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Abstract. We introduce the classes of TAP groups, in which
various types of algebraic fibring are detected by the non-vanishing
of twisted Alexander polynomials. We show that finitely presented
LERF groups lie in the class TAP1(R) for every integral domain R,
and deduce that algebraic fibring is a profinite property for such
groups. We offer stronger results for algebraic fibring of products of
limit groups, as well as applications to profinite rigidity of Poincaré
duality groups in dimension 3 and RFRS groups.

1. Introduction

Our understanding of profinite properties of fundamental groups of
compact 3-manifolds has seen a lot of recent progress. One partic-
ularly noteworthy statement is the theorem of Bridson–McReynolds–
Reid–Spitler [BMRS20] saying that the fundamental groups of some
hyperbolic 3-manifolds (including the Weeks manifold) are profinitely
rigid in the absolute sense, that is, each is distinguished from every
other finitely generated residually finite group by its set of finite quo-
tients.

Restricting attention solely to 3-manifold groups, we have two re-
markable results: First, Jaikin-Zapirain [JZ20] showed that if the profi-
nite completion of the fundamental group of a compact orientable as-
pherical 3-manifold is isomorphic to that of π1(Σ)⋊Z with Σ a compact
orientable surface, then the manifold fibres over the circle. Second,
Liu [Liu20] proved that there are at most finitely many finite-volume
hyperbolic 3-manifolds with isomorphic profinite completions of their
fundamental groups. Both theorems rely in a crucial way on the fol-
lowing result of Friedl–Vidussi.
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Theorem 1.1 ([FV11b, Theorem 1.1]). Let R be a Noetherian unique
factorisation domain (UFD). Let M be a compact, orientable, con-
nected 3-manifold with empty or toroidal boundary. An epimorphism
φ : π1(M)→ Z is induced by a fibration M → S1 if and only if for ev-
ery epimorphism α : π1(M) ↠ Q with finite image the associated first
twisted Alexander polynomial ∆φ,α

1,R over R is non-zero.

The result relies in a key way on a special case proved by Friedl–
Vidussi in an earlier work [FV08], where the group π1(M) is addi-
tionally assumed to be locally extended residually finite (LERF, or
subgroup separable). Once this is established, the above result follows
by a series of arguments based on the work of Wilton–Zalesskii [WZ10]
and Wise [Wis12].

The interest in fibring has surpassed its roots in manifold topology
finding numerous applications within the realm of geometric group the-
ory, for example in the construction of subgroups of hyperbolic groups
with exotic finiteness properties [JNW21, IMM20, IMM21, IMP21,
Fis22, IP22], exotic higher rank phenomena [Kro18, Hug22], the exis-
tence of uncountably many groups of type FP [Lea18b, Lea18a, KLS20,
BL20], a connection between fibring of RFRS groups and ℓ2-Betti num-
bers [Kie20b, Fis21], and the construction of analogues of the Thurston
polytope for various classes of groups [FL17, FT20, Kie20a].

The version of Theorem 1.1 for LERF groups π1(M) is the starting
point for our investigations. First, we introduce the notion of TAP
groups (standing for Twisted Alexander Polynomial), that is groups
in which the twisted Alexander polynomials control algebraic fibring,
see Definition 3.1. We then show that in fact all finitely presented
LERF groups are TAP – see Theorem 3.8 for the precise (more general)
statement. This amounts to showing the following.

Theorem A. Let G be a finitely presented LERF group and let R be
an integral domain. An epimorphism φ : G → Z is algebraically fibred
if and only if for every epimorphism α : G ↠ Q with finite image the
associated first twisted Alexander polynomial over R is non-zero.

Here, a group is algebraically fibred if it admits an epimorphism to Z
with a finitely generated kernel. Also, we are talking about vanishing
of Alexander polynomials over arbitrary integral domains, which might
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seem worrying, as the definition of the polynomial requires R to be a
UFD. It does however make sense to talk about vanishing even when
the polynomial is itself not well-defined, see Definition 2.8.

We use the above to show that for finitely presented LERF groups,
algebraic fibring is a profinite property.

Theorem B. Let GA and GB be finitely presented LERF groups with
isomorphic profinite completions. The group GA is algebraically fibred
if and only if GB is.

Again, this is really a corollary of the more general Corollary 4.14
combined with Remark 3.9.

An even more general (and more technical) result is given by The-
orem 4.12, where we deal with algebraic semi-fibring of higher degree
(see Definition 2.4). It allows us to show the following.

Theorem C. Let F be a finite field. Let GA and GB be profinitely
isomorphic finite products of limit groups. The group GA is FPn(F)-
semi-fibred if and only if GB is.

Theorem B finds another application in the study of profinite rigidity
of Poincaré duality groups.

Theorem D. Let GA be a LERF PD3-group. Let GB be the funda-
mental group of a closed connected hyperbolic 3-manifold. If ”GA

∼=”GB,
then GA is the fundamental group of a closed connected hyperbolic 3-
manifold.

Finally, Theorem 5.11 implies that for a cohomologically good RFRS
group G of type F, the profinite completion of G detects the degree of
acyclicity of G with coefficients in the skew-field DFG introduced by
Jaikin-Zapirain; here F is a finite field. The skew-field DFG can be
thought of as an analogue of the Linnell skew-field in positive charac-
teristic, and hence can be used to define a positive-characteristic version
of ℓ2-homology.

Acknowledgements. This work has received funding from the Eu-
ropean Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (Grant agreement No.
850930). The first author thanks Martin Bridson for a helpful conver-
sation.
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2. Preliminaries

Throughout, all rings are associative and unital, and ring morphisms
preserve units. All modules are left-modules, unless stated otherwise.
In particular, resolutions will be left-resolutions, and hence coefficients
in homology will be right-modules (and quite often bimodules).

2.1. Bieri–Neumann–Strebel invariants. Let R be a ring, G a
group, and φ : G→ R a non-trivial homomorphism. Observe that

Gφ = {g ∈ G | ϕ(g) ⩾ 0}

is a monoid.

Definition 2.1 (Homological finiteness properties). We say that a
monoid M is of type FPn(R) if the trivial M -module R admits a reso-
lution C• by projective RM -modules in which Ci is finitely generated
for all i ⩽ n.

Since every group is a monoid, the definition readily applies to groups
as well.

The definition above is standard; we will sporadically mention also
other standard finiteness properties, like type FP(R) and F. Note that
G is of type FP1(R) if and only if it is finitely generated, and if it is
finitely presented then it is of type FP2(R) for every ring R.

Definition 2.2. We say that φ lies in the nth BNS invariant over R,
and write φ ∈ Σn(G;R), if Gφ is of type FPn(R).

We set Σ∞(G;R) =
⋂
nΣ

n(G;R).

The first BNS invariant Σ1(G;R) = Σ1(G) is independent of R. It
was introduced by Bieri–Neumann–Strebel in [BNS87]. The higher
(homological) invariants defined above were introduced by Bieri–Renz
[BR88] for R = Z. The definition for general R appears for example in
the work of Fisher [Fis21]. Fisher’s paper also contains the following
straight-forward generalisation of the work of Bieri–Renz.

Theorem 2.3 ([Fis21, Theorem 6.5], [BR88, Theorem 5.1]). Suppose
that φ : G→ Z is a non-trivial homomorphism. The kernel kerφ is of
type FPn(R) if and only if {φ,−φ} ⊆ Σn(G;R).
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Definition 2.4. A non-trivial character φ : G→ Z is FPn(R)-fibred if
kerφ is of type FPn(R). An FP1(R)-fibred character will be also called
algebraically fibred ; this last notion is independent of R.

Similarly, an integral character in Σn(G;R) ∪ −Σn(G;R) will be
called FPn(R)-semi-fibred, and a character in Σ1(G) ∪ −Σ1(G) will be
called algebraically semi-fibred.

A group G will be called algebraically fibred if it admits an alge-
braically fibred character.

The invariant Σ1(G) admits a number of alternative definitions. Let
us now discuss one of them.

Definition 2.5. Let B be a group, let A,C ⩽ B, and suppose that
there exists an isomorphism ι : A→ C. The HNN extension B∗ι with
base group B and associated subgroups A and C is defined by

B∗ι = B ∗ ⟨t⟩/⟨⟨{t−1at = ι(a) : a ∈ A}⟩⟩.

The HNN extension is ascending if C = B and descending if A = B.
If it is ascending but not descending, it is properly ascending.

Proposition 2.6 ([Bro87]). Let G be a finitely generated group. An
epimorphism φ : G → Z lies in Σ1(G) if and only if there exists an
isomorphism ρ : G → B∗ι where B is finitely generated, the HNN ex-
tension B∗ι is descending, and φ is equal to the composition of ρ with
the quotient map B∗ι → B ∗ι /⟨⟨B⟩⟩ = ⟨t⟩ = Z.

An observant reader will notice that Brown’s original statement uses
ascending, rather than descending HNN extensions. This has to do
with left/right conventions for modules used in the definition of Σ1(G).

2.2. Twisted Alexander polynomials. The following definitions are
taken from Friedl and Vidussi’s survey [FV11a]. However, we have
taken liberty to phrase them in terms of group homology as opposed
to the homology of a topological space with twisted coefficients.

Let R be an integral domain and R[t±1] the ring of Laurent polyno-
mials over R in an indeterminate t. Let α : G↠ Q be a finite quotient
of G. This induces an RG-bimodule structure on the free R-module
RQ induced by left and right multiplication precomposed with α – an-
other way to say it is that RQ is a quotient ring of RG, and this way
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becomes an RG-bimodule. Let φ ∈ H1(G;Z) be a cohomology class
considered as a homomorphism φ : G→ Z. Consider RQ[t±1] equipped
with the RG-bimodule structure given by

g.x = tφ(g)α(g)x, x.g = xtφ(g)α(g)

for g ∈ G, x ∈ RQ[t±1]. Note that RQ[t±1] = R(Z×Q), and the action
is multiplication precomposed with φ× α, as above.

For n ∈ Z, we define the nth twisted (homological) Alexander module
of φ and α to be Hn(G;RQ[t

±1]), where RQ[t±1] has the non-trivial
module structure described above. Observe that Hn(G;RQ[t

±1]) also
has the structure of a left R[t±1]-module. We will denote the module by
Hφ,α
n,R. If G is of type FPn(R), then the nth twisted Alexander module

is a finitely generated R[t±1]-module. Moreover, it is zero whenever
n < 0 or n is greater than the cohomological dimension of G over R.

More generally, given two group homomorphisms α : G → Q and
φ : G → Z, we will sometimes use Hφ,α

n,R to denote Hn(G;R(Z × Q))

with the RG-bimodule structure on R(Z × Q) being multiplication
precomposed with φ× α.

For any integral domain S and any finitely generated S-module M ,
define the rank of M to be rkSM = dimFrac(S) Frac(S) ⊗S M , where
Frac(S) denotes the classical field of fractions (that is, the Ore local-
isation) of S. When S is additionally a UFD, the order of M is the
greatest common divisor of all maximal minors in a presentation ma-
trix of M with finitely many columns. The order of M is well-defined
up to a unit of S and depends only on the isomorphism type of M .

Suppose that G is of type FPn(R), with R being a UFD. The nth
twisted Alexander polynomial ∆φ,α

n,R(t) over R with respect to φ and α

is defined to be the order of the nth twisted (homological) Alexander
module of φ and α, treated as a left R[t±1]-module. Note that R[t±1]

is a UFD since R is.
Since we will be concerned with the vanishing of ∆φ,α

n,R(t), let us
record a number of equivalent statements. From now on we drop the
requirement on R being a UFD.

Lemma 2.7. Let R be an integral domain, and let F = Frac(R). The
following are equivalent:

(1) rkR[t±1]H
φ,α
n,R = 0;
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(2) Hφ,α
n,R is a torsion R[t±1]-module.

(3) Hφ,α
n,F is a torsion F [t±1]-module.

(4) Hφ,α
n,F is a finitely generated F -module.

If additionally R is a UFD, then these are equivalent to

(5) ∆φ,α
n,R(t) ̸= 0.

Sketch proof. We offer only a sketch, since these equivalences are stan-
dard.

Items (2) and (3) are equivalent since F is a flat R-module. Items
(3), (4), and (1) are equivalent thanks to the classification theorem for
finitely generated modules over a PID, since F [t±1] is a PID; one also
needs to note that Frac(R[t±1]) = Frac(F [t±1]).

The equivalence of (5) with the other ones is explained in [Tur01,
Remark 4.5.2]. □

Definition 2.8. Let R be an integral domain, φ : G → Z be a homo-
morphism, and α : G ↠ Q be a homomorphism with finite image. We
say that φ has non-vanishing nth Alexander polynomial twisted by α

if rkR[t±1]H
φ,α
n,R = 0. If this holds for α = tr: G → {1}, we say that

the nth Alexander polynomial in dimension n does not vanish; if the
statement holds for all choices of α, we say that φ has non-vanishing
nth twisted Alexander polynomials.

Lemma 2.7 shows that in this definition we may replaceR by Frac(R).

Lemma 2.9. The nth Alexander polynomial of φ twisted by α van-
ishes if and only if the nth (untwisted) Alexander polynomial of φ|kerα
vanishes. Moreover, if R is a UFD then the corresponding twisted
Alexander polynomials are equal.

Proof. We need to compare the R[t±1]-modules Hn(G;RQ[t
±1]) and

Hn(kerα;R[t
±1]). Shapiro’s lemma shows that these modules are iso-

morphic, since RQ[t±1] is isomorphic to the induced right RG-module
of the right R(kerα)-module R[t±1]. □

The following result is well known for 3-manifolds and has appeared
in several places [KL99, CR12, GKM05, FK06]; in fact, it appears to
date back to work of Milnor [Mil68]. We include a proof in the group
theoretic setting for completeness.
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Proposition 2.10. Let R be an integral domain. Let G be a group
of type FPn(R) and let φ : G → Z be a non-trivial character. If φ is
FPn(R)-fibred, then its kth twisted Alexander polynomials do not vanish
for k ⩽ n.

Proof. Since φ is FPn(R)-fibred, G splits as a semi-direct product A⋊Z
with A of type FPn(R). Now, let α : G ↠ Q be an epimorphism of
G onto a finite group and let RQ[t±1] be the right RG-module with
action given by φ and α. Applying [Bro94, III.6.2 and III.8.2] yields
that H•(G;RQ[t

±1]) ∼= H•(A;RQ) as R-modules. Now, since A is of
type FPn(R) and Q is finite it follows that Hk(A;RQ) for k ⩽ n is a
finitely generated R-module. Such a module cannot contain a copy of
R[t±1], and therefore Hk(G;RQ[t

±1]) is a torsion R[t±1]-module. We
are done by Lemma 2.7. □

Proposition 2.11. Let G be a group of type FPn(R), and let φ : G→ Z
be an FPn(R)-semi-fibred character. The kth twisted Alexander poly-
nomials of φ are non-zero for all k ⩽ n.

Proof. Since G is of type FPn(R), we find a projective resolution C•

of the trivial G-module R with Ck a finitely generated RG-module
for every k ⩽ n. We replace φ by −φ if needed, and assume that
φ ∈ Σn(G;R); note that this replacement does not affect the vanishing
of twisted Alexander polynomials.

Using Fisher’s version of Sikorav’s theorem [Fis21, Theorem 5.3], we
find a partial chain contraction for C• over the Novikov ring Nov(RG,φ)
in the following sense: Denote the differentials of C• by ∂i : Ci → Ci−1.
We find Nov(RG,φ)-module morphisms

Ai : Nov(RG,φ)⊗RG Ci → Nov(RG,φ)⊗RG Ci+1

such that for every i ⩽ n we have Ai−1∂
′
i + ∂′i+1Ai = id where ∂′i =

idNov(RG,φ)⊗RG∂i, and A−1 = 0, ∂′−1 = 0. Here the Novikov ring
Nov(RG,φ) is the ring of twisted Laurent power series with coeffi-
cients in R(kerφ) and with variable t ∈ G with φ(t) = 1, where the
twisting is given by the conjugation action of t on kerφ; multiplication
in Nov(RG,φ) induces a right RG-module structure on Nov(RG,φ).
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Now let α : G↠ Q be an epimorphism with Q finite. Dividing G by
the normal subgroup K = kerα ∩ kerφ induces a ring morphism

β : Nov(RG,φ)→ Nov(R(G/K), ψ)

where ψ : G/K → Z is induced by φ. Applying β to the entries of the
matrices Ai shows that

Hi(G; Nov(R(G/K), ψ)) = 0

for all i ⩽ n.
The ring Nov(R(G/K), ψ) is isomorphic to

⊕
QNov(R(kerα/K), ψ)

as an R(kerα/K)-module, and hence also as an R(kerα)-module, and
so

Hi

(
kerα; Nov(R(kerα/K), ψ)

)
= 0

for all i ⩽ n. Arguing with chain contractions as before, we see that

Hi

(
kerα; Nov(Frac(R)(kerα/K), ψ)

)
= 0

for all i ⩽ n.
Now, kerα/K ∼= Z, and therefore Nov(Frac(R)(kerα/K), ψ)) is

the field of Laurent power series in a single variable t and coeffi-
cients in Frac(R), where t ∈ kerα is mapped by ψ to a generator
of Z. This field contains the field R(t) of rational functions in a sin-
gle variable and coefficients in R in the obvious way. Since R(t) is
a right R(kerα)-submodule of Nov(Frac(R)(kerα/K), ψ)), and since
Nov(Frac(R)(kerα/K), ψ)) is a flat R(t)-module as both are skew-
fields, we conclude that

0 = Hi(kerα;R(t)).

Now, using flatness of localisations, we obtain

Hi(kerα;R(t)) = Hi(kerα;R[t
±1])⊗R[t±1] R(t)

and therefore Hi(kerα;R[t
±1]) is a torsion R[t±1]-module. We are now

done thanks to Lemmata 2.7 and 2.9. □

Example 2.12. The Baumslag–Solitar group

BS(1, n) = ⟨a, t | tat−1 = an⟩
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has H1(G;R) ∼= R with basis given by the character

φ : BS(1, n) ↠ ⟨t⟩ ∼= Z

killing a. The BNS invariant Σ1(BS(1, n)) consists only of the ray
{λφ | λ ∈ (0,∞)}. It follows that for every integral domainR and every
finite quotient α : BS(1, n) ↠ Q, the twisted Alexander polynomials
do not vanish. (In fact, the polynomials can be computed by hand
rather easily.) Note that BS(1, n) splits as Z[1/n]⋊Z, where Z acts as
multiplication by n, so ker(φ) is not finitely generated.

3. TAP groups

3.1. The definition.

Definition 3.1. Let R be a integral domain. We say that a group G of
type FPn(R) is in the class TAPn(R) if for every non-trivial character
φ ∈ H1(G;Z) the following property holds:

φ is FPn(R)-semi-fibred if and only if for each i ⩽ n its
twisted ith Alexander polynomials do not vanish.

We allow n =∞ in the above definition.
The definition is best motivated and explained by the following slo-

gan: “A group is in TAPn(R) if and only if twisted Alexander polyno-
mials detect algebraic semi-fibring over R up to dimension n”.

Note that in view of Example 2.12 it is more natural to use semi-
fibring rather than fibring in the definition above.

Example 3.2. Theorem 1.1 by Friedl–Vidussi shows that fundamen-
tal groups of compact, orientable, connected 3-manifolds with empty
or toroidal boundary are in TAP1(R), and hence in TAP∞(R), since
the first BNS invariants of compact 3-manifold groups are symmetric
[BNS87, Corollary F], and since finitely generated fundamental groups
of 3-manifolds are of type F∞, and therefore FP∞(R) over every R –
this follows from Scott’s compact core theorem [Sco73].

Example 3.3. A non-example is given by G = S ≀ Z where S is
an infinite simple group. Note that such a group has an obvious
map φ : G ↠ Z and this map is a basis for H1(G;R) ∼= R. The
group G admits an automorphism that acts as on H1(G;R) as minus
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the identity, and hence the BNS invariants of G must be symmet-
ric. Therefore Σ1(G;R) is empty since kerφ =

⊕
Z S is not finitely

generated. Now, every finite quotient of G is cyclic and the corre-
sponding kernel is isomorphic to Sn ≀ Z for some n; the Alexander
polynomial of such a group is equal to 1, since the relevant R-module
is H1(S

n ≀Z;R[t±1]) ∼= H1(
⊕

Z S
n;R) = 0. This shows that G is not in

TAP1(R) for any R.

Example 3.4. Another non-example is provided by every group that
admits a character that is FP2(Q)-semi-fibred without being FP2(Z)-
semi-fibred. Such a group cannot be in TAP2(Z), since if it were then
the character would have non-vanishing twisted second Alexander poly-
nomials over Q by Proposition 2.11, and hence over Z by Lemma 2.7,
and then TAP2(Z) would show that the character is FP2(Z)-semi-fibred.
An explicit example of a group satisfying the requirement is every
RAAG based on a triangulation of the real projective plane; the char-
acter will then be the Bestvina–Brady character.

We will be primarily interested in profinite aspects of TAP groups,
but the property has also other uses.

Italiano–Martelli–Migliorini in [IMM20] introduced a finite-volume
hyperbolic 7-manifold whose fundamental group maps onto Z with
finitely presented kernel. Fisher [Fis22] showed that by passing to a
suitable finite cover, one obtains a finite-volume hyperbolic 7-manifold
M with G = π1(M) and an epimorphism φ : G → Z with kernel that
is finitely presented and of type FP(Q).

Suppose that G lies in TAP7(Z) and that

Σ7(G;Z) = −Σ7(G;Z).

Since φ ∈ Σ7(π1(M);Q), we see that the twisted Alexander polyno-
mials of M over Q do not vanish in dimensions 1 to 7. This means
that the polynomials over Z do not vanish either, and since G is in
TAP7(Z) we conclude that φ ∈ Σ7(π1(M);Z). Since the BNS invariant
is also assumed to be symmetric, kerφ is finitely presented and of type
FP7(Z), and hence is of type F. If one now had a version of Farrell’s
theorem [Far72] for manifolds with boundary, one could conclude that
M fibres over the circle.
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3.2. Almost finitely presented LERF groups are TAP1(R). Now
that we have defined TAP, let us introduce the class of groups whose
TAPness we want to establish.

Definition 3.5. Let G be a group. A subgroup A ⩽ G is separable if
for every g ∈ G ∖ A there exists an epimorphism α : G ↠ Q with Q

finite such that
α(g) ̸∈ α(A).

A group G is LERF (or locally extended residually finite, or subgroup
separable) if every finitely generated subgroup is separable.

We will need some standard terminology related to graph-of-groups
decompositions.

Definition 3.6. We say that a group G splits over a subgroup A if G
decomposes as a reduced graph of groups with a single edge and edge
group A. Recall that a graph of groups is reduced if every edge both
of whose attaching maps are isomorphisms is a loop.

We are ready to state our main technical tool. The HHN extension
case is a variation on the proofs from [FV08].

Proposition 3.7. Let G be a finitely generated group that splits over
a separable subgroup. Let φ : G → Z be a non-zero character that
vanishes on the edge group. If for some integral domain R the first
twisted Alexander polynomials do not vanish, then the splitting has only
one vertex and φ is algebraically fibred with kernel equal to the edge
group.

Proof. We need to consider two cases, depending on whether the split-
ting is an HNN extension or an amalgamated free product.

Suppose first that G splits as an HNN extension. If both edge maps
are isomorphisms, then the edge group is a normal subgroup, and quo-
tienting by it yields Z. Hence φ is algebraically fibred with kernel equal
to the edge group, as claimed. Suppose now that at least one of the
attaching maps is not a surjection. Let A denote the image of this
map, and let B denote the vertex group.

Let α : G ↠ Q be an epimorphism with finite image. Consider
the Mayer–Vietoris sequence for an HNN-extension (see for instance
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[Bro94, Chapter VII.9]) with non-trivial coefficients RQ[t±1] as in Sec-
tion 2.2, where the action of A and B on the module is inherited from
G. The sequence takes the following form:

· · · H1(G;RQ[t
±1])

H0(A;RQ[t
±1]) H0(B;RQ[t±1]) H0(G;RQ[t

±1])

0

Since A ⩽ kerφ, we have a right A-module isomorphism

RQ[t±1] = R[t±1]⊗R RQ

where the action of g ∈ A on R[t±1]⊗RRQ is the diagonal action given
by right-multiplication by α(g) on RQ and the trivial action of R[t±1].
We also have an R-module isomorphism

H0(A;R[t
±1]⊗R RQ) ∼= R[t±1]⊗R (RQ)A

by the definition of zeroth homology, where (−)A denotesA-coinvariants.
By assumption, H1(G;RQ[t

±1]) is R[t±1]-torsion and it is clear that
H0(G;RQ[t

±1]) is R[t±1]-torsion (see for instance [FV08, Lemma 4.4]).
Applying these observations in the trivial case α = tr, Q = {1}, we
see that H0(B;R[t±1]) must contain a copy of R[t±1]⊗R RA = R[t±1].
If φ|B ̸= 0, then it is immediate that H0(B;R[t±1]) = (R[t±1])B is
a torsion R[t±1]-module, yielding a contradiction. We conclude that
φ|B = 0, and hence we have H0(B;RQ[t±1]) ∼= R[t±1]⊗R (RQ)B for all
α and Q.

Using the fact that A is separable, we produce an epimorphism
α : G ↠ Q with finite image such that α(A) is a proper subgroup
of α(B). Let F = Frac(R). Note that F (t), the field of rational func-
tions, is a flat R[t±1]-module. Tensoring the Mayer–Vietoris sequence
above (with this choice of α) with F (t) over R[t±1] we see that

dimF (t) F (t)⊗R (RQ)A = dimF (t) F (t)⊗R (RQ)B.

Observe that (RQ)A is a free right R-module of rank |Q : α(A)|, and
similarly for (RQ)B. The dimensions above pick up exactly the R-rank,
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and so we may conclude that

|Q : α(A)| = |Q : α(B)|,

contradicting |α(A)| < |α(B)|.

If G splits as an amalgamated free product, the edge group A must
be a proper subgroup of the vertex groups B and B′, since otherwise
the graph of groups would not be reduced.

We now consider the Mayer–Vietoris sequence for a free product with
amalgamation:

· · · H1(G;RQ[t
±1])

H0(A;RQ[t
±1]) H0(B;RQ[t±1])⊕H0(B

′;RQ[t±1]) H0(G;RQ[t
±1])

0

Arguing as before with α = tr, we first see that φ must vanish on
precisely one of the vertex groups, say B – it cannot vanish on both
since φ ̸= 0. As before, we produce α : G ↠ Q such that α(A) <
α(B). After tensoring with F (t) over R[t±1] we obtain an isomorphism
between F (t)⊗R[t±1] H0(A;RQ[t

±1]) and(
H0(B;RQ[t±1])⊗R[t±1] F (T )

)
⊕
(
H0(B

′;RQ[t±1])⊗R[t±1] F (t)
)
.

Since φ|B′ is non-trivial, the R[t±1]-module H0(B
′;RQ[t±1]) is torsion

as before, and hence

F (t)⊗R[t±1] H0(B
′;RQ[t±1]) = 0.

Using dimensions over F (t) we conclude that |α(A)| = |α(B)|, as be-
fore. This is a contradiction. □

We are now ready for our first main theorem.

Theorem 3.8. If G is a LERF group of type FP2(S) for some com-
mutative ring S, then G is in TAP1(R) for every integral domain R.

Proof. Let φ : G→ Z be a non-trivial character. We aim to show that φ
is algebraically fibred if and only if for every epimorphism onto a finite
group α : G↠ Q the corresponding twisted Alexander polynomial does
not vanish. The ‘if’ direction is given by Proposition 2.11. For the
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converse suppose that the twisted Alexander polynomials of φ are non-
zero.

Since G is of type FP2(S), by [BS78, Theorem A] there exist finitely
generated subgroups A,B,C ⩽ G with A,C ⩽ B, and an isomorphism
ι : A → C, such that G splits as an HNN-extension B∗ι, and dividing
by B coincides with φ.

Since A is finitely generated and G is LERF, we see that A is sepa-
rable. The result now follows from Proposition 3.7. □

Remark 3.9. The proof of the above result together with Proposi-
tion 2.11 show that Σ1(G) = −Σ1(G). This is a well-known fact that
can be proved directly using Proposition 2.6.

Proposition 3.7 can also be used in the setting of graphs of groups.

Theorem 3.10. Let R be a integral domain. Let G be a finitely gen-
erated fundamental group of a finite reduced graph of groups G. Let
φ ∈ H1(G;Z) be a non-zero character and suppose that G is LERF. If
the first twisted Alexander polynomials of φ do not vanish, then for ev-
ery finitely generated edge group A precisely one of the following holds:

(1) either G = A⋊ Z with φ being the projection map,
(2) or φ|A ̸= 0.

Proof. Consider an edge e with a finitely generated group A. The proof
splits into two cases.

If e is non-separating, then we may collapse all the other edges and
obtain a splitting of G as an HNN extension with edge group A. Now,
Proposition 3.7 tells us that if φ|A = 0, then φ is algebraically fibred
with kernel A, that is, G = A⋊ Z.

If e is a separating edge, then G splits as a free product amalgamated
over A. Proposition 3.7 tells us that φ|A ̸= 0. □

3.3. Products of TAP1(R) groups. We will now discuss the structure
of the BNS invariants for products of groups. When working over fields,
this structure is completely understood in terms of BNS invariants of
factors; over general commutative rings all we have is an inequality. To
understand the inequality, recall that we have defined the BNS invari-
ants Σn(G;R) as subsets of H1(G;R)∖ {0}. This in particular applies
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to Σ0(G;R). For a subset U ⊆ H1(G;R) we denote the complement
by U c = H1(G;R)∖ U . In particular, we have Σ0(G;R)c = {0}.

When G = G1 × G2, we have H1(G;R) = H1(G1;R) ⊕ H1(G2;R).
Given subsets Ui ⊆ H1(Gi;R) we define their join to be

U1 ∗ U2 = {tu1 + (1− t)u2 | ui ∈ Ui, t ∈ [0, 1]}.

The following inequality is due to Meinert; see [BG10] for the his-
tory of this and [Geh98] for a proof. The “moreover” is due to Bieri–
Geoghegan [BG10] and for R = Z the inequality can be strict [Sch08].

Theorem 3.11 (Meinert’s inequality). Let G1 and G2 be groups of
type FPn(R) where R is a commutative ring, and let G = G1 × G2.
Then

Σn(G;R)c ⊆
n⋃
p=0

Σp(G1;R)
c ∗ Σn−p(G2;R)

c.

Moreover, equality holds if R is a field.

Proposition 3.12. Let R be a integral domain and let G1 and G2 be
finitely generated groups. If Gi is in TAP1(R) for i = 1, 2, then G1×G2

is in TAP1(R).

Proof. Let G = G1 × G2. Suppose φ : G ↠ Z is not algebraically
semi-fibred and is non-zero. We need to show that there exists a finite
quotient α : G ↠ Q such that the corresponding twisted Alexander
polynomial vanishes.

By Meinert’s inequality, we have

φ ∈ (Σ1(G1;R)
c ∗ {0}) ∪ ({0} ∗ Σ1(G2;R)

c).

In particular, for exactly one i ∈ {1, 2} we have φ|Gi
= 0. Suppose

without loss of generality that i = 2.
Now, we have a splitting ker(φ) = ker(φ|G1) × G2. Since G1 lies

in TAP1(R), there exists a finite quotient α1 : G1 ↠ Q such that the
module Hφ|G1

,α1

1,R is not R[t±1]-torsion, and hence contains a free R[t±1]-
module. Let F denote Frac(R). Since F is a flat R-module, and since
dimF F ⊗R R[t±1] =∞, we immediately see that

dimF F ⊗R H
φ|G1

,α1

1,R =∞.

Define α : G ↠ Q to be the composite G ↠ G1 ↠ Q. Applying
Shapiro’s lemma (as in the proof of Lemma 2.9), and then [Bro94,
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III.6.2 and III.8.2], gives isomorphisms of R-modules

Hφ,α
1,R
∼= H

φ|kerα,tr
1,R

∼= H1(ker(φ) ∩ ker(α);R),

but ker(φ)∩ker(α) ∼= (ker(φ|G1)∩ker(α1))×G2. It follows that we can
compute Hφ,α

1,R by the Künneth spectral sequence (note that R is not
necessarily a PID so we cannot use the Künneth formula). We have

TorR0 (H
φ|G1

,α1

1,R , R) ∼= H
φ|G1

,α1

1,R ⊗R R ∼= H
φ|G1

,α1

1,R ⩽ Hφ,α
1,R

as R-modules. We conclude that

dimF F ⊗R Hφ,α
1,R =∞.

Using flatness again we get

dimF H
φ,α
1,F =∞,

and hence the first Alexander polynomials twisted by α over F and
over R vanish by Lemma 2.7. □

3.4. Products of limit groups are TAP∞(F).

Theorem 3.13. Let F be a field and let G =
∏n

i=1Gi be a product of
limit groups. Then, G is in TAP∞(F).

Proof. By [Wil08] limit groups are LERF, and by [BF09, Exercise 13]
limit groups are of type F, and hence FP2(Z). It follows that products
of limit groups are TAP1(F) by Theorem 3.8 and Proposition 3.12.

Let φ : G↠ Z be a character which is FPk−1(F)-semi-fibred but not
FPk(F)-semi-fibred for some 2 ⩽ k ⩽ n. If no such k exists, then we
are done by Proposition 2.11. The same result tells us that all twisted
Alexander polynomials of φ in dimension at most k−1 will vanish. We
need to exhibit a non-vanishing one in dimension k. Lemma 2.9 tells
us that it is enough to find such a non-vanishing twisted polynomial
for some normal finite-index subgroup of G.

We may assume that if some Gi is abelian then φ|Gi
= 0. Otherwise,

φ would be FP∞(F)-semi-fibred by Meinert’s inequality. After passing
to a finite index normal subgroup H × K with H =

∏p
i=1Hi, K =∏q

j=1Kj, p + q = n, Hi P Gi, and Kj = Gq+j, we may assume that
φ|Hi

is surjective and φ|Kj
= 0. Let ψ denote the restriction of φ to

H. By [BHMS09, Theorem 7.2] (note that the result is only stated for
Q but by the paragraph after Theorem C loc. cit. it holds for arbitrary
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fields) we have that Hp(kerψ;F) has infinite dimension over F (here we
are using the fact that ψ vanishes on abelian factors). It follows from
Lemma 2.7 that the twisted Alexander polynomial of G associated to
α : G↠ G/(H ×K) vanishes.

We have found a vanishing Alexander polynomial in dimension p.
Note that p ⩾ k since φ is FPk−1(F)-semi-fibred. Meinert’s inequality
tells us that Σp−1(G;R)c is the union of joins of the form

Σm1(G1;R)
c ∗ · · · ∗ Σmn(G1;R)

c

with
∑
mi = p− 1. Each such join must therefore have at most p− 1

factors with ni > 0, and hence characters lying in such a join must
vanish on all but at most p− 1 factors Gi. But φ does not vanish on p
factors, and hence φ ∈ Σp−1(G;R). Hence p− 1 ⩽ k− 1, and therefore
p = k. We have now shown that the first dimension in which a twisted
Alexander polynomial vanishes is equal to the first dimension in which
φ is not semi-fibred. This proves the claim. □

4. Profinite rigidity of fibring

Definition 4.1. Let G be a group, R be a ring, and let C be a directed
system of normal finite-index subgroups of G. We set

ĜC = lim←−
U∈C

G/U

and
RJGKC = lim←−

U∈C
R(G/U).

When C consists of all normal subgroups of finite index, we write
Ĝ for ĜC, RJGK for RJGKC, and call them respectively the profinite
completion and the completed group ring.

Note that Ẑ is a ring with the obvious multiplication.
The groups Ĝ and more generally ĜC carry a natural compact topol-

ogy obtained as the limit of the discrete topology on G/U . Whenever
we will use this topology, we will state it explicitly, as we do below.

Definition 4.2. Let G be a residually finite group. We say that G is
n-good if for all 0 ⩽ j ⩽ n and all ZG-modules M that are finite as
sets, the map

Hn
cont(Ĝ;M)→ Hn(G;M)
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induced by the inclusionG→ Ĝ is an isomorphism. Here, H∗
cont denotes

continuous group cohomology which is defined analogously to ordinary
group cohomology except for the following modifications: First, we
require M to be a topological Ĝ-module, that is, M carries a (possibly
discrete) topology and the Ĝ-action on M is continuous, and secondly,
the cochain groups C•

cont(Ĝ;M) consist of continuous functions Ĝn →
M .

A group that is n-good for all n is called cohomologically good, or
good in the sense of Serre.

Remark 4.3. It is very easy to see that every residually finite group
is 1-good.

Proposition 4.4 ([GJZZ08, Lemma 3.2]). Finite-index subgroups of
n-good groups are themselves n-good.

The above proposition is stated in a slightly less general way in the
paper of Grunewald–Jaikin-Zapirain–Zalesskii [GJZZ08], but the proof
gives precisely what we claim above.

The following result is a slight variation on a theorem of Kochloukova
and Zalesskii. The only difference consists of replacing the assumption
of G being type FP∞ with the assumption of G being type FPn. The
proof is very similar but we include it to highlight the differences.

Proposition 4.5. [KZ08, Theorem 2.5] Let G be a group of type FPn(Z)
and let C be a directed system of finite index normal subgroups. Suppose
that for a fixed prime p and for all 1 ⩽ i ⩽ n we have

lim←−
U∈C

Hi(U ;Z/pZ) = 0.

Then, for all m ⩾ 1 and 1 ⩽ i ⩽ n we have

TorZGi (Z, (Z/pmZ)JGKC) = 0 and TorZGi (Z,ZpJGKC) = 0

where Zp denotes the p-adic integers.

In both the statement above and the proof below, we stay in the ab-
stract category, that is we do not require any continuity, and homology
is taken without closing images.

Proof. Let P• be a projective resolution of Z over ZG such that Pi is
finitely generated for i ⩽ n. Let P (m)

• = (Z/pmZ)JGKC ⊗ZG P•. By
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[KZ08, Lemma 2.1] we have Hi(P
(1)
• ) ∼= TorZGi (Z, (Z/pZ)JGKC) = 0 for

1 ⩽ i ⩽ n.
The short exact sequence of right ZG-modules

0 (Z/pZ)JGKC (Z/pmZ)JGKC (Z/pm−1Z)JGKC 0

induces a long exact sequence in homology containing sequences

Hi(G; (Z/pZ)JGKC) Hi(G; (Z/pmZ)JGKC) Hi(G; (Z/pm−1Z)JGKC)

exact in the middle term. This latter sequence implies via an easy
induction that

TorZGi (Z, (Z/pmZ)JGKC) = 0

for 1 ⩽ i ⩽ n, and so P (m)
• is exact up to dimension n. It also shows that

Hn+1(G; (Z/pmZ)JGKC)→ Hn+1(G; (Z/pm−1Z)JGKC) is a surjection.
For every m we have an obvious chain map P

(m+1)
• → P

(m)
• . Let

Q• = lim←−m P
(m)
• where the limit is taken along these maps. By [Wei94,

Proposition 3.5.7 and Theorem 3.5.8], the complex Q• is exact up to
dimension n and by construction Q• ∼= ZpJGKC ⊗ZG P•. Therefore
Hi(Q•) ∼= TorZGi (Z;ZpJGKC) = 0 for 1 ⩽ i ⩽ n. □

The next result is due to Jaikin-Zapirain; we have weakened the orig-
inal assumption of type FP∞ to FPn. The proof goes through verbatim
after substituting Proposition 4.5 for Jaikin-Zapirain’s use of [KZ08,
Theorem 2.5].

Proposition 4.6. [JZ20, Proposition 3.1] Let G be a group of type
FPn(Z) and let (F•, ∂•) be a free resolution of the trivial ZG-module Z
which is finitely generated up to dimension n, and in which F0 = ZG.
Then G is n-good if and only if the induced sequence

· · · F̂n · · · F̂1 F̂0 Ẑ
’∂n+1 ∂̂n ∂̂2 ∂̂1 ∂̂0

is exact up to dimension n, where (F̂•, ∂̂•) is obtained from (F•, ∂•) by
tensoring with ẐJGK over ZG.

We are next going to state a result of Liu. First we need to introduce
some notation. Recall that

Hφ,α
n,R = Hn

(
G;R(Q× Z)

)
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where α : G → Q and φ : G → Z are homomorphisms, and R(Q × Z)
is a right RG-module via (q, z).g = (qα(g), zφ(g)) with (g, q, z) ∈ G×
Q × Z. We also treat R(Q × Z) as an RZ module via the inclusion
Z → Q× Z.

Now suppose that Z ∈ {Z, Ẑ}, so that Ẑ = Ẑ. Let Ĝ be the profinite
completion of G, and let α̂ : Ĝ→ Q and φ̂ : Ĝ→ Ẑ be the completions
of the morphisms from before. Note that Q = Q̂ since Q is finite. Let
R = F be a finite field. We let“H φ̂,α̂

n,F = Hprof
n (Ĝ;FJQ× ẐK)

where Hprof
∗ denotes profinite homology, as defined in [RZ10]. Observe

that FJQ× ẐK = FQJẐK has a structure of an FJẐK module, and hence
so does “H φ̂,α̂

n,F .

Proposition 4.7. [Liu20, Proposition 4.6] Let G be a group which is
n-good and of type FPn(Z). Let F be a finite field. Let α : G↠ Q be a
finite quotient of G. Denote by α̂ : Ĝ↠ Q the completion of α.

(1) Let φ : G → Ẑ be a group homomorphism, and let φ̂ : Ĝ → Ẑ
denote its completion. If the annihilator of Hφ,α

n,F in FẐ is non-
zero, then the annihilator of “H φ̂,α̂

n,F is non-zero in FJẐK.
(2) Let φ, ψ : G → Ẑ be group homomorphisms and suppose that

ker(ψ) contains ker(φ). If Hψ,α
n,F has a non-zero annihilator in

FẐ, then Hφ,α
n,F has a non-zero annihilator in FẐ.

(3) Let Γ be a profinite group, let Ψ: Γ → Ĝ be a continuous epi-
morphism and let ψ : G→ Ẑ be a group homomorphism. Let α̂′

and ψ̂′ denote the pullbacks α̂◦Ψ and ψ̂◦Ψ. If “H φ̂′,α̂′

n,F has a non-
zero annihilator in FJẐK, then “H φ̂,α̂

n,F has a non-zero annihilator
in FJẐK.

(4) Let φ : G → Z be a group homomorphism. The module “H φ̂,α̂
n,F

has a non-zero annihilator in FJẐK if and only if Hφ,α
n,F has finite

dimension over F.

Note that we have weakened the hypotheses ‘cohomologically good
and type FP∞’ in [Liu20, Proposition 4.6] to ‘n-good and type FPn’.
To make the adjustment we simply substitute the use of [JZ20, Propo-
sition 3.1] in the proof of [Liu20, Proposition 4.6] with Proposition 4.6.
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Definition 4.8. Let HA and HB be a pair of finitely generated Z-
modules. Let Φ: ”HA → ”HB be a continuous homomorphism of the
profinite completions. We define the matrix coefficient module

MC(Φ;HA, HB)

(or simply MC(Φ) if there is no chance of confusion) for Φ with respect
to HA and HB to be the smallest Z-submodule L of Ẑ such that Φ(HA)

lies in the submodule HB ⊗Z L of ”HB. We denote by

ΦMC : HA → HB ⊗Z MC(Φ)

the homomorphism uniquely determined by the restriction of Φ to HA.

By [Liu20, Proposition 3.2(1)], the Z-module MC(Φ;HA, HB) is a
non-zero finitely generated free Z-module.

Definition 4.9. We define ϵ ∈ HomZ(MC(Φ),Z) by picking a free
generating set for MC(Φ) and sending every generator to either 0 or 1
in such a way that following ϵ with the natural projection Z → Z/2Z
coincides with the restriction of the natural projection Ẑ → Z/2Z
applied to MC(Φ). The definition of ϵ depends on the choice of a basis
for MC(Φ).

The ϵ-specialisation of Φ refers to the composite homomorphism

HA HB ⊗Z MC(Φ) HB ⊗Z Z = HB,
ΦMC 1⊗ϵ

denoted by Φϵ : HA → HB. The dual ϵ-specialisation of Φ refers to
the homomorphism Φϵ : HomZ(HB,Z) → HomZ(HA,Z) precomposing
with Φϵ.

Lemma 4.10. If Φ is an isomorphism, then the images of Φϵ and Φϵ

are of finite index in their respective codomains.

Proof. Let b denote the rank of HB. We have a natural epimorphism
ρ : HB → (Z/2Z)b that extends to ρ̂ : HB ⊗Z Ẑ → (Z/2Z)b. By con-
struction, ρ ◦ Φϵ = ρ̂ ◦ Φ. Let us assume that Φ is an isomorphism.
Since ρ̂ is clearly surjective, we conclude that ρ ◦Φϵ is surjective. Pick
a basis of (Z/2Z)b, and lift it via ρ to a set v1, . . . , vb ∈ ImΦϵ. Suppose
that the elements v1, . . . , vb are Z-linearly dependent. By removing the
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common factors of 2 from the coefficients, we may assume that we have
b∑
i=1

λivi = 0

with λi ∈ Z and with at least one λi odd. Applying ρ to this formula
contradicts the fact that we started with a basis for (Z/2Z)b. Hence
v1, . . . , vb are Z-linearly independent, and hence by tensoring with Q
we see that ImΦϵ is of finite index in HB.

The result for Φϵ follows immediately, since we have just shown that
Φϵ ⊗Z idQ is surjective, and hence an isomorphism, since HA and HB

have the same rank. □

Definition 4.11. Let GA and GB be finitely generated groups and let
Ψ: ĜA → ĜB be an isomorphism of profinite completions. Let HA

and HB be the torsion-free parts of the abelianisations of, respectively,
GA and GB; let ab denote both of the free abelianisation maps. Note
that Ψ induces Ψ1 : ”HA → ”HB. Pick ϵ ∈ HomZ(MC(Ψ1),Z) as in
Definition 4.9. Given φ ∈ H1(GB;Z) we define

ψ = Ψϵ
1(φ ◦ ab−1) ◦ ab ∈ H1(GA;Z)

to be the ϵ-pullback of φ.

Theorem 4.12. Let n be a positive integer. Let GA and GB be n-
good groups of type FPn(Z), and suppose that GB is in TAPn(F), where
F is a finite field. Let Ψ: ĜA → ĜB be an isomorphism of profinite
completions and let φ ∈ H1(GB;Z). If for every i ⩽ n the ϵ-pullback
ψ ∈ H1(GA;Z) of φ has non-vanishing ith twisted Alexander polyno-
mials over F, then φ is FPn(F)-semi-fibred.

Proof. Note that Ψ is continuous by the work of Nikolov–Segal [NS07a,
NS07b]. Let ρ̂ : GA → Ẑ denote the composite

GA ↣ ĜA
Ψ−→ ĜB

φ̂−→ Ẑ,
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where φ̂ is the completion of φ. Observe that Ker(ψ) contains Ker(ρ̂).
Indeed, ρ̂ factorises as the top composite and ψ as the bottom compos-
ite

Ẑ

GA HA HB ⊗Z MC(Ψ1) Z⊗Z MC(Ψ1) MC(Ψ1)

Z,

Ψ1
MC φ⊗1 =

ϵ

so clearly ψ vanishes on everything ρ̂ vanishes on.
Let β : GB ↠ Q be a finite quotient with completion β̂, and let

α : GA ↠ Q denote the composite GA ↣ ĜA
Ψ−→ ĜB

β̂−→ Q. Let i ⩽ n.
By assumption, the homology group Hψ,α

i,F is FZ-torsion, and hence

0 = Frac(FZ)⊗FZ H
ψ,α
i,F = Hi(GA; Frac(FZ)Q)

for i ⩽ n, where the second equality comes from the fact that locali-
sations are flat, and that Frac(FZ)Q is the localisation of F(Z×Q) at
F(Z× {1})∖ {0}.

Since GA is of type FPn(Z), we find a free resolution C• of Z with
Ci finitely generated; let ∂i : Ci → Ci−1 denote the differentials of C•.
The acyclicity above allows us to construct Frac(FZ)Q-module maps

di : Frac(FZ)Q⊗ZG Ci → Frac(FZ)Q⊗ZG Ci+1

for i ⩽ n with
di−1 ◦ ∂i + ∂i+1 ◦ di = id,

where we now view ∂i as idFrac(FZ)Q⊗∂i. Since the modules

Frac(FZ)Q⊗ZG Ci

are finitely generated, by multiplying the maps di by the common de-
nominator of all the entries of the matrices representing the maps di,
we arrive at the existence of F(Z×Q)-module maps

d′i : F(Z×Q)⊗ZG Ci → F(Z×Q)⊗ZG Ci+1

with
d′i−1 ◦ ∂i + ∂i+1 ◦ d′i
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being equal to the right-multiplication by some

z ∈ F(Z× {1})∖ {0}.

Again, we have to interpret the differentials ∂i in a suitable way. Cru-
cially, since FZ is central in F(Z×Q), right-multiplication by z coincides
with left-multiplication by z.

Let ψ′ : GA → Ẑ denote ψ followed by the natural embedding Z→ Ẑ.
The maps d′i can be easily extended to maps

F(Ẑ×Q)⊗ZG Ci → F(Ẑ×Q)⊗ZG Ci+1

immediately yielding that Hψ′,α
i,F is FZ-torsion, and hence FẐ-torsion.

Still, ker(ρ̂) ⩽ ker(ψ′). Applying Proposition 4.7(2), (1), (3), and (4) in
the given order, we see that Hφ,β

i,F is a finite dimensional F-module, and
hence a torsion FZ-module. Since β was arbitrary and GB ∈ TAPn(F),
it follows that φ is FPn(F)-semi-fibred. □

Corollary 4.13. Let n be a positive integer. Let GA and GB be n-good
groups of type FPn(Z) with isomorphic profinite completions. Suppose
that GA lies in TAPn(F), where F is a finite field. The group GA is
FPn(F)-semi-fibred if GB is.

Proof. Let ψ : GB → Z be a non-trivial FPn(F)-semi-fibred character;
observe that this statement remains unchanged if we replace ψ by a
positive scalar multiple. By Proposition 2.11, the twisted Alexander
polynomials of ψ over F do not vanish. Lemma 4.10 gives us a bijec-
tion between positive scalar multiples of characters in H1(GA;Z) and
H1(GB;Z), and hence, in particular, we find a non-trivial character
φ : GA → Z such that ψ is its ϵ-pullback (up to multiplication by a
positive scalar). Theorem 4.12 shows that φ is FPn(F)-semi-fibred. □

We may summarise the above by saying that being FPn(F)-semi-
fibred is a profinite property among n-good groups of type FPn(Z) in
TAPn(F).

Using Remark 4.3 we obtain the following crisper formulation for
n = 1.

Corollary 4.14. Let GA and GB be finitely generated groups with iso-
morphic profinite completions. Suppose that GA lies in TAP1(F), where
F is a finite field. If GB is algebraically semi-fibred, then so is GA.



PROFINITE RIGIDITY OF FIBRING 26

5. Applications

5.1. Products of LERF groups.

Theorem 5.1. Let GA and GB be groups such that all of the following
hold:

• GA is finitely generated;
• GB is a product of LERF groups and is of type FP2(R) for some

ring R;
• there is an isomorphism ”GB →”GA.

If GA is algebraically semi-fibred, then GB is algebraically fibred.

Proof. The group GB is in TAP1(F) for every finite field F by Theo-
rem 3.8 and Proposition 3.12 – we are also using the fact that each of
the factors of GB is itself of type FP2(R), which is easy to see. Now
we use Corollary 4.14 and see that GB is algebraically semi-fibred. But
the first BNS invariant of LERF groups is symmetric by Remark 3.9.
It follows from Meinert’s inequality that products of LERF groups also
have symmetric first BNS invariant, and hence that GB is algebraically
fibred. □

The following is restating Theorem C from the introduction.

Theorem 5.2. Let F be a finite field. Let GA and GB be profinitely
isomorphic finite products of limit groups. The group GA is FPn(F)-
semi-fibred if and only if GB is.

Proof. By Theorem 3.13, finite products of limit groups are TAP∞(F);
they are also of type F, as mentioned before. The result now follows
from Corollary 4.13. Indeed, limits groups are cohomologically good by
[GJZZ08, Theorem 1.3] and so products of them are cohomologically
good by [Lor08, Theorem 2.5]. □

5.2. Poincaré duality groups. We now turn our attention to PD3-
groups, that is, Poincaré duality groups in dimension 3. For an intro-
duction to this topic, see [Hil20b].

Theorem 5.3. Let GA be a PD3-group in TAP1(F) for some finite
field F. Let GB be a finitely generated algebraically fibred group. If”GA
∼= ”GB, then GA is the fundamental group of a closed connected

3-manifold.



PROFINITE RIGIDITY OF FIBRING 27

Proof. By [Hil20a, Theorem 5] and Proposition 2.6 we have that Σ1(GA) =

−Σ1(GA). By Corollary 4.14, GA is algebraically fibred. Hence,

GA = K ⋊ Z

for some finitely generated subgroup K. It follows from a result of
Strebel [Str77] (see [Hil02, Theorem 1.19] for an explanation), that K
has cohomological dimension at most 2 and hence is a PD2-group. In
particular, by [EM80] (see also [KK21]) the group K is isomorphic to
the fundamental group of a closed surface. Since every outer automor-
phism of K is realised by a mapping class of the underlying surface
by the Dehn–Nielsen–Baer theorem, we conclude that GA is the fun-
damental group of a closed connected 3-manifold. □

The following is restating Theorem D from the introduction.

Corollary 5.4. Let GA be a LERF PD3-group. Let GB be the funda-
mental group of a closed connected hyperbolic 3-manifold. If ”GA

∼=”GB,
then GA is the fundamental group of a closed connected hyperbolic 3-
manifold.

Proof. By [Hil20a, Theorem 5] and Proposition 2.6, for every finite
index subgroup G′

A ⩽ GA we have that Σ1(G′
A) = −Σ1(G′

A). Let
HB be a finite index subgroup of GB that is algebraically fibred – the
existence of such a subgroup is guaranteed by Agol’s theorem [Ago13].
Let HA be the corresponding finite index subgroup of GA; we still have”HA
∼= ”HB. The group HA is still a PD3-group by [JW72, Theorem

2]. It is immediate that HA is LERF. Since all PD3-groups are of type
FP(Z), we conclude, using Theorem 3.8, that HA is TAP1(F) for every
finite field. Theorem 5.3 now shows that HA is the fundamental group
of a connected compact 3-manifold. By [Hil20b, Lemma 8.2], the group
GA is also a fundamental group of a connected compact 3-manifold M .
The manifold M is hyperbolic by [WZ17]. □

5.3. RFRS groups and agrarian Betti numbers. The following
definition is due to Agol [Ago08] and played a crucial role in solving
the Virtual Fibring Conjecture for hyperbolic 3-manifolds.

Definition 5.5. Let G be a group. We say that G is residually finite
rationally solvable (RFRS) if
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(1) there is a chain of finite index normal subgroups

G = G0 ⩾ G1 ⩾ G2 ⩾ · · ·

of G such that
⋂

NGi = {1};
(2) ker

(
Gi → H1(Gi;Q)

)
⩽ Gi+1 for i ⩾ 0.

Definition 5.6. A group G is indicable if G is trivial or admits an
epimorphism to Z. We say that G is locally indicable if every finitely
generated subgroup of G is indicable.

Note that RFRS groups are locally indicable.

Definition 5.7. Let R andD be skew-fields, letG be a locally indicable
group, and let ψ : RG→ D be a ring homomorphism. The pair (D, ψ)
is Hughes-free if

(1) D is generated by ψ(RG) as a skew-field, that is, ⟨ψ(RG)⟩ = D;
(2) for every finitely generated subgroup H ⩽ G, every normal

subgroup N ◁ H with H/N ∼= Z, and every set of elements
h1, . . . , hn ∈ H lying in distinct cosets of N , the sum

⟨ψ(RN)⟩ · ψ(h1) + · · ·+ ⟨ψ(RN)⟩ · ψ(hn)

is direct.

By [Hug70], if such a pair (D, ψ) exists, then D is unique up to RG-
algebra isomorphism. In this case we denote D by DRG.

(Like the property, the Hughes mentioned here and the first author
are free of any of relation.)

The following result is due to Jaikin-Zapirain.

Proposition 5.8. [JZ21, Corollary 1.3] If G is a RFRS group and R
is a skew-field, then DRG exists and it is the universal division ring of
fractions of RG.

Definition 5.9. A group G is agrarian over a ring R if there exists
a skew-field D and a monomorphism ψ : RG ↣ D of rings. If G is
agrarian over R, then we define the agrarian D-homology to be

HD
p (G) = TorRGp (R,D)

where R is the trivial RG-module and D is viewed as an D-RG-
bimodule via the embedding RG↣ D. Since modules over a skew-field
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have a canonical dimension function taking values in N∪ {∞} we may
define

bDp (G) = dimDH
D
p (G).

When G is RFRS, by the previous proposition, we have (up to RG-
isomorphism) a canonical choice DRG of D for each skew-field R.

Theorem 5.10. Let R be a skew-field and let n ∈ N. Let G be a
virtually RFRS group of type FPn(R). The following are equivalent:

(1) bDRG
p (G) = 0 for all p ⩽ n;

(2) G is virtually FPn(R)-fibred;
(3) G is virtually FPn(R)-semi-fibred.

Proof. The equivalence of the first two items is [Fis21, Theorem 6.6].
The implication (2) ⇒ (3) is clear, so let us prove (3) ⇒ (1).

By [Fis21, Lemma 6.3], the numbers bDRG
p (G) scale with the index

when passing to finite-index subgroups. Thus, we may assume without
loss of generality that G itself is FPn(R)-semi-fibred. In particular, let
φ ∈ Σn(G;R) witness this semi-fibration. By [Fis21, Lemma 5.3], we
have

TorRGi (R,Nov(RG,φ)) = 0

for all 0 ⩽ i ⩽ n.
Let K be the skew-field of twisted Laurent series with variable t

and coefficients in the skew-field DR(kerφ); the variable t is an element
of G with φ(t) = 1, a generator of Z, and the twisting extends the
conjugation action of t on kerφ to DR(kerφ) – such an extension is
possible since DR(kerφ) is Hughes free, see [JZ21] for an explanation of
this fact. The skew-field K contains Nov(RG,φ), since the latter can
also be viewed as a ring of twisted Laurent series in t with coefficients
in R(kerφ), with the twisting described above. Hence, using chain
contractions, we see that

TorRGi (R,K) = 0

for all 0 ⩽ i ⩽ n.
Now, Hughes-freeness of DRG tells us that it is isomorphic as an RG-

module to the division closure of the twisted Laurent polynomial ring
R(kerφ)[t±1] in K, where we identify the rings R(kerφ)[t±1] and RG us-
ing the group isomorphism (kerφ)⋊Z = G. This endows R(kerφ)[t±1]
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with an RG-bimodule structure. Hence, we may view DRG as a subring
of K, and view K as a DRG-module. Since both rings are skew-fields,
the module is flat. We conclude that

TorRGi (R,DRG) = 0

for all 0 ⩽ i ⩽ n, as claimed. □

Theorem 5.11. Let n ∈ N ∪ {∞}, and let F be a finite field. Let GA

and GB be n-good virtually RFRS groups of type FPn(F) and suppose
that ĜA

∼= ĜB. Suppose that every finite index subgroup of GA and GB

is in TAPn(F). We have

min{j ⩽ n | bDFGA
j (GA) ̸= 0} = min{j ⩽ n | bDFGB

j (GB) ̸= 0}

where we take the minimum of the empty set to be ∞.

Proof. We first assume that n ∈ N. Since we are concerned with virtual
properties we may assume without loss of generality that GA and GB

are RFRS, n-good, of type FPn(Z), and all finite-index subgroups of
GA and GB are in TAPn(F); we have used Proposition 4.4 here.

Suppose that bDFGA
j (GA) = 0 for j ⩽ m for some m ⩽ n. The

group GA is virtually FPm(F)-fibred by Theorem 5.10. We may pass
to further finite index subgroups of GA and GB and assume that GA is
FPm(F)-fibred. By Corollary 4.13, the group GB is FPm(F)-semi-fibred,
and hence

b
DFGB
j (GB) = 0

for j ⩽ m by Theorem 5.10. This shows an inequality between the
minima in the statement. The argument is symmetric in GA and GB,
and hence we also obtain the converse inequality.

Now suppose that n = ∞. If both of the minima in the statement
are ∞, then we are done. Without loss of generality let us suppose
that the left-hand side one is equal to m < ∞. We observe that GA

and GB satisfy the hypothesis of our theorem for n = m, and hence
the right-hand side minimum is also equal to m. □

Observe that the above result applies in particular to finite products
of RFRS limit groups.
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