; R\left[t^{ \pm 1}\right]\right) \cong H_{1}\left(\bigoplus_{\mathbb{Z}} S^{n} ; R\right)=0$. This shows that G is not in $\operatorname{TAP}_{1}(R)$ for any R.

Example 3.4. Another non-example is provided by every group that admits a character that is $\mathrm{FP}_{2}(\mathbb{Q})$-semi-fibred without being $\mathrm{FP}_{2}(\mathbb{Z})$ -semi-fibred. Such a group cannot be in $\operatorname{TAP}_{2}(\mathbb{Z})$, since if it were then the character would have non-vanishing twisted second Alexander polynomials over \mathbb{Q} by Proposition 2.11, and hence over \mathbb{Z} by Lemma 2.7, and then $\operatorname{TAP}_{2}(\mathbb{Z})$ would show that the character is $\mathrm{FP}_{2}(\mathbb{Z})$-semi-fibred. An explicit example of a group satisfying the requirement is every RAAG based on a triangulation of the real projective plane; the character will then be the Bestvina-Brady character.

We will be primarily interested in profinite aspects of TAP groups, but the property has also other uses.

Italiano-Martelli-Migliorini in [IMM20] introduced a finite-volume hyperbolic 7 -manifold whose fundamental group maps onto \mathbb{Z} with finitely presented kernel. Fisher [Fis22] showed that by passing to a suitable finite cover, one obtains a finite-volume hyperbolic 7-manifold M with $G=\pi_{1}(M)$ and an epimorphism $\varphi: G \rightarrow \mathbb{Z}$ with kernel that is finitely presented and of type $\operatorname{FP}(\mathbb{Q})$.

Suppose that G lies in $\operatorname{TAP}_{7}(\mathbb{Z})$ and that

$$
\Sigma^{7}(G ; \mathbb{Z})=-\Sigma^{7}(G ; \mathbb{Z})
$$

Since $\varphi \in \Sigma^{7}\left(\pi_{1}(M) ; \mathbb{Q}\right)$, we see that the twisted Alexander polynomials of M over \mathbb{Q} do not vanish in dimensions 1 to 7 . This means that the polynomials over \mathbb{Z} do not vanish either, and since G is in $\operatorname{TAP}_{7}(\mathbb{Z})$ we conclude that $\varphi \in \Sigma^{7}\left(\pi_{1}(M) ; \mathbb{Z}\right)$. Since the BNS invariant is also assumed to be symmetric, $\operatorname{ker} \varphi$ is finitely presented and of type $\mathrm{FP}_{7}(\mathbb{Z})$, and hence is of type F . If one now had a version of Farrell's theorem [Far72] for manifolds with boundary, one could conclude that M fibres over the circle.
3.2. Almost finitely presented LERF groups are $\operatorname{TAP}_{1}(R)$. Now that we have defined TAP, let us introduce the class of groups whose TAPness we want to establish.

Definition 3.5. Let G be a group. A subgroup $A \leqslant G$ is separable if for every $g \in G \backslash A$ there exists an epimorphism $\alpha: G \rightarrow Q$ with Q finite such that

$$
\alpha(g) \notin \alpha(A) .
$$

A group G is $L E R F$ (or locally extended residually finite, or subgroup separable) if every finitely generated subgroup is separable.

We will need some standard terminology related to graph-of-groups decompositions.

Definition 3.6. We say that a group G splits over a subgroup A if G decomposes as a reduced graph of groups with a single edge and edge group A. Recall that a graph of groups is reduced if every edge both of whose attaching maps are isomorphisms is a loop.

We are ready to state our main technical tool. The HHN extension case is a variation on the proofs from [FV08].

Proposition 3.7. Let G be a finitely generated group that splits over a separable subgroup. Let $\varphi: G \rightarrow \mathbb{Z}$ be a non-zero character that vanishes on the edge group. If for some integral domain R the first twisted Alexander polynomials do not vanish, then the splitting has only one vertex and φ is algebraically fibred with kernel equal to the edge group.

Proof. We need to consider two cases, depending on whether the splitting is an HNN extension or an amalgamated free product.

Suppose first that G splits as an HNN extension. If both edge maps are isomorphisms, then the edge group is a normal subgroup, and quotienting by it yields \mathbb{Z}. Hence φ is algebraically fibred with kernel equal to the edge group, as claimed. Suppose now that at least one of the attaching maps is not a surjection. Let A denote the image of this map, and let B denote the vertex group.

Let $\alpha: G \rightarrow Q$ be an epimorphism with finite image. Consider the Mayer-Vietoris sequence for an HNN-extension (see for instance
[Bro94, Chapter VII.9]) with non-trivial coefficients $R Q\left[t^{ \pm 1}\right]$ as in Section 2.2, where the action of A and B on the module is inherited from G. The sequence takes the following form:

Since $A \leqslant \operatorname{ker} \varphi$, we have a right A-module isomorphism

$$
R Q\left[t^{ \pm 1}\right]=R\left[t^{ \pm 1}\right] \otimes_{R} R Q
$$

where the action of $g \in A$ on $R\left[t^{ \pm 1}\right] \otimes_{R} R Q$ is the diagonal action given by right-multiplication by $\alpha(g)$ on $R Q$ and the trivial action of $R\left[t^{ \pm 1}\right]$. We also have an R-module isomorphism

$$
H_{0}\left(A ; R\left[t^{ \pm 1}\right] \otimes_{R} R Q\right) \cong R\left[t^{ \pm 1}\right] \otimes_{R}(R Q)_{A}
$$

by the definition of zeroth homology, where $(-)_{A}$ denotes A-coinvariants.
By assumption, $H_{1}\left(G ; R Q\left[t^{ \pm 1}\right]\right)$ is $R\left[t^{ \pm 1}\right]$-torsion and it is clear that $H_{0}\left(G ; R Q\left[t^{ \pm 1}\right]\right)$ is $R\left[t^{ \pm 1}\right]$-torsion (see for instance [FV08, Lemma 4.4]). Applying these observations in the trivial case $\alpha=\operatorname{tr}, Q=\{1\}$, we see that $H_{0}\left(B ; R\left[t^{ \pm 1}\right]\right)$ must contain a copy of $R\left[t^{ \pm 1}\right] \otimes_{R} R_{A}=R\left[t^{ \pm 1}\right]$. If $\left.\varphi\right|_{B} \neq 0$, then it is immediate that $H_{0}\left(B ; R\left[t^{ \pm 1}\right]\right)=\left(R\left[t^{ \pm 1}\right]\right)_{B}$ is a torsion $R\left[t^{ \pm 1}\right]$-module, yielding a contradiction. We conclude that $\left.\varphi\right|_{B}=0$, and hence we have $H_{0}\left(B ; R Q\left[t^{ \pm 1}\right]\right) \cong R\left[t^{ \pm 1}\right] \otimes_{R}(R Q)_{B}$ for all α and Q.
Using the fact that A is separable, we produce an epimorphism $\alpha: G \rightarrow Q$ with finite image such that $\alpha(A)$ is a proper subgroup of $\alpha(B)$. Let $F=\operatorname{Frac}(R)$. Note that $F(t)$, the field of rational functions, is a flat $R\left[t^{ \pm 1}\right]$-module. Tensoring the Mayer-Vietoris sequence above (with this choice of α) with $F(t)$ over $R\left[t^{ \pm 1}\right]$ we see that

$$
\operatorname{dim}_{F(t)} F(t) \otimes_{R}(R Q)_{A}=\operatorname{dim}_{F(t)} F(t) \otimes_{R}(R Q)_{B}
$$

Observe that $(R Q)_{A}$ is a free right R-module of rank $|Q: \alpha(A)|$, and similarly for $(R Q)_{B}$. The dimensions above pick up exactly the R-rank,
and so we may conclude that

$$
|Q: \alpha(A)|=|Q: \alpha(B)|,
$$

contradicting $|\alpha(A)|<|\alpha(B)|$.
If G splits as an amalgamated free product, the edge group A must be a proper subgroup of the vertex groups B and B^{\prime}, since otherwise the graph of groups would not be reduced.

We now consider the Mayer-Vietoris sequence for a free product with amalgamation:

$$
\begin{gathered}
H_{0}\left(A ; R Q\left[t^{ \pm 1}\right]\right) \overleftrightarrow{\rightarrow H_{0}\left(B ; R Q\left[t^{ \pm 1}\right]\right) \oplus H_{0}\left(B^{\prime} ; R Q\left[t^{ \pm 1}\right]\right) \rightarrow} H_{1}\left(G ; R Q\left[t^{ \pm 1}\right]\right) \\
\left.0 \longleftrightarrow R Q\left[t^{ \pm 1}\right]\right) \\
\end{gathered}
$$

Arguing as before with $\alpha=\operatorname{tr}$, we first see that φ must vanish on precisely one of the vertex groups, say B - it cannot vanish on both since $\varphi \neq 0$. As before, we produce $\alpha: G \rightarrow Q$ such that $\alpha(A)<$ $\alpha(B)$. After tensoring with $F(t)$ over $R\left[t^{ \pm 1}\right]$ we obtain an isomorphism between $F(t) \otimes_{R\left[t^{ \pm 1]}\right.} H_{0}\left(A ; R Q\left[t^{ \pm 1}\right]\right)$ and

$$
\left(H_{0}\left(B ; R Q\left[t^{ \pm 1}\right]\right) \otimes_{R\left[t^{ \pm 1}\right]} F(T)\right) \oplus\left(H_{0}\left(B^{\prime} ; R Q\left[t^{ \pm 1}\right]\right) \otimes_{R\left[t^{ \pm 1}\right]} F(t)\right) .
$$

Since $\left.\varphi\right|_{B^{\prime}}$ is non-trivial, the $R\left[t^{ \pm 1}\right]$-module $H_{0}\left(B^{\prime} ; R Q\left[t^{ \pm 1}\right]\right)$ is torsion as before, and hence

$$
F(t) \otimes_{R\left[t^{ \pm 1]}\right.} H_{0}\left(B^{\prime} ; R Q\left[t^{ \pm 1}\right]\right)=0 .
$$

Using dimensions over $F(t)$ we conclude that $|\alpha(A)|=|\alpha(B)|$, as before. This is a contradiction.

We are now ready for our first main theorem.
Theorem 3.8. If G is a LERF group of type $\mathrm{FP}_{2}(S)$ for some commutative ring S, then G is in $\operatorname{TAP}_{1}(R)$ for every integral domain R.

Proof. Let $\varphi: G \rightarrow \mathbb{Z}$ be a non-trivial character. We aim to show that φ is algebraically fibred if and only if for every epimorphism onto a finite group $\alpha: G \rightarrow Q$ the corresponding twisted Alexander polynomial does not vanish. The 'if' direction is given by Proposition 2.11. For the
converse suppose that the twisted Alexander polynomials of φ are nonzero.

Since G is of type $\mathrm{FP}_{2}(S)$, by $[\mathrm{BS} 78$, Theorem A] there exist finitely generated subgroups $A, B, C \leqslant G$ with $A, C \leqslant B$, and an isomorphism $\iota: A \rightarrow C$, such that G splits as an HNN-extension $B *_{\iota}$, and dividing by B coincides with φ.

Since A is finitely generated and G is LERF, we see that A is separable. The result now follows from Proposition 3.7.

Remark 3.9. The proof of the above result together with Proposition 2.11 show that $\Sigma^{1}(G)=-\Sigma^{1}(G)$. This is a well-known fact that can be proved directly using Proposition 2.6.

Proposition 3.7 can also be used in the setting of graphs of groups.
Theorem 3.10. Let R be a integral domain. Let G be a finitely generated fundamental group of a finite reduced graph of groups \mathcal{G}. Let $\varphi \in H^{1}(G ; \mathbb{Z})$ be a non-zero character and suppose that G is LERF. If the first twisted Alexander polynomials of φ do not vanish, then for every finitely generated edge group A precisely one of the following holds:
(1) either $G=A \rtimes \mathbb{Z}$ with φ being the projection map,
(2) or $\left.\varphi\right|_{A} \neq 0$.

Proof. Consider an edge e with a finitely generated group A. The proof splits into two cases.

If e is non-separating, then we may collapse all the other edges and obtain a splitting of G as an HNN extension with edge group A. Now, Proposition 3.7 tells us that if $\left.\varphi\right|_{A}=0$, then φ is algebraically fibred with kernel A, that is, $G=A \rtimes \mathbb{Z}$.

If e is a separating edge, then G splits as a free product amalgamated over A. Proposition 3.7 tells us that $\left.\varphi\right|_{A} \neq 0$.
3.3. Products of $\operatorname{TAP}_{1}(R)$ groups. We will now discuss the structure of the BNS invariants for products of groups. When working over fields, this structure is completely understood in terms of BNS invariants of factors; over general commutative rings all we have is an inequality. To understand the inequality, recall that we have defined the BNS invariants $\Sigma^{n}(G ; R)$ as subsets of $H^{1}(G ; \mathbb{R}) \backslash\{0\}$. This in particular applies
to $\Sigma^{0}(G ; R)$. For a subset $U \subseteq H^{1}(G ; \mathbb{R})$ we denote the complement by $U^{c}=H^{1}(G ; \mathbb{R}) \backslash U$. In particular, we have $\Sigma^{0}(G ; R)^{c}=\{0\}$.

When $G=G_{1} \times G_{2}$, we have $H^{1}(G ; \mathbb{R})=H^{1}\left(G_{1} ; \mathbb{R}\right) \oplus H^{1}\left(G_{2} ; \mathbb{R}\right)$. Given subsets $U_{i} \subseteq H^{1}\left(G_{i} ; \mathbb{R}\right)$ we define their join to be

$$
U_{1} * U_{2}=\left\{t u_{1}+(1-t) u_{2} \mid u_{i} \in U_{i}, t \in[0,1]\right\} .
$$

The following inequality is due to Meinert; see [BG10] for the history of this and [Geh98] for a proof. The "moreover" is due to BieriGeoghegan [BG10] and for $R=\mathbb{Z}$ the inequality can be strict [Sch08].

Theorem 3.11 (Meinert's inequality). Let G_{1} and G_{2} be groups of type $\mathrm{FP}_{n}(R)$ where R is a commutative ring, and let $G=G_{1} \times G_{2}$. Then

$$
\Sigma^{n}(G ; R)^{c} \subseteq \bigcup_{p=0}^{n} \Sigma^{p}\left(G_{1} ; R\right)^{c} * \Sigma^{n-p}\left(G_{2} ; R\right)^{c}
$$

Moreover, equality holds if R is a field.
Proposition 3.12. Let R be a integral domain and let G_{1} and G_{2} be finitely generated groups. If G_{i} is in $\operatorname{TAP}_{1}(R)$ for $i=1,2$, then $G_{1} \times G_{2}$ is in $\operatorname{TAP}_{1}(R)$.

Proof. Let $G=G_{1} \times G_{2}$. Suppose $\varphi: G \rightarrow \mathbb{Z}$ is not algebraically semi-fibred and is non-zero. We need to show that there exists a finite quotient $\alpha: G \rightarrow Q$ such that the corresponding twisted Alexander polynomial vanishes.

By Meinert's inequality, we have

$$
\varphi \in\left(\Sigma^{1}\left(G_{1} ; R\right)^{c} *\{0\}\right) \cup\left(\{0\} * \Sigma^{1}\left(G_{2} ; R\right)^{c}\right)
$$

In particular, for exactly one $i \in\{1,2\}$ we have $\left.\varphi\right|_{G_{i}}=0$. Suppose without loss of generality that $i=2$.

Now, we have a splitting $\operatorname{ker}(\varphi)=\operatorname{ker}\left(\left.\varphi\right|_{G_{1}}\right) \times G_{2}$. Since G_{1} lies in $\operatorname{TAP}_{1}(R)$, there exists a finite quotient $\alpha_{1}: G_{1} \rightarrow Q$ such that the module $H_{1, R}^{\varphi| |_{1}, \alpha_{1}}$ is not $R\left[t^{ \pm 1}\right]$-torsion, and hence contains a free $R\left[t^{ \pm 1}\right]$ module. Let F denote $\operatorname{Frac}(R)$. Since F is a flat R-module, and since $\operatorname{dim}_{F} F \otimes_{R} R\left[t^{ \pm 1}\right]=\infty$, we immediately see that

$$
\operatorname{dim}_{F} F \otimes_{R} H_{1, R}^{\varphi \mid G_{1}, \alpha_{1}}=\infty
$$

Define $\alpha: G \rightarrow Q$ to be the composite $G \rightarrow G_{1} \rightarrow Q$. Applying Shapiro's lemma (as in the proof of Lemma 2.9), and then [Bro94,
III.6.2 and III.8.2], gives isomorphisms of R-modules

$$
H_{1, R}^{\varphi, \alpha} \cong H_{1, R}^{\left.\varphi\right|_{\text {ker } \alpha, \operatorname{tr}}} \cong H_{1}(\operatorname{ker}(\varphi) \cap \operatorname{ker}(\alpha) ; R),
$$

but $\operatorname{ker}(\varphi) \cap \operatorname{ker}(\alpha) \cong\left(\operatorname{ker}\left(\left.\varphi\right|_{G_{1}}\right) \cap \operatorname{ker}\left(\alpha_{1}\right)\right) \times G_{2}$. It follows that we can compute $H_{1, R}^{\varphi, \alpha}$ by the Künneth spectral sequence (note that R is not necessarily a PID so we cannot use the Künneth formula). We have

$$
\operatorname{Tor}_{0}^{R}\left(H_{1, R}^{\varphi \mid G_{1}, \alpha_{1}}, R\right) \cong H_{1, R}^{\left.\varphi\right|_{G_{1}}, \alpha_{1}} \otimes_{R} R \cong H_{1, R}^{\left.\varphi\right|_{G_{1}}, \alpha_{1}} \leqslant H_{1, R}^{\varphi, \alpha}
$$

as R-modules. We conclude that

$$
\operatorname{dim}_{F} F \otimes_{R} H_{1, R}^{\varphi, \alpha}=\infty .
$$

Using flatness again we get

$$
\operatorname{dim}_{F} H_{1, F}^{\varphi, \alpha}=\infty
$$

and hence the first Alexander polynomials twisted by α over F and over R vanish by Lemma 2.7.

3.4. Products of limit groups are $\mathrm{TAP}_{\infty}(\mathbb{F})$.

Theorem 3.13. Let \mathbb{F} be a field and let $G=\prod_{i=1}^{n} G_{i}$ be a product of limit groups. Then, G is in $\operatorname{TAP}_{\infty}(\mathbb{F})$.

Proof. By [Wil08] limit groups are LERF, and by [BF09, Exercise 13] limit groups are of type F , and hence $\mathrm{FP}_{2}(\mathbb{Z})$. It follows that products of limit groups are $\operatorname{TAP}_{1}(\mathbb{F})$ by Theorem 3.8 and Proposition 3.12.

Let $\varphi: G \rightarrow \mathbb{Z}$ be a character which is $\mathrm{FP}_{k-1}(\mathbb{F})$-semi-fibred but not $\mathrm{FP}_{k}(\mathbb{F})$-semi-fibred for some $2 \leqslant k \leqslant n$. If no such k exists, then we are done by Proposition 2.11. The same result tells us that all twisted Alexander polynomials of φ in dimension at most $k-1$ will vanish. We need to exhibit a non-vanishing one in dimension k. Lemma 2.9 tells us that it is enough to find such a non-vanishing twisted polynomial for some normal finite-index subgroup of G.

We may assume that if some G_{i} is abelian then $\left.\varphi\right|_{G_{i}}=0$. Otherwise, φ would be $\mathrm{FP}_{\infty}(\mathbb{F})$-semi-fibred by Meinert's inequality. After passing to a finite index normal subgroup $H \times K$ with $H=\prod_{i=1}^{p} H_{i}, K=$ $\prod_{j=1}^{q} K_{j}, p+q=n, H_{i} 太 G_{i}$, and $K_{j}=G_{q+j}$, we may assume that $\left.\varphi\right|_{H_{i}}$ is surjective and $\left.\varphi\right|_{K_{j}}=0$. Let ψ denote the restriction of φ to H. By [BHMS09, Theorem 7.2] (note that the result is only stated for \mathbb{Q} but by the paragraph after Theorem C loc. cit. it holds for arbitrary
fields) we have that $H_{p}(\operatorname{ker} \psi ; \mathbb{F})$ has infinite dimension over \mathbb{F} (here we are using the fact that ψ vanishes on abelian factors). It follows from Lemma 2.7 that the twisted Alexander polynomial of G associated to $\alpha: G \rightarrow G /(H \times K)$ vanishes.

We have found a vanishing Alexander polynomial in dimension p. Note that $p \geqslant k$ since φ is $\mathrm{FP}_{k-1}(\mathbb{F})$-semi-fibred. Meinert's inequality tells us that $\Sigma^{p-1}(G ; R)^{c}$ is the union of joins of the form

$$
\Sigma^{m_{1}}\left(G_{1} ; R\right)^{c} * \cdots * \Sigma^{m_{n}}\left(G_{1} ; R\right)^{c}
$$

with $\sum m_{i}=p-1$. Each such join must therefore have at most $p-1$ factors with $n_{i}>0$, and hence characters lying in such a join must vanish on all but at most $p-1$ factors G_{i}. But φ does not vanish on p factors, and hence $\varphi \in \Sigma^{p-1}(G ; R)$. Hence $p-1 \leqslant k-1$, and therefore $p=k$. We have now shown that the first dimension in which a twisted Alexander polynomial vanishes is equal to the first dimension in which φ is not semi-fibred. This proves the claim.

4. Profinite Rigidity of fibring

Definition 4.1. Let G be a group, R be a ring, and let \mathcal{C} be a directed system of normal finite-index subgroups of G. We set

$$
\widehat{G}_{\mathcal{C}}=\lim _{U \in \mathcal{C}} G / U
$$

and

$$
R \llbracket G \rrbracket_{\mathcal{C}}={\underset{U \in \mathcal{C}}{ }}_{\lim _{U}}(G / U)
$$

When \mathcal{C} consists of all normal subgroups of finite index, we write \widehat{G} for $\widehat{G}_{\mathcal{C}}, R \llbracket G \rrbracket$ for $R \llbracket G \rrbracket_{\mathcal{C}}$, and call them respectively the profinite completion and the completed group ring.

Note that $\widehat{\mathbb{Z}}$ is a ring with the obvious multiplication.
The groups \widehat{G} and more generally $\widehat{G}_{\mathcal{C}}$ carry a natural compact topology obtained as the limit of the discrete topology on G / U. Whenever we will use this topology, we will state it explicitly, as we do below.

Definition 4.2. Let G be a residually finite group. We say that G is n-good if for all $0 \leqslant j \leqslant n$ and all $\mathbb{Z} G$-modules M that are finite as sets, the map

$$
H_{\mathrm{cont}}^{n}(\widehat{G} ; M) \rightarrow H^{n}(G ; M)
$$

induced by the inclusion $G \rightarrow \widehat{G}$ is an isomorphism. Here, $H_{\text {cont }}^{*}$ denotes continuous group cohomology which is defined analogously to ordinary group cohomology except for the following modifications: First, we require M to be a topological \widehat{G}-module, that is, M carries a (possibly discrete) topology and the \widehat{G}-action on M is continuous, and secondly, the cochain groups $C_{\text {cont }}^{\bullet}(\widehat{G} ; M)$ consist of continuous functions $\widehat{G}^{n} \rightarrow$ M.

A group that is n-good for all n is called cohomologically good, or good in the sense of Serre.

Remark 4.3. It is very easy to see that every residually finite group is 1-good.

Proposition 4.4 ([GJZZ08, Lemma 3.2]). Finite-index subgroups of n-good groups are themselves n-good.

The above proposition is stated in a slightly less general way in the paper of Grunewald-Jaikin-Zapirain-Zalesskii [GJZZ08], but the proof gives precisely what we claim above.

The following result is a slight variation on a theorem of Kochloukova and Zalesskii. The only difference consists of replacing the assumption of G being type FP_{∞} with the assumption of G being type FP_{n}. The proof is very similar but we include it to highlight the differences.

Proposition 4.5. [KZ08, Theorem 2.5] Let G be a group of type $\mathrm{FP}_{n}(\mathbb{Z})$ and let \mathcal{C} be a directed system of finite index normal subgroups. Suppose that for a fixed prime p and for all $1 \leqslant i \leqslant n$ we have

Then, for all $m \geqslant 1$ and $1 \leqslant i \leqslant n$ we have

$$
\operatorname{Tor}_{i}^{\mathbb{Z} G}\left(\mathbb{Z},\left(\mathbb{Z} / p^{m} \mathbb{Z}\right) \llbracket G \rrbracket_{\mathcal{C}}\right)=0 \text { and } \operatorname{Tor}_{i}^{\mathbb{Z} G}\left(\mathbb{Z}, \mathbb{Z}_{p} \llbracket G \rrbracket_{\mathcal{C}}\right)=0
$$

where \mathbb{Z}_{p} denotes the p-adic integers.
In both the statement above and the proof below, we stay in the abstract category, that is we do not require any continuity, and homology is taken without closing images.

Proof. Let P_{\bullet}. be a projective resolution of \mathbb{Z} over $\mathbb{Z} G$ such that P_{i} is finitely generated for $i \leqslant n$. Let $P_{\bullet}^{(m)}=\left(\mathbb{Z} / p^{m} \mathbb{Z}\right) \llbracket G \rrbracket_{\mathcal{C}} \otimes_{\mathbb{Z} G} P_{\bullet}$. By
$\left[\mathrm{KZ} 08\right.$, Lemma 2.1] we have $H_{i}\left(P_{\bullet}^{(1)}\right) \cong \operatorname{Tor}_{i}^{\mathbb{Z G}}\left(\mathbb{Z},(\mathbb{Z} / p \mathbb{Z}) \llbracket G \rrbracket_{\mathcal{C}}\right)=0$ for $1 \leqslant i \leqslant n$.

The short exact sequence of right $\mathbb{Z} G$-modules

$$
0 \longrightarrow(\mathbb{Z} / p \mathbb{Z}) \llbracket G \rrbracket_{\mathcal{C}} \longrightarrow\left(\mathbb{Z} / p^{m} \mathbb{Z}\right) \llbracket G \rrbracket_{\mathcal{C}} \longrightarrow\left(\mathbb{Z} / p^{m-1} \mathbb{Z}\right) \llbracket G \rrbracket_{\mathcal{C}} \longrightarrow 0
$$

induces a long exact sequence in homology containing sequences

$$
H_{i}\left(G ;(\mathbb{Z} / p \mathbb{Z}) \llbracket G \rrbracket_{\mathcal{C}}\right) \rightarrow H_{i}\left(G ;\left(\mathbb{Z} / p^{m} \mathbb{Z}\right) \llbracket G \rrbracket_{\mathcal{C}}\right) \rightarrow H_{i}\left(G ;\left(\mathbb{Z} / p^{m-1} \mathbb{Z}\right) \llbracket G \rrbracket_{\mathcal{C}}\right)
$$

exact in the middle term. This latter sequence implies via an easy induction that

$$
\operatorname{Tor}_{i}^{\mathbb{Z} G}\left(\mathbb{Z},\left(\mathbb{Z} / p^{m} \mathbb{Z}\right) \llbracket G \rrbracket_{\mathcal{C}}\right)=0
$$

for $1 \leqslant i \leqslant n$, and so $P_{\bullet}^{(m)}$ is exact up to dimension n. It also shows that $H_{n+1}\left(G ;\left(\mathbb{Z} / p^{m} \mathbb{Z}\right) \llbracket G \rrbracket_{\mathcal{C}}\right) \rightarrow H_{n+1}\left(G ;\left(\mathbb{Z} / p^{m-1} \mathbb{Z}\right) \llbracket G \rrbracket_{\mathcal{C}}\right)$ is a surjection.

For every m we have an obvious chain map $P_{\bullet}^{(m+1)} \rightarrow P_{\bullet}^{(m)}$. Let $Q_{\bullet}=\lim _{\leftrightarrows} P_{\bullet}^{(m)}$ where the limit is taken along these maps. By [Wei94, Proposition 3.5.7 and Theorem 3.5.8], the complex Q_{\bullet} is exact up to dimension n and by construction $Q_{\bullet} \cong \mathbb{Z}_{p} \llbracket G \rrbracket_{\mathcal{C}} \otimes_{\mathbb{Z} G} P_{\bullet}$. Therefore $H_{i}\left(Q_{\bullet}\right) \cong \operatorname{Tor}_{i}^{\mathbb{Z} G}\left(\mathbb{Z} ; \mathbb{Z}_{p} \llbracket G \rrbracket_{\mathcal{C}}\right)=0$ for $1 \leqslant i \leqslant n$.

The next result is due to Jaikin-Zapirain; we have weakened the original assumption of type FP_{∞} to FP_{n}. The proof goes through verbatim after substituting Proposition 4.5 for Jaikin-Zapirain's use of [KZ08, Theorem 2.5].

Proposition 4.6. [JZ20, Proposition 3.1] Let G be a group of type $\mathrm{FP}_{n}(\mathbb{Z})$ and let $\left(F_{\bullet}, \partial_{\bullet}\right)$ be a free resolution of the trivial $\mathbb{Z} G$-module \mathbb{Z} which is finitely generated up to dimension n, and in which $F_{0}=\mathbb{Z} G$. Then G is n-good if and only if the induced sequence

$$
\cdots \xrightarrow{\widehat{\partial_{n+1}}} \widehat{F_{n}} \xrightarrow{\widehat{\partial_{n}}} \cdots \xrightarrow{\widehat{\partial_{2}}} \widehat{F_{1}} \xrightarrow{\widehat{\partial_{1}}} \widehat{F_{0}} \xrightarrow{\widehat{\partial_{0}}} \widehat{\mathbb{Z}}
$$

is exact up to dimension n, where $\left(\widehat{F}_{\bullet}, \widehat{\partial}_{\bullet}\right)$ is obtained from $\left(F_{\bullet}, \partial_{\bullet}\right)$ by tensoring with $\widehat{\mathbb{Z}} \llbracket G \rrbracket$ over $\mathbb{Z} G$.

We are next going to state a result of Liu. First we need to introduce some notation. Recall that

$$
H_{n, R}^{\varphi, \alpha}=H_{n}(G ; R(Q \times Z))
$$

where $\alpha: G \rightarrow Q$ and $\varphi: G \rightarrow Z$ are homomorphisms, and $R(Q \times Z)$ is a right $R G$-module via $(q, z) . g=(q \alpha(g), z \varphi(g))$ with $(g, q, z) \in G \times$ $Q \times Z$. We also treat $R(Q \times Z)$ as an $R Z$ module via the inclusion $Z \rightarrow Q \times Z$.

Now suppose that $Z \in\{\mathbb{Z}, \widehat{\mathbb{Z}}\}$, so that $\widehat{Z}=\widehat{\mathbb{Z}}$. Let \widehat{G} be the profinite completion of G, and let $\widehat{\alpha}: \widehat{G} \rightarrow Q$ and $\widehat{\varphi}: \widehat{G} \rightarrow \widehat{\mathbb{Z}}$ be the completions of the morphisms from before. Note that $Q=\widehat{Q}$ since Q is finite. Let $R=\mathbb{F}$ be a finite field. We let

$$
\widehat{H}_{n, \mathbb{F}}^{\hat{\varphi}, \widehat{\alpha}}=H_{n}^{\text {prof }}(\widehat{G} ; \mathbb{F} \llbracket Q \times \widehat{\mathbb{Z}} \rrbracket)
$$

where $H_{*}^{\text {prof }}$ denotes profinite homology, as defined in [RZ10]. Observe that $\mathbb{F} \llbracket Q \times \widehat{\mathbb{Z}} \rrbracket=\mathbb{F} Q \llbracket \widehat{\mathbb{Z}} \rrbracket$ has a structure of an $\mathbb{F} \llbracket \widehat{\mathbb{Z}} \rrbracket$ module, and hence so does $\widehat{H}_{n, \mathbb{Y}}^{\hat{\varphi}, \widehat{\alpha}}$.

Proposition 4.7. [Liu20, Proposition 4.6] Let G be a group which is n-good and of type $\mathrm{FP}_{n}(\mathbb{Z})$. Let \mathbb{F} be a finite field. Let $\alpha: G \rightarrow Q$ be a finite quotient of G. Denote by $\widehat{\alpha}: \widehat{G} \rightarrow Q$ the completion of α.
(1) Let $\varphi: G \rightarrow \widehat{\mathbb{Z}}$ be a group homomorphism, and let $\widehat{\varphi}: \widehat{G} \rightarrow \widehat{\mathbb{Z}}$ denote its completion. If the annihilator of $H_{n, \mathbb{F}}^{\varphi, \alpha}$ in $\mathbb{F} \widehat{\mathbb{Z}}$ is nonzero, then the annihilator of $\widehat{H}_{n, \mathbb{F}}^{\widehat{\varphi}, \widehat{\alpha}}$ is non-zero in $\mathbb{F} \llbracket \widehat{\mathbb{Z}} \rrbracket$.
(2) Let $\varphi, \psi: G \rightarrow \widehat{\mathbb{Z}}$ be group homomorphisms and suppose that $\operatorname{ker}(\psi)$ contains $\operatorname{ker}(\varphi)$. If $H_{n, \mathbb{F}}^{\psi, \alpha}$ has a non-zero annihilator in $\mathbb{F} \widehat{\mathbb{Z}}$, then $H_{n, \mathbb{F}}^{\varphi, \alpha}$ has a non-zero annihilator in $\mathbb{F} \widehat{\mathbb{Z}}$.
(3) Let Γ be a profinite group, let $\Psi: \Gamma \rightarrow \widehat{G}$ be a continuous epimorphism and let $\psi: G \rightarrow \widehat{\mathbb{Z}}$ be a group homomorphism. Let $\widehat{\alpha}^{\prime}$ and $\widehat{\psi^{\prime}}$ denote the pullbacks $\widehat{\alpha} \circ \Psi$ and $\widehat{\psi} \circ \Psi$. If $\widehat{H}_{n, \mathbb{F}}^{\hat{\mathcal{F}}^{\prime} \widehat{\alpha}^{\prime}}$ has a nonzero annihilator in $\mathbb{F} \llbracket \widehat{\mathbb{Z}}]$, then $\widehat{H_{n, \mathbb{F}} \hat{\varphi}, \widehat{\alpha}}$ has a non-zero annihilator in $\mathbb{F} \llbracket \widehat{\mathbb{Z}}]$.
(4) Let $\varphi: G \rightarrow \mathbb{Z}$ be a group homomorphism. The module $\widehat{H_{n, \mathbb{F}}^{\hat{\varphi}}, \widehat{\alpha}}$ has a non-zero annihilator in $\mathbb{F} \llbracket \widehat{\mathbb{Z}} \rrbracket$ if and only if $H_{n, \mathbb{F}}^{\varphi, \alpha}$ has finite dimension over \mathbb{F}.

Note that we have weakened the hypotheses 'cohomologically good and type FP_{∞} ' in [Liu20, Proposition 4.6] to ' n-good and type FP_{n} '. To make the adjustment we simply substitute the use of [JZ20, Proposition 3.1] in the proof of [Liu20, Proposition 4.6] with Proposition 4.6.

Definition 4.8. Let H_{A} and H_{B} be a pair of finitely generated \mathbb{Z} modules. Let $\Phi: \widehat{H_{A}} \rightarrow \widehat{H_{B}}$ be a continuous homomorphism of the profinite completions. We define the matrix coefficient module

$$
\operatorname{MC}\left(\Phi ; H_{A}, H_{B}\right)
$$

(or simply $\mathrm{MC}(\Phi)$ if there is no chance of confusion) for Φ with respect to H_{A} and H_{B} to be the smallest \mathbb{Z}-submodule L of $\widehat{\mathbb{Z}}$ such that $\Phi\left(H_{A}\right)$ lies in the submodule $H_{B} \otimes_{\mathbb{Z}} L$ of $\widehat{H_{B}}$. We denote by

$$
\Phi^{\mathrm{MC}}: H_{A} \rightarrow H_{B} \otimes_{\mathbb{Z}} \mathrm{MC}(\Phi)
$$

the homomorphism uniquely determined by the restriction of Φ to H_{A}.

By [Liu20, Proposition 3.2(1)], the \mathbb{Z}-module $\operatorname{MC}\left(\Phi ; H_{A}, H_{B}\right)$ is a non-zero finitely generated free \mathbb{Z}-module.

Definition 4.9. We define $\epsilon \in \operatorname{Hom}_{\mathbb{Z}}(\mathrm{MC}(\Phi), \mathbb{Z})$ by picking a free generating set for $\operatorname{MC}(\Phi)$ and sending every generator to either 0 or 1 in such a way that following ϵ with the natural projection $\mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ coincides with the restriction of the natural projection $\widehat{\mathbb{Z}} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ applied to $\operatorname{MC}(\Phi)$. The definition of ϵ depends on the choice of a basis for $\mathrm{MC}(\Phi)$.

The ϵ-specialisation of Φ refers to the composite homomorphism

$$
H_{A} \xrightarrow{\Phi^{\mathrm{MC}}} H_{B} \otimes_{\mathbb{Z}} \mathrm{MC}(\Phi) \xrightarrow{1 \otimes \epsilon} H_{B} \otimes_{\mathbb{Z}} \mathbb{Z}=H_{B},
$$

denoted by $\Phi_{\epsilon}: H_{A} \rightarrow H_{B}$. The dual ϵ-specialisation of Φ refers to the homomorphism $\Phi^{\epsilon}: \operatorname{Hom}_{\mathbb{Z}}\left(H_{B}, \mathbb{Z}\right) \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(H_{A}, \mathbb{Z}\right)$ precomposing with Φ_{ϵ}.

Lemma 4.10. If Φ is an isomorphism, then the images of Φ_{ϵ} and Φ^{ϵ} are of finite index in their respective codomains.

Proof. Let b denote the rank of H_{B}. We have a natural epimorphism $\rho: H_{B} \rightarrow(\mathbb{Z} / 2 \mathbb{Z})^{b}$ that extends to $\widehat{\rho}: H_{B} \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}} \rightarrow(\mathbb{Z} / 2 \mathbb{Z})^{b}$. By construction, $\rho \circ \Phi_{\epsilon}=\widehat{\rho} \circ \Phi$. Let us assume that Φ is an isomorphism. Since $\widehat{\rho}$ is clearly surjective, we conclude that $\rho \circ \Phi_{\epsilon}$ is surjective. Pick a basis of $(\mathbb{Z} / 2 \mathbb{Z})^{b}$, and lift it via ρ to a set $v_{1}, \ldots, v_{b} \in \operatorname{Im} \Phi_{\epsilon}$. Suppose that the elements v_{1}, \ldots, v_{b} are \mathbb{Z}-linearly dependent. By removing the
common factors of 2 from the coefficients, we may assume that we have

$$
\sum_{i=1}^{b} \lambda_{i} v_{i}=0
$$

with $\lambda_{i} \in \mathbb{Z}$ and with at least one λ_{i} odd. Applying ρ to this formula contradicts the fact that we started with a basis for $(\mathbb{Z} / 2 \mathbb{Z})^{b}$. Hence v_{1}, \ldots, v_{b} are \mathbb{Z}-linearly independent, and hence by tensoring with \mathbb{Q} we see that $\operatorname{Im} \Phi_{\epsilon}$ is of finite index in H_{B}.

The result for Φ^{ϵ} follows immediately, since we have just shown that $\Phi_{\epsilon} \otimes_{\mathbb{Z}} \mathrm{id}_{\mathbb{Q}}$ is surjective, and hence an isomorphism, since H_{A} and H_{B} have the same rank.

Definition 4.11. Let G_{A} and G_{B} be finitely generated groups and let $\Psi: \widehat{G}_{A} \rightarrow \widehat{G}_{B}$ be an isomorphism of profinite completions. Let H_{A} and H_{B} be the torsion-free parts of the abelianisations of, respectively, G_{A} and G_{B}; let ab denote both of the free abelianisation maps. Note that Ψ induces $\Psi_{1}: \widehat{H_{A}} \rightarrow \widehat{H_{B}}$. Pick $\epsilon \in \operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{MC}\left(\Psi_{1}\right), \mathbb{Z}\right)$ as in Definition 4.9. Given $\varphi \in H^{1}\left(G_{B} ; \mathbb{Z}\right)$ we define

$$
\psi=\Psi_{1}^{\epsilon}\left(\varphi \circ \mathrm{ab}^{-1}\right) \circ \mathrm{ab} \in H^{1}\left(G_{A} ; \mathbb{Z}\right)
$$

to be the ϵ-pullback of φ.

Theorem 4.12. Let n be a positive integer. Let G_{A} and G_{B} be n good groups of type $\mathrm{FP}_{n}(\mathbb{Z})$, and suppose that G_{B} is in $\operatorname{TAP}_{n}(\mathbb{F})$, where \mathbb{F} is a finite field. Let $\Psi: \widehat{G}_{A} \rightarrow \widehat{G}_{B}$ be an isomorphism of profinite completions and let $\varphi \in H^{1}\left(G_{B} ; \mathbb{Z}\right)$. If for every $i \leqslant n$ the ϵ-pullback $\psi \in H^{1}\left(G_{A} ; \mathbb{Z}\right)$ of φ has non-vanishing ith twisted Alexander polynomials over \mathbb{F}, then φ is $\mathrm{FP}_{n}(\mathbb{F})$-semi-fibred.

Proof. Note that Ψ is continuous by the work of Nikolov-Segal [NS07a, NS07b]. Let $\widehat{\rho}: G_{A} \rightarrow \widehat{\mathbb{Z}}$ denote the composite

$$
G_{A} \longmapsto \widehat{G}_{A} \xrightarrow{\Psi} \widehat{G}_{B} \xrightarrow{\widehat{\varphi}} \widehat{\mathbb{Z}}
$$

where $\widehat{\varphi}$ is the completion of φ. Observe that $\operatorname{Ker}(\psi)$ contains $\operatorname{Ker}(\hat{\rho})$. Indeed, $\hat{\rho}$ factorises as the top composite and ψ as the bottom composite

$$
G_{A} \rightarrow H_{A} \xrightarrow{\Psi_{1} \mathrm{MC}} H_{B} \otimes_{\mathbb{Z}} \mathrm{MC}\left(\Psi_{1}\right) \xrightarrow{\varphi \otimes 1} \mathbb{Z} \otimes_{\mathbb{Z}} \mathrm{MC}\left(\Psi_{1}\right) \xrightarrow{\equiv} \mathrm{MC}\left(\Psi_{1}\right)
$$

\mathbb{Z},
so clearly ψ vanishes on everything $\widehat{\rho}$ vanishes on.
Let $\beta: G_{B} \rightarrow Q$ be a finite quotient with completion $\widehat{\beta}$, and let $\alpha: G_{A} \rightarrow Q$ denote the composite $G_{A} \mapsto \widehat{G}_{A} \xrightarrow{\Psi} \widehat{G}_{B} \xrightarrow{\widehat{\beta}} Q$. Let $i \leqslant n$. By assumption, the homology group $H_{i, \mathbb{F}}^{\psi, \alpha}$ is $\mathbb{F} \mathbb{Z}$-torsion, and hence

$$
0=\operatorname{Frac}(\mathbb{F} \mathbb{Z}) \otimes_{\mathbb{F} \mathbb{Z}} H_{i, \mathbb{F}}^{\psi, \alpha}=H_{i}\left(G_{A} ; \operatorname{Frac}(\mathbb{F} \mathbb{Z}) Q\right)
$$

for $i \leqslant n$, where the second equality comes from the fact that localisations are flat, and that $\operatorname{Frac}(\mathbb{F} \mathbb{Z}) Q$ is the localisation of $\mathbb{F}(\mathbb{Z} \times Q)$ at $\mathbb{F}(\mathbb{Z} \times\{1\}) \backslash\{0\}$.

Since G_{A} is of type $\mathrm{FP}_{n}(\mathbb{Z})$, we find a free resolution C_{\bullet} of \mathbb{Z} with C_{i} finitely generated; let $\partial_{i}: C_{i} \rightarrow C_{i-1}$ denote the differentials of C_{\bullet}. The acyclicity above allows us to construct $\operatorname{Frac}(\mathbb{F} \mathbb{Z}) Q$-module maps

$$
d_{i}: \operatorname{Frac}(\mathbb{F} \mathbb{Z}) Q \otimes_{\mathbb{Z} G} C_{i} \rightarrow \operatorname{Frac}(\mathbb{F} \mathbb{Z}) Q \otimes_{\mathbb{Z} G} C_{i+1}
$$

for $i \leqslant n$ with

$$
d_{i-1} \circ \partial_{i}+\partial_{i+1} \circ d_{i}=\mathrm{id},
$$

where we now view ∂_{i} as $\operatorname{id}_{\text {Frac }(\mathbb{F} \mathbb{Z}) Q} \otimes \partial_{i}$. Since the modules

$$
\operatorname{Frac}(\mathbb{F} \mathbb{Z}) Q \otimes_{\mathbb{Z} G} C_{i}
$$

are finitely generated, by multiplying the maps d_{i} by the common denominator of all the entries of the matrices representing the maps d_{i}, we arrive at the existence of $\mathbb{F}(\mathbb{Z} \times Q)$-module maps

$$
d_{i}^{\prime}: \mathbb{F}(\mathbb{Z} \times Q) \otimes_{\mathbb{Z} G} C_{i} \rightarrow \mathbb{F}(\mathbb{Z} \times Q) \otimes_{\mathbb{Z} G} C_{i+1}
$$

with

$$
d_{i-1}^{\prime} \circ \partial_{i}+\partial_{i+1} \circ d_{i}^{\prime}
$$

being equal to the right-multiplication by some

$$
z \in \mathbb{F}(\mathbb{Z} \times\{1\}) \backslash\{0\}
$$

Again, we have to interpret the differentials ∂_{i} in a suitable way. Crucially, since $\mathbb{F} \mathbb{Z}$ is central in $\mathbb{F}(\mathbb{Z} \times Q)$, right-multiplication by z coincides with left-multiplication by z.

Let $\psi^{\prime}: G_{A} \rightarrow \widehat{\mathbb{Z}}$ denote ψ followed by the natural embedding $\mathbb{Z} \rightarrow \widehat{\mathbb{Z}}$. The maps d_{i}^{\prime} can be easily extended to maps

$$
\mathbb{F}(\widehat{\mathbb{Z}} \times Q) \otimes_{\mathbb{Z} G} C_{i} \rightarrow \mathbb{F}(\widehat{\mathbb{Z}} \times Q) \otimes_{\mathbb{Z} G} C_{i+1}
$$

immediately yielding that $H_{i, \mathbb{F}}^{\psi^{\prime}, \alpha}$ is $\mathbb{F} \mathbb{Z}$-torsion, and hence $\mathbb{F} \widehat{\mathbb{Z}}$-torsion. Still, $\operatorname{ker}(\widehat{\rho}) \leqslant \operatorname{ker}\left(\psi^{\prime}\right)$. Applying Proposition 4.7(2), (1), (3), and (4) in the given order, we see that $H_{i, \mathbb{F}}^{\varphi, \beta}$ is a finite dimensional \mathbb{F}-module, and hence a torsion $\mathbb{F} \mathbb{Z}$-module. Since β was arbitrary and $G_{B} \in \operatorname{TAP}_{n}(\mathbb{F})$, it follows that φ is $\mathrm{FP}_{n}(\mathbb{F})$-semi-fibred.

Corollary 4.13. Let n be a positive integer. Let G_{A} and G_{B} be n-good groups of type $\mathrm{FP}_{n}(\mathbb{Z})$ with isomorphic profinite completions. Suppose that G_{A} lies in $\operatorname{TAP}_{n}(\mathbb{F})$, where \mathbb{F} is a finite field. The group G_{A} is $\mathrm{FP}_{n}(\mathbb{F})$-semi-fibred if G_{B} is.

Proof. Let $\psi: G_{B} \rightarrow \mathbb{Z}$ be a non-trivial $\mathrm{FP}_{n}(\mathbb{F})$-semi-fibred character; observe that this statement remains unchanged if we replace ψ by a positive scalar multiple. By Proposition 2.11, the twisted Alexander polynomials of ψ over \mathbb{F} do not vanish. Lemma 4.10 gives us a bijection between positive scalar multiples of characters in $H^{1}\left(G_{A} ; \mathbb{Z}\right)$ and $H^{1}\left(G_{B} ; \mathbb{Z}\right)$, and hence, in particular, we find a non-trivial character $\varphi: G_{A} \rightarrow \mathbb{Z}$ such that ψ is its ϵ-pullback (up to multiplication by a positive scalar). Theorem 4.12 shows that φ is $\mathrm{FP}_{n}(\mathbb{F})$-semi-fibred.

We may summarise the above by saying that being $\mathrm{FP}_{n}(\mathbb{F})$-semifibred is a profinite property among n-good groups of type $\mathrm{FP}_{n}(\mathbb{Z})$ in $\operatorname{TAP}_{n}(\mathbb{F})$.

Using Remark 4.3 we obtain the following crisper formulation for $n=1$.

Corollary 4.14. Let G_{A} and G_{B} be finitely generated groups with isomorphic profinite completions. Suppose that G_{A} lies in $\operatorname{TAP}_{1}(\mathbb{F})$, where \mathbb{F} is a finite field. If G_{B} is algebraically semi-fibred, then so is G_{A}.

5. Applications

5.1. Products of LERF groups.

Theorem 5.1. Let G_{A} and G_{B} be groups such that all of the following hold:

- G_{A} is finitely generated;
- G_{B} is a product of LERF groups and is of type $\mathrm{FP}_{2}(R)$ for some ring R;
- there is an isomorphism $\widehat{G_{B}} \rightarrow \widehat{G_{A}}$.

If G_{A} is algebraically semi-fibred, then G_{B} is algebraically fibred.
Proof. The group G_{B} is in $\operatorname{TAP}_{1}(\mathbb{F})$ for every finite field \mathbb{F} by Theorem 3.8 and Proposition 3.12 - we are also using the fact that each of the factors of G_{B} is itself of type $\mathrm{FP}_{2}(R)$, which is easy to see. Now we use Corollary 4.14 and see that G_{B} is algebraically semi-fibred. But the first BNS invariant of LERF groups is symmetric by Remark 3.9. It follows from Meinert's inequality that products of LERF groups also have symmetric first BNS invariant, and hence that G_{B} is algebraically fibred.

The following is restating Theorem C from the introduction.
Theorem 5.2. Let \mathbb{F} be a finite field. Let G_{A} and G_{B} be profinitely isomorphic finite products of limit groups. The group G_{A} is $\mathrm{FP}_{n}(\mathbb{F})$ -semi-fibred if and only if G_{B} is.

Proof. By Theorem 3.13, finite products of limit groups are $\operatorname{TAP}_{\infty}(\mathbb{F})$; they are also of type F, as mentioned before. The result now follows from Corollary 4.13. Indeed, limits groups are cohomologically good by [GJZZ08, Theorem 1.3] and so products of them are cohomologically good by [Lor08, Theorem 2.5].
5.2. Poincaré duality groups. We now turn our attention to $\mathrm{PD}_{3^{-}}$ groups, that is, Poincaré duality groups in dimension 3. For an introduction to this topic, see [Hil20b].

Theorem 5.3. Let G_{A} be a PD_{3}-group in $\mathrm{TAP}_{1}(\mathbb{F})$ for some finite field \mathbb{F}. Let G_{B} be a finitely generated algebraically fibred group. If $\widehat{G_{A}} \cong \widehat{G_{B}}$, then G_{A} is the fundamental group of a closed connected 3-manifold.

Proof. By [Hil20a, Theorem 5] and Proposition 2.6 we have that $\Sigma^{1}\left(G_{A}\right)=$ $-\Sigma^{1}\left(G_{A}\right)$. By Corollary 4.14, G_{A} is algebraically fibred. Hence,

$$
G_{A}=K \rtimes \mathbb{Z}
$$

for some finitely generated subgroup K. It follows from a result of Strebel [Str77] (see [Hil02, Theorem 1.19] for an explanation), that K has cohomological dimension at most 2 and hence is a PD_{2}-group. In particular, by [EM80] (see also [KK21]) the group K is isomorphic to the fundamental group of a closed surface. Since every outer automorphism of K is realised by a mapping class of the underlying surface by the Dehn-Nielsen-Baer theorem, we conclude that G_{A} is the fundamental group of a closed connected 3-manifold.

The following is restating Theorem D from the introduction.
Corollary 5.4. Let G_{A} be a LERF PD_{3}-group. Let G_{B} be the fundamental group of a closed connected hyperbolic 3-manifold. If $\widehat{G_{A}} \cong \widehat{G_{B}}$, then G_{A} is the fundamental group of a closed connected hyperbolic 3manifold.

Proof. By [Hil20a, Theorem 5] and Proposition 2.6, for every finite index subgroup $G_{A}^{\prime} \leqslant G_{A}$ we have that $\Sigma^{1}\left(G_{A}^{\prime}\right)=-\Sigma^{1}\left(G_{A}^{\prime}\right)$. Let H_{B} be a finite index subgroup of G_{B} that is algebraically fibred - the existence of such a subgroup is guaranteed by Agol's theorem [Ago13]. Let H_{A} be the corresponding finite index subgroup of G_{A}; we still have $\widehat{H_{A}} \cong \widehat{H_{B}}$. The group H_{A} is still a PD_{3}-group by [JW72, Theorem 2]. It is immediate that H_{A} is LERF. Since all PD_{3}-groups are of type $\mathrm{FP}(\mathbb{Z})$, we conclude, using Theorem 3.8, that H_{A} is $\operatorname{TAP}_{1}(\mathbb{F})$ for every finite field. Theorem 5.3 now shows that H_{A} is the fundamental group of a connected compact 3-manifold. By [Hil20b, Lemma 8.2], the group G_{A} is also a fundamental group of a connected compact 3-manifold M. The manifold M is hyperbolic by [WZ17].
5.3. RFRS groups and agrarian Betti numbers. The following definition is due to Agol [Ago08] and played a crucial role in solving the Virtual Fibring Conjecture for hyperbolic 3-manifolds.

Definition 5.5. Let G be a group. We say that G is residually finite rationally solvable (RFRS) if
(1) there is a chain of finite index normal subgroups

$$
G=G_{0} \geqslant G_{1} \geqslant G_{2} \geqslant \cdots
$$

of G such that $\bigcap_{\mathbb{N}} G_{i}=\{1\} ;$
(2) $\operatorname{ker}\left(G_{i} \rightarrow H_{1}\left(G_{i} ; \mathbb{Q}\right)\right) \leqslant G_{i+1}$ for $i \geqslant 0$.

Definition 5.6. A group G is indicable if G is trivial or admits an epimorphism to \mathbb{Z}. We say that G is locally indicable if every finitely generated subgroup of G is indicable.

Note that RFRS groups are locally indicable.
Definition 5.7. Let R and \mathcal{D} be skew-fields, let G be a locally indicable group, and let $\psi: R G \rightarrow \mathcal{D}$ be a ring homomorphism. The pair (\mathcal{D}, ψ) is Hughes-free if
(1) \mathcal{D} is generated by $\psi(R G)$ as a skew-field, that is, $\langle\psi(R G)\rangle=\mathcal{D}$;
(2) for every finitely generated subgroup $H \leqslant G$, every normal subgroup $N \triangleleft H$ with $H / N \cong \mathbb{Z}$, and every set of elements $h_{1}, \ldots, h_{n} \in H$ lying in distinct cosets of N, the sum

$$
\langle\psi(R N)\rangle \cdot \psi\left(h_{1}\right)+\cdots+\langle\psi(R N)\rangle \cdot \psi\left(h_{n}\right)
$$

is direct.
By [Hug70], if such a pair (\mathcal{D}, ψ) exists, then \mathcal{D} is unique up to $R G$ algebra isomorphism. In this case we denote \mathcal{D} by $\mathcal{D}_{R G}$.
(Like the property, the Hughes mentioned here and the first author are free of any of relation.)

The following result is due to Jaikin-Zapirain.
Proposition 5.8. [JZ21, Corollary 1.3] If G is a RFRS group and R is a skew-field, then $\mathcal{D}_{R G}$ exists and it is the universal division ring of fractions of $R G$.

Definition 5.9. A group G is agrarian over a ring R if there exists a skew-field \mathcal{D} and a monomorphism $\psi: R G \hookrightarrow \mathcal{D}$ of rings. If G is agrarian over R, then we define the agrarian \mathcal{D}-homology to be

$$
H_{p}^{\mathcal{D}}(G)=\operatorname{Tor}_{p}^{R G}(R, \mathcal{D})
$$

where R is the trivial $R G$-module and \mathcal{D} is viewed as an \mathcal{D} - $R G$ bimodule via the embedding $R G \multimap \mathcal{D}$. Since modules over a skew-field
have a canonical dimension function taking values in $\mathbb{N} \cup\{\infty\}$ we may define

$$
b_{p}^{\mathcal{D}}(G)=\operatorname{dim}_{\mathcal{D}} H_{p}^{\mathcal{D}}(G)
$$

When G is RFRS, by the previous proposition, we have (up to $R G$ isomorphism) a canonical choice $\mathcal{D}_{R G}$ of \mathcal{D} for each skew-field R.

Theorem 5.10. Let R be a skew-field and let $n \in \mathbb{N}$. Let G be a virtually $R F R S$ group of type $\mathrm{FP}_{n}(R)$. The following are equivalent:
(1) $b_{p}^{\mathcal{D}_{R G}}(G)=0$ for all $p \leqslant n$;
(2) G is virtually $\mathrm{FP}_{n}(R)$-fibred;
(3) G is virtually $\mathrm{FP}_{n}(R)$-semi-fibred.

Proof. The equivalence of the first two items is [Fis21, Theorem 6.6]. The implication $(2) \Rightarrow(3)$ is clear, so let us prove $(3) \Rightarrow(1)$.

By [Fis21, Lemma 6.3], the numbers $b_{p}^{\mathcal{D}_{R G}}(G)$ scale with the index when passing to finite-index subgroups. Thus, we may assume without loss of generality that G itself is $\mathrm{FP}_{n}(R)$-semi-fibred. In particular, let $\varphi \in \Sigma^{n}(G ; R)$ witness this semi-fibration. By [Fis21, Lemma 5.3], we have

$$
\operatorname{Tor}_{i}^{R G}(R, \operatorname{Nov}(R G, \varphi))=0
$$

for all $0 \leqslant i \leqslant n$.
Let \mathbb{K} be the skew-field of twisted Laurent series with variable t and coefficients in the skew-field $\mathcal{D}_{R(\operatorname{ker} \varphi)}$; the variable t is an element of G with $\varphi(t)=1$, a generator of \mathbb{Z}, and the twisting extends the conjugation action of t on $\operatorname{ker} \varphi$ to $\mathcal{D}_{R(\operatorname{ker} \varphi)}$ - such an extension is possible since $\mathcal{D}_{R(\operatorname{ker} \varphi)}$ is Hughes free, see [JZ21] for an explanation of this fact. The skew-field \mathbb{K} contains $\operatorname{Nov}(R G, \varphi)$, since the latter can also be viewed as a ring of twisted Laurent series in t with coefficients in $R(\operatorname{ker} \varphi)$, with the twisting described above. Hence, using chain contractions, we see that

$$
\operatorname{Tor}_{i}^{R G}(R, \mathbb{K})=0
$$

for all $0 \leqslant i \leqslant n$.
Now, Hughes-freeness of $\mathcal{D}_{R G}$ tells us that it is isomorphic as an $R G$ module to the division closure of the twisted Laurent polynomial ring $R(\operatorname{ker} \varphi)\left[t^{ \pm 1}\right]$ in \mathbb{K}, where we identify the rings $R(\operatorname{ker} \varphi)\left[t^{ \pm 1}\right]$ and $R G$ using the group isomorphism $(\operatorname{ker} \varphi) \rtimes \mathbb{Z}=G$. This endows $R(\operatorname{ker} \varphi)\left[t^{ \pm 1}\right]$
with an $R G$-bimodule structure. Hence, we may view $\mathcal{D}_{R G}$ as a subring of \mathbb{K}, and view \mathbb{K} as a $\mathcal{D}_{R G}$-module. Since both rings are skew-fields, the module is flat. We conclude that

$$
\operatorname{Tor}_{i}^{R G}\left(R, \mathcal{D}_{R G}\right)=0
$$

for all $0 \leqslant i \leqslant n$, as claimed.

Theorem 5.11. Let $n \in \mathbb{N} \cup\{\infty\}$, and let \mathbb{F} be a finite field. Let G_{A} and G_{B} be n-good virtually RFRS groups of type $\mathrm{FP}_{n}(\mathbb{F})$ and suppose that $\widehat{G}_{A} \cong \widehat{G}_{B}$. Suppose that every finite index subgroup of G_{A} and G_{B} is in $\operatorname{TAP}_{n}(\mathbb{F})$. We have

$$
\min \left\{j \leqslant n \mid b_{j}^{\mathcal{D}_{\mathbb{F} G_{A}}}\left(G_{A}\right) \neq 0\right\}=\min \left\{j \leqslant n \mid b_{j}^{\mathcal{D}_{\mathbb{F} G_{B}}}\left(G_{B}\right) \neq 0\right\}
$$

where we take the minimum of the empty set to be ∞.

Proof. We first assume that $n \in \mathbb{N}$. Since we are concerned with virtual properties we may assume without loss of generality that G_{A} and G_{B} are RFRS, n-good, of type $\mathrm{FP}_{n}(\mathbb{Z})$, and all finite-index subgroups of G_{A} and G_{B} are in $\operatorname{TAP}_{n}(\mathbb{F})$; we have used Proposition 4.4 here.

Suppose that $b_{j}^{\mathcal{D}_{\mathbb{R} G_{A}}}\left(G_{A}\right)=0$ for $j \leqslant m$ for some $m \leqslant n$. The group G_{A} is virtually $\mathrm{FP}_{m}(\mathbb{F})$-fibred by Theorem 5.10. We may pass to further finite index subgroups of G_{A} and G_{B} and assume that G_{A} is $\mathrm{FP}_{m}(\mathbb{F})$-fibred. By Corollary 4.13, the group G_{B} is $\mathrm{FP}_{m}(\mathbb{F})$-semi-fibred, and hence

$$
b_{j}^{\mathcal{D}_{\mathrm{FG}}^{B}}{ }\left(G_{B}\right)=0
$$

for $j \leqslant m$ by Theorem 5.10. This shows an inequality between the minima in the statement. The argument is symmetric in G_{A} and G_{B}, and hence we also obtain the converse inequality.

Now suppose that $n=\infty$. If both of the minima in the statement are ∞, then we are done. Without loss of generality let us suppose that the left-hand side one is equal to $m<\infty$. We observe that G_{A} and G_{B} satisfy the hypothesis of our theorem for $n=m$, and hence the right-hand side minimum is also equal to m.

Observe that the above result applies in particular to finite products of RFRS limit groups.

References

[Ago08] Ian Agol. Criteria for virtual fibering. J. Topol., 1(2):269-284, 2008.
[Ago13] Ian Agol. The virtual Haken conjecture. Doc. Math., 18:1045-1087, 2013. With an appendix by Agol, Daniel Groves, and Jason Manning.
[BF09] Mladen Bestvina and Mark Feighn. Notes on Sela's work: limit groups and Makanin-Razborov diagrams. In Geometric and cohomological methods in group theory, volume 358 of London Math. Soc. Lecture Note Ser., pages 1-29. Cambridge Univ. Press, Cambridge, 2009.
[BG10] Robert Bieri and Ross Geoghegan. Sigma invariants of direct products of groups. Groups Geom. Dyn., 4(2):251-261, 2010.
[BHMS09] Martin R. Bridson, James Howie, Charles F. Miller, III, and Hamish Short. Subgroups of direct products of limit groups. Ann. of Math. (2), 170(3):1447-1467, 2009.
[BL20] Thomas Brown and Ian J Leary. Groups of type FP via graphical small cancellation, 2020.
[BMRS20] M. R. Bridson, D. B. McReynolds, A. W. Reid, and R. Spitler. Absolute profinite rigidity and hyperbolic geometry. Ann. of Math. (2), 192(3):679-719, 2020.
[BNS87] Robert Bieri, Walter D. Neumann, and Ralph Strebel. A geometric invariant of discrete groups. Invent. Math., 90(3):451-477, 1987.
[BR88] Robert Bieri and Burkhardt Renz. Valuations on free resolutions and higher geometric invariants of groups. Comment. Math. Helv., 63(3):464-497, 1988.
[Bro87] Kenneth S. Brown. Trees, valuations, and the Bieri-Neumann-Strebel invariant. Invent. Math., 90(3):479-504, 1987.
[Bro94] Kenneth S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original.
[BS78] Robert Bieri and Ralph Strebel. Almost finitely presented soluble groups. Comment. Math. Helv., 53(2):258-278, 1978.
[CR12] Adam Clay and Dale Rolfsen. Ordered groups, eigenvalues, knots, surgery and L-spaces. Math. Proc. Camb. Philos. Soc., 152(1):115-129, 2012.
[EM80] Beno Eckmann and Heinz Müller. Poincaré duality groups of dimension two. Comment. Math. Helv., 55(4):510-520, 1980.
[Far72] F. T. Farrell. The obstruction to fibering a manifold over a circle. Indiana University Mathematics Journal, 21:315-346, 1971/72.
[Fis21] Sam P. Fisher. Improved algebraic fibrings, 2021.
[Fis22] Sam P. Fisher. Algebraic fibrings of hyperbolic manifolds, 2022.
[FK06] Stefan Friedl and Taehee Kim. The Thurston norm, fibered manifolds and twisted Alexander polynomials. Topology, 45(6):929-953, 2006.
[FL17] Stefan Friedl and Wolfgang Lück. Universal L^{2}-torsion, polytopes and applications to 3-manifolds. Proc. Lond. Math. Soc. (3), 114(6):11141151, 2017.
[FT20] Stefan Friedl and Stephan Tillmann. Two-generator one-relator groups and marked polytopes. Ann. Inst. Fourier (Grenoble), 70(2):831-879, 2020.
[FV08] Stefan Friedl and Stefano Vidussi. Symplectic $S^{1} \times N^{3}$, subgroup separability, and vanishing Thurston norm. J. Amer. Math. Soc., 21(2):597610, 2008.
[FV11a] Stefan Friedl and Stefano Vidussi. A survey of twisted Alexander polynomials. In The mathematics of knots, volume 1 of Contrib. Math. Comput. Sci., pages 45-94. Springer, Heidelberg, 2011.
[FV11b] Stefan Friedl and Stefano Vidussi. Twisted Alexander polynomials detect fibered 3-manifolds. Ann. of Math. (2), 173(3):1587-1643, 2011.
[Geh98] Ralf Gehrke. The higher geometric invariants for groups with sufficient commutativity. Commun. Algebra, 26(4):1097-1115, 1998.
[GJZZ08] F. Grunewald, A. Jaikin-Zapirain, and P. A. Zalesskii. Cohomological goodness and the profinite completion of Bianchi groups. Duke Math. J., 144(1):53-72, 2008.
[GKM05] Hiroshi Goda, Teruaki Kitano, and Takayuki Morifuji. Reidemeister torsion, twisted Alexander polynomial and fibered knots. Comment. Math. Helv., 80(1):51-61, 2005.
[Hil02] J. A. Hillman. Four-manifolds, geometries and knots, volume 5 of Geometry \& Topology Monographs. Geometry \& Topology Publications, Coventry, 2002.
[Hil20a] Jonathan A. Hillman. $P D_{3}$-groups and HNN extensions, 2020.
[Hil20b] Jonathan A. Hillman. Poincaré duality in dimension 3, volume 3 of The Open Book Series. Mathematical Sciences Publishers, Berkeley, CA, 2020.
[Hug70] Ian Hughes. Division rings of fractions for group rings. Comm. Pure Appl. Math., 23:181-188, 1970.
[Hug22] Sam Hughes. Irreducible lattices fibring over the circle, 2022.
[IMM20] Giovanni Italiano, Bruno Martelli, and Matteo Migliorini. Hyperbolic manifolds that fiber algebraically up to dimension 8, 2020.
[IMM21] Giovanni Italiano, Bruno Martelli, and Matteo Migliorini. Hyperbolic 5-manifolds that fiber over $S^{1}, 2021$.
[IMP21] Claudio Llosa Isenrich, Bruno Martelli, and Pierre Py. Hyperbolic groups containing subgroups of type \mathcal{F}_{3} not $\mathcal{F}_{4}, 2021$.
[IP22] Claudio Llosa Isenrich and Pierre Py. Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices, 2022.
[JNW21] Kasia Jankiewicz, Sergey Norin, and Daniel T. Wise. Virtually fibering right-angled Coxeter groups. J. Inst. Math. Jussieu, 20(3):957-987, 2021.
[JW72] F. E. A. Johnson and C. T. C. Wall. On groups satisfying Poincaré duality. Ann. of Math. (2), 96:592-598, 1972.
[JZ20] Andrei Jaikin-Zapirain. Recognition of being fibered for compact 3-manifolds. Geom. Topol., 24(1):409-420, mar 2020.
[JZ21] Andrei Jaikin-Zapirain. The universality of Hughes-free division rings. Selecta Math. (N.S.), 27(4):Paper No. 74, 33, 2021.
[Kie20a] Dawid Kielak. The Bieri-Neumann-Strebel invariants via Newton polytopes. Invent. Math., 219(3):1009-1068, 2020.
[Kie20b] Dawid Kielak. Residually finite rationally solvable groups and virtual fibring. J. Amer. Math. Soc., 33(2):451-486, 2020.
[KK21] Dawid Kielak and Peter Kropholler. Isoperimetric inequalities for Poincaré duality groups. Proc. Amer. Math. Soc., 149(11):4685-4698, 2021.
[KL99] Paul Kirk and Charles Livingston. Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants. Topology, 38(3):635661, 1999.
[KLS20] Robert P. Kropholler, Ian J. Leary, and Ignat Soroko. Uncountably many quasi-isometry classes of groups of type FP. Amer. J. Math., 142(6):1931-1944, 2020.
[Kro18] Robert Kropholler. Almost hyperbolic groups with almost finitely presented subgroups, 2018.
[KZ08] Dessislava H. Kochloukova and Pavel A. Zalesskii. Profinite and pro-p completions of Poincaré duality groups of dimension 3. Trans. Amer. Math. Soc., 360(4):1927-1949, 2008.
[Lea18a] Ian J. Leary. Subgroups of almost finitely presented groups. Math. Ann., 372(3-4):1383-1391, 2018.
[Lea18b] Ian J. Leary. Uncountably many groups of type FP. Proc. Lond. Math. Soc. (3), 117(2):246-276, 2018.
[Liu20] Yi Liu. Finite-volume hyperbolic 3-manifolds are almost determined by their finite quotient groups, 2020.
[Lor08] Karl Lorensen. Groups with the same cohomology as their profinite completions. J. Algebra, 320(4):1704-1722, 2008.
[Mil68] John W. Milnor. Infinite cyclic coverings. In Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), pages 115-133. Prindle, Weber \& Schmidt, Boston, Mass., 1968.
[NS07a] Nikolay Nikolov and Dan Segal. On finitely generated profinite groups. I. Strong completeness and uniform bounds. Ann. of Math. (2), 165(1):171-238, 2007.
[NS07b] Nikolay Nikolov and Dan Segal. On finitely generated profinite groups. II. Products in quasisimple groups. Ann. of Math. (2), 165(1):239-273, 2007.
[RZ10] Luis Ribes and Pavel Zalesskii. Profinite Groups. Springer-Verlag GmbH, March 2010.
[Sch08] Dirk Schütz. On the direct product conjecture for sigma invariants. Bull. Lond. Math. Soc., 40(4):675-684, 2008.
[Sco73] G. P. Scott. Compact submanifolds of 3-manifolds. Journal of the London Mathematical Society, s2-7(2):246-250, nov 1973.
[Str77] R. Strebel. A remark on subgroups of infinite index in Poincaré duality groups. Comment. Math. Helv., 52(3):317-324, 1977.
[Tur01] Vladimir Turaev. Introduction to combinatorial torsions. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2001. Notes taken by Felix Schlenk.
[Wei94] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.
[Wil08] Henry Wilton. Hall's theorem for limit groups. Geometric and Functional Analysis, 18(1):271-303, mar 2008.
[Wis12] Daniel T. Wise. From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, volume 117 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2012.
[WZ10] Henry Wilton and Pavel Zalesskii. Profinite properties of graph manifolds. Geom. Dedicata, 147:29-45, 2010.
[WZ17] Henry Wilton and Pavel Zalesskii. Distinguishing geometries using finite quotients. Geometry 8 Topology, 21(1):345-384, feb 2017.

