HYPERBOLICALLY EMBEDDED SUBGROUPS AND QUASI-ISOMETRIES
OF PAIRS
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ABSTRACT. We give technical conditions for a quasi-isometry of pairs to preserve a subgroup
being hyperbolically embedded. We consider applications to the quasi-isometry and commen-

surability invariance of acylindrical hyperbolicity of finitely generated groups.

1. INTRODUCTION

A group G is acylindrically hyperbolic if it admits a non-elementary, acylindrical action on a
hyperbolic space. An alternative characterisation is that G is acylindrically hyperbolic if and
only if G contains a hyperbolically embedded subgroup H, denoted H —p G, we will give a
characterisation from [MR21] in Proposition 3.5.

The class of acylindrically hyperbolic groups generalises the classes of non-elementary hyper-
bolic and relatively hyperbolic groups whilst sharing many similar properties [Osil6]. In spite of
this there are still foundational questions that remain open, for instance, it is known that a group
being hyperbolic or relatively hyperbolic is invariant under quasi-isometry [Gro87| [Dru09|, but
the corresponding question for acylindrical hyperbolicity is still open.

Question 1.1. [Osil8, Question 2.20(a)| Is the class of finitely generated acylindrically hyper-
bolic groups closed under quasi-isometry?

Some partial results are known, for instance acylindrical hyperbolicity passes to finite-index
subgroups and is preserved by quotienting out a finite normal subgroup [MO15]. If the group
is AH-accessible then acylindrical hyperbolicity can be passed to finite extensions [MO19]. The
property of being AH-accessible also passes to finite-index overgroups [Bal20|. However, not
every finitely presented acylindrically hyperbolic group is AH-accessible [ABO19, Theorem 2.18|.
Some experts in the field do not expect a complete positive answer to Question 1.1.

This article relies on the notion of quasi-isometry of pairs, and our results provide technical
conditions to ensure a quasi-isometry of pairs carries the property of being a hyperbolically

embedded subgroup.

Definition 1.2 (Quasi-isometry of pairs). Consider two pairs (G, P) and (H, Q) where G and
H are finitely generated groups with chosen word metrics distg and distg. Denote the Hausdorff
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distance between subsets of H by hdisty. An (L, C)-quasi-isometry ¢: G — H is an (L, C, M)-
quasi-isometry of pairs q: (G, P) — (H, Q) if the relation

Gg=1{(A,B)e G/P x H/Q: hdisty(q(A),B) < M}
satisfies that the projections into G/P and H/Q are surjective.

Example 1.3 (Quasi-isometry of pairs and finite extensions). Let H be a finite index normal
subgroup of finitely generated group G, and let Q be a finite collection of subgroups of H.
Then the inclusion (H, Q) — (G, Q) is a quasi-isometry of pairs if the collection {hQh~': h €
H and Q) € Q} is invariant under conjugation by G, see Proposition 4.1.

Recall that the commensurator of a subgroup P of a group G is the subgroup
Commg(P) = {ge G: P n gPg ' is a finite index subgroup of P and gPg~'}.

Definition 1.4 (Refinements). Let P be a collection of subgroups of group G. A refinement P*

of P is a set of representatives of conjugacy classes of the collection of subgroups
{Commg(gPg 1): PeP and g € G}.

Example 1.5 (Refinements and qi of pairs). Let Q be a finite collection of subgroups of a finitely
generated group H and let Q* be a refinement. If each @ € Q is finite index in Commy (Q) then
the identity map on G is a quasi-isometry of pairs (H, Q) — (H, Q*).

Example 1.6 (Refinements and finite extensions). Let A be a group, let H be an almost mal-
normal collection of infinite subgroups, and let F' < Aut(A) be a finite subgroup. If F acts freely
on ‘H and Hp is a collection of representatives of F-orbits in H, then a refinement of H in A x F
is Hp.

Definition 1.7 (Reduced collections). A collection of subgroups P of a group G is reduced if
for any P,Q € P and g € G, if P and gQg~! are commensurable then P = ) and g € P.

Our first result, Theorem A, describes a strategy to obtain positive results to Question 1.1.
For a group G with a generating set S, let I'(G,S) denote the corresponding Cayley graph, see
Definition 2.4.

Theorem A (Theorem 3.11). Let q: G — H be a quasi-isometry of finitely generated groups,
let P and Q be finite collections of subgroups of G and H respectively, and let S and T be (not
necessarily finite) generating sets of G and H respectively. Suppose

(1) q: (G,P) — (H, Q) is a quasi-isometry of pairs, and

(2) ¢:T'(G,S) - I'(H,T) is a quasi-isometry.
The following statements hold:

(1) If P and Q are reduced collections in G and H respectively; then P —y (G,S) if and
only if Q@ —y, (G, T).
(2) If Q contains only infinite subgroups and Q <, (G,T) then P* —} (G, S).

Qi-characteristic collections. The first numbered hypothesis of Theorem A raises the fol-

lowing problem: Given a finite collection of subgroups Q of a group H and a quasi-isometry
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q: G — H of finitely generated groups, is there a collection P of subgroups of G such that
q: (G,P) - (H, Q) is a quasi-isometry of pairs?

This problem was studied in [MS21] where the notion of qgi-characteristic collection is intro-
duced and it is proved that if the collection Q is qi-characteristic in H, then any quasi-isometry
of finitely generated groups induces a collection P.

Definition 1.8 (Qi-characteristic). [MS21] A collection of subgroups P of a finitely generated
group G is quasi-isometrically characteristic (or shorter gi-characteristic) if P is finite; each
P € P has finite index in its commensurator; and for every L > 1 and C = 0 there is M =
M(G,P,L,C) = 0 such that every (L,C)-quasi-isometry ¢: G — G is an (L,C, M)-quasi-
isometry of pairs ¢: (G, P) — (G, P).

Example 1.9. The argument by Behrstock, Drutu and Mosher proving quasi-isometric rigid-
ity of relative hyperbolicity with respect to non-relatively hyperbolic groups (NRH groups)
shows that if H is hyperbolic group relative to a collection @ of NRH subgroups, then Q is
gi-characteristic [BDM09, Theorems 4.1 and 4.8]. Another example is provided by mapping
class groups. Ruling out a few surfaces of low complexity, any self quasi-isometry of the map-
ping class group is at uniform distance from left multiplication by an element of the group,
see the work of Behrstock, Kleiner, Minsky and Mosher |[Beh+12, Theorem 1.1]. As a conse-
quence, the hyperbolically embedded (virtually cyclic) subgroup generated by a pseudo-Anosov
is gi-characteristic.

Corollary B. Let G and H be finitely generated groups, let T be a generating set of H, let Q be a
finite collection of subgroups of H such that @ <, (H,T), and let q: G — H be a quasi-isometry.
If

(1) Q is a gi-characteristic collection of subgroups of H, and

(2) there is a generating set S < G such that q: I'(G,S) — I'(H,T) is a quasi-isometry;

then there is a finite collection P of subgroups of G such that P —, (G,S) and q: (G,P) —
(H, Q) is a quasi-isometry of pairs.

Proof. Without loss of generality, assume that all subgroups in Q are proper infinite subgroups.
Note that removing finite subgroups from O preserves being qi-characteristic and that Q <,
(H,T). On the other hand, if Q contains H, then the theorem is trivial by taking P the collection
that contains only G and S any finite generating set of G. Since Q is qi-characteristic, the quasi-
isometry q: G — H induces a finite collection P such that ¢: (G, P) — (H, Q) is a quasi-isometry
of pairs, this is precisely [MS21, Theorem 1.1]. Then the second statement of Theorem A and
Q —;, (H,T) imply that P* —; (G, S). O

Uniform Quasi-actions. The second numbered hypothesis of Theorem A raises the problem:
Given a group H with a generating set T and a quasi-isometry q: G — H of finitely generated
groups, is there a generating set S < G such that ¢: I'(G, S) — I'(H,T) is a quasi-isometry of
Cayley graphs?

We show that a positive answer to this question is equivalent to asking that the quasi-action

of G on H induced by ¢ is T-uniform in the following sense, see Proposition C.
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Definition 1.10 (Uniform induced quasi-action). Let G and H be finitely generated groups and
let ¢: G — H be a quasi-isometry with quasi-inverse q. Let T'c H be a generating set (possibly
infinite). We say that the quasi-action of G on H induced by g is uniform with respect to T if
there are constants L > 1, C' > 0 such that for each g € G the function ¢,: H — H given by
qq(h) = q(g - q(h)) is an (L, C)-quasi-isometry q,: I'(H,T) — I'(H, T).

Example 1.11 (Uniform quasi-action and finite extensions). Let H be a finite index normal
subgroup of finitely generated group G and let T' be a generating set of H invariant under
conjugation by G. The G-action by conjugation on H preserves the word metric induced by 7.
On the other hand, any transversal R of H in G induces a quasi-isometry q: G — H given by
q(hg) = h for h € H and g € R. In this case the quasi-action of G on H induced by ¢ is uniform

with respect to 7', see Lemma 2.8.

Proposition C (Proposition 2.5). Let G and H be groups with finite generating sets Sy and Tp,
and let q: T'(G, Sp) — T'(H,Ty) be a quasi-isometry. Let T < H containing Ty. The following

statements are equivalent:

(1) The quasi-action of G on H induced by q is uniform with respect to T.
(2) There is S < G containing Sy such that q: T'(G,S) — I'(H,T) is a quasi-isometry.

Corollary D. Let G and H be finitely generated groups with finite collections of infinite subgroups
P and Q respectively. Suppose q: (G, P) — (H, Q) is a quasi-isometry of pairs inducing a T-
uniform quasi-action of G on H. If Q <y (H,T), then P* <} G.

Proof. Since the quasi-action of G on H induced by ¢ is T-uniform, Proposition C implies that
there is a generating set S of G such that ¢: T'(G, S) — T'(H,T) is a quasi-isometry. Then the
second statement of Theorem A and Q <, (H,T') imply that P* <, (G, S). O

Let us remark that for this last corollary, in the case that T is finite, then there is a finite
S < G such that P <, (G, 5); this case is implied by the results on quasi-isometric rigidity of
relative hyperbolicity in [BDMO09|.

Finite Extensions. The following application is a particular instance of Theorem 4.3 in the

main body of the article.

Theorem E (Theorem 4.3). Let H be a finite index normal subgroup of a finitely generated group
G, and let Q be a finite collection of infinite subgroups of H such that Q <y, (H,T). Suppose:

(1) The set T is invariant under conjugation by G.
(2) The collection {hQh™': he H and Q € Q} is invariant under conjugation by G.

If OF is a refinement of Q in G, then Q* —) G.

Example 1.12. Let G = {a,b,t: tat™' = b, t? = 1) = F, x Zy, let H = {a,b), and let
Q = {{a),{b)}. Note that Q <, H, and, for instance one can take Q* = {{a)} and observe that
Q* <, G. In contrast, for Qy = {(a)} <}, H the theorem does not apply since the conjugates

of {ay in H are not invariant under conjugation by elements of G.

The next result illustrates concrete examples were Theorem E applies.
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Theorem F (Theorem 5.2). Let A be a finitely generated group with a (not necessarily finite)
generating set T, and let H be a finite collection of infinite subgroups such that H —p (A, T).
If F < Aut(A) is finite, T and H are F-invariant, and the F-action on H is free, then Hp <,
(Ax F,T U F) where Hp is collection of representatives of F-orbits in H.

Example 1.13. Let A = %!, B; with each B; isomorphic to a fixed finitely generated group
B. Let F = Z, act on A by cyclically permuting the copies of B. Consider the generating set
of A given by T' = | J;_; B;\{1}, then T is F-invariant. Now, the collection H = {B,..., By} is
hyperbolically embedded into (A, T") and F acts freely by conjugation on H. All of the hypotheses
of the previous theorem have been verified so we conclude that By <, (A x F,T U F).

Organization. The rest of the article is divided into four sections. Section 2 is on quasi-actions,
it contains the proof of Proposition C as well as some corollaries. The proof of Theorem A is the
content of Section 3. Then Sections 4 and 5 contain the proofs of Theorem E and Theorem F

respectively.
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2. UNIFORM QUASI-ACTIONS

Definition 2.1 (Uniform quasi-action). Let G be a group and let X be a metric space. Let QI(X)
denote the set of quasi-isometries X — X. A function G — QI(X), g — fy, is a quasi-action if
there is K = 0 such that for any g1,¢92 € G

(1) the map fy,4, is at distance at most K from the map fg, o fg, in the Ly -distance, and

(2) the map fg, o fgl—l is at distance at most K from the identity.

The quasi-action G — QI(X) is uniform if there are constants L > 1 and C' > 0 such that for
any g € G the map f, is an (L, C)-quasi-isometry.

It is well known that a quasi-isometry ¢: G — H of finitely generated groups induces a uniform

quasi-action of G on H:

Definition 2.2 (Uniform quasi-action induced by a quasi-isometry). Let G be a group with
a word metric induced by a finite generating set, let X be a metric space, let ¢: G — X and
q: X — G be (Lg, Cp)-quasi-isometries such that gog and go g are at distance less than C from
the identity maps on X and G respectively. For g € G, let

Ly: G— G, T — gx;

and let
gg: X - X gy =qogoq.

It is an exercise to verify that there are constants L > 1 and C > 0 such that:
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e For ge G, g4: X — X is an (L, C)-quasi-isometry.

¢ (G quasi-acts on X) For g1, g2 € G, the map ¢g,4, is at distance at most C' from the map
dg1 © qgo; and the map gg, © Gy is at distance at most C' from the identity.

e (G acts Cp-transitively on X)) For every x,y € X there is g € G such that distg(z, ¢4(y)) <
C.

The map G — QI(X) given by g — g is called the uniform quasi-action of G on X induced by
q and q.

Remark 2.3 (Equivalence of Definitions 2.2 and 1.10 ). In the context of Definition 1.10, if the
induced quasi-action of G on H is uniform with respect to 7', then G — QI(I'(H,T)) given by
g — qq is a uniform quasi-action in the sense of Definition 2.2. Indeed, since T' contains a finite
generating set of H there is M > 0 such that distz 1) < M dist(y 7). Hence if two functions
H — H are at finite Le-distance with respect to dist(z 1), then the same holds for dist g 7).

Definition 2.4 (Cayley Graph). Let G be a group with a generating set S. The Cayley graph
I'(G, S) of G with respect to S is the G-graph with vertex set G and edge set {{g,gs}: g€ G, s€
S}.

Proposition 2.5 (Proposition C). Let G and H be groups with finite generating sets Sy and T,
and let q: T'(G, Sp) — T'(H,Ty) be a quasi-isometry. Let T < H containing Ty. The following
statements are equivalent:

(1) The quasi-action of G on H induced by q is uniform with respect to T

(2) There is S < G containing So such that q: I'(G,S) — I'(H,T) is a quasi-isometry.

Proof. That the second statement implies the first one is immediate. Conversely, suppose that ¢
and q are (Lo, Cp)-quasi-isometries I'(G, Sp) — I'(H,Tp) and I'(H,Ty) — I'(G, Sp) respectively.
Without loss of generality assume that g(e) = e and g(e) = e where e denotes the identity in
each corresponding group.

Let Ko = Lo + Cp + 1 and define

S = {f_lg € GG: there are h € H and t € T such that
dist(g7,1,)(q(f), h) < Ko and dist(y1,)(q(9), ht) < Ko}
Note that Sy < S since q: I'(G, Sy) — I'(H, Tp) is an (Lg, Cp)-quasi-isometry. In particular, S is

a generating set of G.

Let Ly > 1 and C = 0 be such that the G-action on H induced by ¢ is (L1, C)-uniform with
respect to T'. In particular, for every g € G the function ¢,: H — H is an (L1, C1)-quasi-isometry
I'H,T)—>T(HT).

Now, we prove that if the induced quasi-action of G on H is uniform with respect to T', then
q: I'(G,S) - T'(H,T) is a quasi-isometry. Observe that every vertex of I'(H,T) is at distance
at most Cp from ¢(G) with respect to dist g7,y and hence with respect to dist g 7). Below we
prove inequalities (1) and (2) which will conclude proof.

Claim: There is constant L such that

(1) dist(zy(a(a), a(b)) < Ldist(g,s)(a,b).

for any a,be G.
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Proof of claim: Let s € S. Then there are f,g € G, h € H and t € T such that s = f~'g and

dist(z,1)(¢(f), h) < Ko, dist(m,1,)(q(9), ht) < Ko
It follows that
dist 1) (qr(e), gg(e)) = distr)(a(f), a(g)) < 2Ko + 1.
Since the quasi-action of G on I'(H,T) is (L1, Cy)-uniform, the previous inequality implies that

dist g1y (e, q(s)) = dist(g,7)(ge(e), qp-14(€))
< Lydist g 7y)(qr © ge(€), a5 0 gp-14(€)) + C1
< Ludist(g 1(gr(e), q (6)) +3Ch
< Li(2Kp+ 1) +3C) =
For any g € G and s € S, we have that

dist s .1)(9(9), a(gs)) = dist 1) (g9(€), ggs(€))
Ll dist HT qQ 10 qQ(e)v QQ—l o QQs(e)) + Cl
gs(e)> + 301
)

(

(
< Ly distg 7y (e, g
<L1dIStHT (q() ( )+3Cl.

and hence

dist g7 (a(9), a(9s)) < dist(r 1) (a(9), a(gs)) < L
where L = L1(Lg) + 3C1. If a,b € G and [uo,...,u,] is a geodesic in T'(G, S) from a to b, then
the triangle inequality implies inequality (1).
Claim: For any a,b € G we have

(2) dist(g,5)(a, b) < dist(,1y(q(a), q(b)).

Proof of claim: Suppose that [ho, ..., h] is a geodesic in T'(H,T) from ¢(a) to g(b). Since
q: I'(G,Sy) — T'(H,Ty) is a (Lo, Cp)-quasi-isometry, for each i, there is g; € G such that
dist(z7,1)(q(9i), hi) < Co. Let go = a and g¢ = b. Observe that g; 'giv1 € S for 0 < i < ¢,
and hence dist( 5)(g:, gi+1) < 1. Now, [go, ..., ge] is a path in I'(G, S) from a to b and therefore
dist(g,s)(a,b) < dist(gz7)(q(a), q(b)) proving inequality (2). & O

Corollary 2.6. Let G and H be groups with finite generating sets Sy and Ty. Let q: G — H
be a group homomorphism which is also an (Lo, Cop)-quasi-isometry q: T'(G,Sy) — I'(H,Tp). If
T c H contains Ty, then there is S < G containing Sy such that q: T'(G,S) — T'(H,T) is a

quasi-isometry.

Proof. Let g: H — G be a quasi-inverse of ¢ and, by increasing Ly and Cj if necessary, assume
that ¢: T'(H,Ty) — T'(G, So) is a (Lo, Cp)-quasi-isometry. Moreover, suppose ¢ o ¢ and G o ¢
are at distance at most Cp from the corresponding identity maps with respect to dist(z 7)) and

dist(g,s,). Note that for any g € G,
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Hence ¢4 is an (1, Cp)-quasi-isometry since it is the composition of ¢ o g followed by the isometry
given by multiplication on the left by ¢(g). Then the proof concludes by invoking Proposition 2.5.
O

The following result is the particular case of Corollary 2.6 in which H is a finite index subgroup
of G. In this case, one can give a more algebraic description of the generating set S. The proof

follows the same lines as the previous argument modulo Lemma 2.8.

Proposition 2.7. Let H be a finite index normal subgroup of a finitely generated group G.
Let T be a generating set of H, let R be a right transversal of H in G, and let S =T u R.
If the G-action by conjugation on H is a uniform quasi-action on I'(H,T), then the inclusion
I'(H,T) — I'(G, S) is a quasi-isometry.

We divert the proof of the proposition after the following lemma.

Lemma 2.8. Let H be a finite index normal subgroup of a finitely generated group G. Let T be
a generating set of H containing a finite generating set Ty, let R be transversal of H in G, let
So be a finite generating set of G, and let q: T'(G,Sy) — I'(H,Ty) be the quasi-isometry defined
by q(hg) = h for he H and g € R. The following statements are equivalent:

(1) The G-action by conjugation on H is a uniform quasi-action on I'(H,T).

(2) The quasi-action of G on H induced by q is uniform with respect to T

Proof. Take as the quasi-inverse of ¢ the inclusion H < G. For he H, let L,: H — H be given
by Ly (z) = hz, i.e. multiplication on the left. Note that Lj: I'(H,T) — I'(H,T) is an isometry
for every h € H.

Let g € G and suppose that g = h,g. where h, € H and g, € R. Then

a9(h) = a(gh) = a(ghg™ ' hugs) = ghg™ hs = haguhgy by ha = huguhgy
and hence
g = Ln, © Ad(gx),
where Ad(g«) is conjugation by g.. It follows ¢4: I'(H,T) — I'(H, T) is an (L, C')-quasi-isometry
for all g € G if and only if Ad(g«): I'(H,T) — I'(H,T) is an (L, C)-quasi-isometry for all g, € R.
In particular, the first statement implies the second by Remark 2.3, and the second statement

implies the first since the constants L and C' hold for all conjugations. U

Proof of Proposition 2.7. Let Ty < T be a finite generating set of H, let Sy = Ty u R. Note that Sy
is a finite generating set of G. Then ¢: I'(G, Sy) — I'(H, Tp) is a (Lo, Cp) quasi-isometry for some
Lo > 1 and Cy > 0, and the quasi-inverse ¢ can be taken as the inclusion I'(H, Tp) — I'(G, So).

Observe that in I'(G, S) the vertices g = hr and ¢(g) = h are adjacent since r € S. Therefore,
if [vo,...,v¢] is a geodesic path in I'(H,T) from ¢(a) to q(b), then [a,vo,...,ve, b] is a path in
I'(G, S) from a to b, and hence

diSt(G,S) (a7 b) < diSt(H,T) (q(a)a q(b)) +2.

We now prove the other inequality. Since the G-action on H by conjugation is a uniform
quasi-action on I'(H,T), Lemma 2.8 implies that the quasi-action of G on H induced by ¢ is
(L1, C1)-uniform with respect to 7', for some L; > 1 and C; > 0.
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Let Ko = Lo+ Cy + 1. Observe that
Sc{f'geG: there are he H and t € T such that

dist(g,1,)(q(f), h) < Ko and dist(g1,)(q(9), ht) < Ko}

Indeed, let s € S = T U R, there are two cases. First, if se T let f = h =e¢and g =1t = s;
and second if s€ Rlet f =h =e, g = s and t any element of Ty. Then, exactly as in the first
claim in the proof of Proposition 2.5, one defines a constant L = L(Ly,Cy, Ko) and deduces the

inequality

(3) dist(zy(q(a), ¢(b)) < Ldist(g s)(a,b).

It remains to show

(4) diSt(G,S) (a, b) < diSt(H,T) (q(a), q(b)) + 2.

for any a,b € G, concluding the proof. This is clear since I'(H,T) is a subgraph of I'(G,T') and
distg 5(9,q(g9)) <1 for any g € G. O

The following example by Minasyan and Osin illustrates the need for the hypothesis relating
to the conjugation action in Corollary 2.7.

Example 2.9. [MO19] Let H = {a,b) be the free group of rank two, let G = {a,b,t: tat~! =
b, t?=¢e), let T = {b,a,a t,a®,a=2,...} and S = T U {t}. The inclusion I'(H,T) — I'(G, S)
is not a quasi-isometry. Indeed, in G we have ta™t~' = b" and hence dist(,g)(e,b") = 3 but
dist(g,1y(e,b") = n for every n. In particular, the map I'(H,T) — I'(H,T) given by h tht=!
is not a quasi-isometry, and hence the G-action on H by conjugation is not an action by quasi-

isometries.

3. QUASI—ISOMETRIES AND HYPERBOLICALLY EMBEDDED SUBGROUPS

In this section, we will prove Theorem A. The theorem is obtained by putting together a simple
characterization of hyperbolically embedded subgroups in terms of coned-off Cayley graphs which
appeared in work of Rashid and the second author, see [MR21, Propositions 1.5 and 5.8]; some
results about quasi-isometries of pairs from [HMS21], and some basic facts about hyperbolically
embedded subgroups from [DGO17|. Below we state these results and then we discuss the proof
of Theorem 3.11.

Definition 3.1 (Reduced collections). A collection of subgroups Q of a group H is reduced if
for any P,Q € Q and g € H, if P and gQg~' are commensurable subgroups then P = @ and
ge P.

Remark 3.2. An almost malnormal collection is reduced.
Definition 3.3 (Fine). Let I' be a graph and let v be a vertex of I'. Let
T, ={we V()| {v,w}e EI)}.

denote the set of the vertices adjacent to v. For x,y € T,T", the angle metric Z,(x,y) is the
length of the shortest path in the graph I'\{v} between z and y, with Z,(z,y) = oo if there is
no such path. The graph I' is fine at v if (T,T', Z,) is a locally finite metric space. The graph T’
is fine at C < V(') if I is fine at v for all v e C.
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Definition 3.4 (Coned-off Cayley graph). Let G be a group, let P be an arbitrary collection
of subgroups of G, and let S be a subset of G. Denote by G/P the set of all cosets gP with
g€ G and P € P. The coned-off Cayley graph of G with respect to P is the graph f‘(G,P7S)
with vertex set G U G/P and edges are of the following type

e {g,gs} for se S,

o {r,gP} forge G, Pe P and x € gP.

We call vertices of the form gP cone points.

Proposition 3.5. [MR21]| Let P be a collection of infinite subgroups of G and let S be a subset
of G. Then P —, (G,S) if and only if the Coned-off Cayley graph T'(G,P,S) is a connected

hyperbolic graph which is fine at every cone vertex.

Proposition 3.6. [HMS21, Proposition 5.6] Let G and H be groups, let S € G and T < H, and
let So < S and Ty < T be finite generating sets of G and H respectively. Consider collections P
and Q of subgroups of G and H respectively. Let q: G — H be a function.
Suppose q is a quasi-isometry I'(G,S) — T'(H,T), is a quasi-isometry of pairs (G, P,Sy) —

(H,Q,Ty), and q is a bijection G/P — H/Q.

(1) Let ¢ = q u q, then G is a quasi-isometry f‘(G,P, S) — f‘(H, Q,T).

(2) If T(H,Q,T) is fine at cone vertices, then T'(G, P, S) is fine at cone vertices.

(3) If Q =, (H,T), then P —y (G, S).

Items (1) and (2) of Proposition 3.6 are taken from [HMS21, Proposition 5.6], and the last

item is a direct consequence of Proposition 3.5.

Proposition 3.7. [HMS21, Proposition 5.12| Let ¢: (G,P) — (H,Q) be a (L,C, M)-quasi-
isometry of pairs. Then

(1) q is a surjective function G/P — H/Q if Q is reduced.

(2) q is a bijection G/P — H/Q if P and Q are reduced.

Proposition 3.8. [HMS21, Proposition 6.2] Let P* be a refinement of a finite collection of
subgroups P of a finitely generated group G. If P is a finite index subgroup of Commeg(P) for
every P € P, then (G, P) and (G, P*) are quasi-isometric pairs via the identity map on G.

Proposition 3.9. [HMS21, Proposition 6.7| Let q: (G, P) — (H, Q) be a quasi-isometry of pairs.
If Q is an almost malnormal finite collection of infinite subgroups and P is a finite collection,

then any refinement P* of P is almost malnormal.

Proposition 3.10. [DGO17, Proposition 4.33| Let P be a collection of subgroups of a group G.

If P —p G then P is an almost malnormal collection.
We are now ready to prove Theorem A.

Theorem 3.11 (Theorem A). Let q: G — H be a quasi-isometry of finitely generated groups,
let P and Q be finite collections of subgroups of G and H respectively, and let S and T be (not
necessarily finite) generating sets of G and H respectively. Suppose

(1) q: (G,P) — (H, Q) is a quasi-isometry of pairs, and

(2) q: T(G,S) - T'(H,T) is a quasi-isometry.
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The following statements hold:

(1) If P and Q are reduced collections in G and H respectively; then P —y (G,S) if and
only if Q@ —y, (G, T).
(2) If Q contains only infinite subgroups and Q <, (G,T) then P* —} (G, S).

Proof. For the first statement, since P and Q are reduced, Proposition 3.7 implies that ¢: G/P —
H/Q is a bijection. Then Proposition 3.6 implies that f‘(G, P, S) is hyperbolic and fine at cone
vertices if and only if f(H , Q,T) is hyperbolic and fine at cone vertices. Then Proposition 3.5
concludes the proof of the first statement.

The second statement is a consequence of the first statement as follows. That Q <, H implies
that Q is an almost malnormal collection of subgroups in H, see Proposition 3.10. It follows
that Q is reduced in H. Then, since Q contains only infinite subgroups, Proposition 3.9 implies
that P* is reduced. By Proposition 3.8, ¢: (G, P*) — (H, Q) is a quasi-isometry of pairs. Then
Q <, H and the first statement of the proposition imply that P* — (G, S). O

4. HYPERBOLICALLY EMBEDDED SUBGROUPS AND COMMENSURABILITY

In this section we prove Theorem E. The argument uses the following proposition which is
a strengthening of [MS21, Proposition 2.15|. It essentially follows from the proof in the cited

article; but we have included the proof for the convenience of the reader.

Proposition 4.1. Let H be a finite index subgroup of a finitely generated group G, and let Q be

a finite collection of subgroups of H. The following statements are equivalent:

(1) The inclusion H — G is a quasi-isometry of pairs (H, Q) — (G, Q).
(2) For any Q € Q and g € G, there is Q' € Q and h € H such that hdistg(g9Q, hQ'") < .

Proof. That (1) implies (2) is trivial. Assume statement (2). Since H is a finite index subgroup
of the finitely generated group G, assume H — G is an (L, C) quasi-isometry. Since H is finite
index in G, and Q is a finite collection, the H-action on G/Q has finitely many orbits. For
gQ € G/Q, let

hdistc(gQ, H/Q) := min {hdistc(gQ, hQ'): hQ' € H/Q} .

Let R be a finite collection of orbit representatives of the H-action on G/Q. By hypothesis, for
gQ € R there is h@Q' € H/Q such that hdist(¢Q, hQ’) < oo and therefore

M = max{hdistq(9Q, H/Q): gQ € R} < w0
is a well defined integer since R is a finite set. Since the subset H/Q of G/Q is H-invariant,
hdistg(¢9Q, H/Q) = hdistg(hgQ, H/Q)
for every gQ € R and h € H. Since R is a collection of representatives of orbits of G/Q,
hdistg(9Q, H/Q) < M
for every gQ € G/Q. Hence (H, Q) — (G, Q) is an (L, C, M) quasi-isometry of pairs . O

Remark 4.2. Let G be a group and let T' and S generating sets with finite symmetric difference.
Then the identity map on G is a quasi-isometry I'(G,T) — I'(G, S).
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Theorem 4.3 (Theorem E). Let H be a finite index normal subgroup of a finitely generated
group G, and let Q be a finite collection of infinite subgroups of H such that Q < (H,T).
Suppose:

(1) The G-action by conjugation on H is a uniform quasi-action on I'(H,T).

(2) The collection {hQh~™': he H and Q € Q} is invariant under conjugation by G.
If Q* is a refinement of Q in G and R is a transversal of H in G, then Q* <} (G,T U R).

Proof. Since H is finitely generated, by adding a finitely many elements we can assume that T
generates H. Note that this preserves Q < (H,T) by [DGO17, Cor. 4.27|, and the quasi-
isometry type of I'(H,T') by Remark 4.2. Under this assumption, the conclusion will follow from
the second statement of Theorem 3.11 applied to the quasi-isometry of finitely generated groups
given by the inclusion H — G.

Since Q <, (H,T), Q is an almost malnormal collection, see Proposition 3.10. The assump-
tion that Q consist only of infinite subgroups implies that for any @) € O,

Q = Commpg(Q) = Commg(Q) n H.

Since H is finite index in G, we have that @ is finite index in Commg(Q). Then, Proposition 3.8
implies that the identity map on G is a quasi-isometry of pairs (G, Q) — (G, @*). On the other
hand, since the collection {h@Qh~': h € H and Q € Q} is invariant under conjugation by elements
of G, we have for any g € G and Q € Q there is h € H such that ¢gQ¢~' = hQ'h~! and hence

hdistc(9Q, hQ') < hdista(9Q, Q7) + hdistc(Q7, (Q")") + hdist((Q")", hQ') < .

Proposition 4.1 implies that H < G is a quasi-isometry of pairs (H, Q) — (G, Q). It follows
that H < G is a quasi-isometry of pairs (H, Q) — (G, Q*) as it is the composition (H, Q) —
(G,Q) — (G,Q*). Let R be a transversal of H in G and let S = T u R. Since the G-action
by conjugation on H is uniform on I'(H,T), Proposition 2.7 implies that H <— G is a quasi-
isometry I'(H,T) — (G, S). The hypothesis of Theorem 3.11 has been verified and therefore,
Q <, (H,T) implies Q* <, (G, S). O

5. SEMI-DIRECT PRODUCTS AND HYPERBOLICALLY EMBEDDED SUBGROUPS

In this section we will prove Theorem F about semi-direct products. The hypothesis of the
following proposition and theorem reflects the issues posed by the example of Minasyan and Osin
(Example 2.9).

Proposition 5.1. Let A be a group with (not necessarily finite) generating set T, let H be a
collection of subgroups, and let F < Aut(A) be a finite subgroup. Suppose that T and H are
F-invariant, and the F-action on H is free. Let Hr be a collection of representatives of F'-orbits
i H. Then the inclusion A — A x F induces:

(1) a quasi-isometry T'(A,T) > T(Ax F,T U F);

(2) and, if A is finitely generated, a quasi-isometry of pairs (A, H) — (A x F,Hp).

Proof. To prove the first statement, let S =T u F and let disty and distg be the word metrics
on A and A x F induced by T, and S respectively. Let q: A — A x F be the inclusion, and
let g: A x F — A such that for a € A and f € F, g(af) = a. Note that g is a well defined
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A-equivariant map since each element of A x F' can be expressed as a product af in a unique
way. Observe that goq is the identity on A, and ¢qoq is at distance one from the identity map on
A x F with respect to distg. Since the Cayley graph I'(A,T") is a subgraph of I'(A x F,T U F),
it is immediate that for any u,v € A, distg(q(u),q(v)) < disty(u,v). To conclude the proof the
statement, we show that for any u,v € A x F, distp(q(u),G(v)) < distg(u,v). Note that it is
enough to consider the case that distg(u,v) = 1. Let wy,wy € A x F such that distg(wy,ws) = 1.
Then wy = a1f; and wy = asfo and G(w;) = a;. It follows that g = (a1 f1) lasfo € T U F.
Observe that

1 _ _ -1 _ -1 -1 _ -1
g=fi 1a1 Lagfo = (ay 1)f1 fi Lagfo = (ay 1)f1 as' f1 Lfy = (ay 1a2)f1 f1 'foeTUF.

There are two cases, either ge T'or g e F, since Tn F = . Weregard T u F and F as a
subset and a subgroup of A x F' respectively. If g € T, then f; = fy and hence (al_lag)ff1 eT;
since T' is F-invariant, a; and ag are adjacent in I', and hence distp(G(wy), g(wz)) = 1. If g€ F,
then a; = ag and hence distr(g(wy), g(wz2)) = 0.

For the second statement, suppose that A is finitely generated and let dist denote word metric
on A x F induced by finite generating set, and let hdist 45 be the induced Hausdorff distance.
Let M = maxyepdist(1, f). Since the inclusion A — A x F' is a quasi-isometry of finitely
generated groups and Hp < H, it is enough to prove that for any H € H there is a left coset
(A x F)/Hr at Haudorff distance at most M in A x F. Let H € H. Since the F-action on H
by conjugation is free, there is a unique f € F' and a unique K € Hp such that H = fKf~ L
Observe that

hdist(H, fK) = hdist(fK f !, fK) < dist(1, f ') < M,

and this completes the proof. O

Theorem 5.2 (Theorem F). Let A be a finitely generated group with (not necessarily finite)
generating set T', and let H be a finite collection of infinite subgroups such that H —p, (A, T).
If F < Aut(A) is finite, T and H are F-invariant and the F-action on H is free, then Hp —p,
(A x F,T U F) where Hp is collection of representatives of F'-orbits in H.

Proof. By Proposition 5.1, the inclusion A < A x F' induces a quasi-isometry I'(A4,T) — I'(A x
F,T U F), and a quasi-isometry of pairs (4,H) — (A x F,Hp). Since H <} A, the collection H
is almost malnormal in A; then the assumption that F' acts freely on H implies that a refinement
of H in A x F' is Hp, this was observed in Example 1.6. Since H contains only infinite subgroups
and H —j A, Theorem 3.11 implies that Hp <, (A x F,T U F). O
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