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Abstract. We give technical conditions for a quasi-isometry of pairs to preserve a subgroup
being hyperbolically embedded. We consider applications to the quasi-isometry and commen-
surability invariance of acylindrical hyperbolicity of finitely generated groups.

1. Introduction

A group G is acylindrically hyperbolic if it admits a non-elementary, acylindrical action on a
hyperbolic space. An alternative characterisation is that G is acylindrically hyperbolic if and
only if G contains a hyperbolically embedded subgroup H, denoted H ãÑh G, we will give a
characterisation from [MR21] in Proposition 3.5.

The class of acylindrically hyperbolic groups generalises the classes of non-elementary hyper-
bolic and relatively hyperbolic groups whilst sharing many similar properties [Osi16]. In spite of
this there are still foundational questions that remain open, for instance, it is known that a group
being hyperbolic or relatively hyperbolic is invariant under quasi-isometry [Gro87] [Dru09], but
the corresponding question for acylindrical hyperbolicity is still open.

Question 1.1. [Osi18, Question 2.20(a)] Is the class of finitely generated acylindrically hyper-
bolic groups closed under quasi-isometry?

Some partial results are known, for instance acylindrical hyperbolicity passes to finite-index
subgroups and is preserved by quotienting out a finite normal subgroup [MO15]. If the group
is AH-accessible then acylindrical hyperbolicity can be passed to finite extensions [MO19]. The
property of being AH-accessible also passes to finite-index overgroups [Bal20]. However, not
every finitely presented acylindrically hyperbolic group is AH-accessible [ABO19, Theorem 2.18].
Some experts in the field do not expect a complete positive answer to Question 1.1.

This article relies on the notion of quasi-isometry of pairs, and our results provide technical
conditions to ensure a quasi-isometry of pairs carries the property of being a hyperbolically
embedded subgroup.

Definition 1.2 (Quasi-isometry of pairs). Consider two pairs pG,Pq and pH,Qq where G and
H are finitely generated groups with chosen word metrics distG and distH . Denote the Hausdorff
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distance between subsets of H by hdistH . An pL,Cq-quasi-isometry q : G Ñ H is an pL,C,Mq-
quasi-isometry of pairs q : pG,Pq Ñ pH,Qq if the relation

9q “ tpA,Bq P G{P ˆ H{Q : hdistHpqpAq, Bq ă Mu

satisfies that the projections into G{P and H{Q are surjective.

Example 1.3 (Quasi-isometry of pairs and finite extensions). Let H be a finite index normal
subgroup of finitely generated group G, and let Q be a finite collection of subgroups of H.
Then the inclusion pH,Qq ãÑ pG,Qq is a quasi-isometry of pairs if the collection thQh´1 : h P

H and Q P Qu is invariant under conjugation by G, see Proposition 4.1.

Recall that the commensurator of a subgroup P of a group G is the subgroup

CommGpP q “ tg P G : P X gPg´1 is a finite index subgroup of P and gPg´1u.

Definition 1.4 (Refinements). Let P be a collection of subgroups of group G. A refinement P˚

of P is a set of representatives of conjugacy classes of the collection of subgroups

tCommGpgPg´1q : P P P and g P Gu.

Example 1.5 (Refinements and qi of pairs). Let Q be a finite collection of subgroups of a finitely
generated group H and let Q˚ be a refinement. If each Q P Q is finite index in CommHpQq then
the identity map on G is a quasi-isometry of pairs pH,Qq Ñ pH,Q˚q.

Example 1.6 (Refinements and finite extensions). Let A be a group, let H be an almost mal-
normal collection of infinite subgroups, and let F ď AutpAq be a finite subgroup. If F acts freely
on H and HF is a collection of representatives of F -orbits in H, then a refinement of H in A¸F

is HF .

Definition 1.7 (Reduced collections). A collection of subgroups P of a group G is reduced if
for any P,Q P P and g P G, if P and gQg´1 are commensurable then P “ Q and g P P .

Our first result, Theorem A, describes a strategy to obtain positive results to Question 1.1.
For a group G with a generating set S, let ΓpG,Sq denote the corresponding Cayley graph, see
Definition 2.4.

Theorem A (Theorem 3.11). Let q : G Ñ H be a quasi-isometry of finitely generated groups,
let P and Q be finite collections of subgroups of G and H respectively, and let S and T be (not
necessarily finite) generating sets of G and H respectively. Suppose

(1) q : pG,Pq Ñ pH,Qq is a quasi-isometry of pairs, and
(2) q : ΓpG,Sq Ñ ΓpH,T q is a quasi-isometry.

The following statements hold:

(1) If P and Q are reduced collections in G and H respectively; then P ãÑh pG,Sq if and
only if Q ãÑh pG,T q.

(2) If Q contains only infinite subgroups and Q ãÑh pG,T q then P˚ ãÑh pG,Sq.

Qi-characteristic collections. The first numbered hypothesis of Theorem A raises the fol-
lowing problem: Given a finite collection of subgroups Q of a group H and a quasi-isometry
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q : G Ñ H of finitely generated groups, is there a collection P of subgroups of G such that
q : pG,Pq Ñ pH,Qq is a quasi-isometry of pairs?

This problem was studied in [MS21] where the notion of qi-characteristic collection is intro-
duced and it is proved that if the collection Q is qi-characteristic in H, then any quasi-isometry
of finitely generated groups induces a collection P.

Definition 1.8 (Qi-characteristic). [MS21] A collection of subgroups P of a finitely generated
group G is quasi-isometrically characteristic (or shorter qi-characteristic) if P is finite; each
P P P has finite index in its commensurator; and for every L ě 1 and C ě 0 there is M “

MpG,P, L, Cq ě 0 such that every pL,Cq-quasi-isometry q : G Ñ G is an pL,C,Mq-quasi-
isometry of pairs q : pG,Pq Ñ pG,Pq.

Example 1.9. The argument by Behrstock, Druţu and Mosher proving quasi-isometric rigid-
ity of relative hyperbolicity with respect to non-relatively hyperbolic groups (NRH groups)
shows that if H is hyperbolic group relative to a collection Q of NRH subgroups, then Q is
qi-characteristic [BDM09, Theorems 4.1 and 4.8]. Another example is provided by mapping
class groups. Ruling out a few surfaces of low complexity, any self quasi-isometry of the map-
ping class group is at uniform distance from left multiplication by an element of the group,
see the work of Behrstock, Kleiner, Minsky and Mosher [Beh+12, Theorem 1.1]. As a conse-
quence, the hyperbolically embedded (virtually cyclic) subgroup generated by a pseudo-Anosov
is qi-characteristic.

Corollary B. Let G and H be finitely generated groups, let T be a generating set of H, let Q be a
finite collection of subgroups of H such that Q ãÑh pH,T q, and let q : G Ñ H be a quasi-isometry.
If

(1) Q is a qi-characteristic collection of subgroups of H, and
(2) there is a generating set S Ă G such that q : ΓpG,Sq Ñ ΓpH,T q is a quasi-isometry;

then there is a finite collection P of subgroups of G such that P ãÑh pG,Sq and q : pG,Pq Ñ

pH,Qq is a quasi-isometry of pairs.

Proof. Without loss of generality, assume that all subgroups in Q are proper infinite subgroups.
Note that removing finite subgroups from Q preserves being qi-characteristic and that Q ãÑh

pH,T q. On the other hand, if Q contains H, then the theorem is trivial by taking P the collection
that contains only G and S any finite generating set of G. Since Q is qi-characteristic, the quasi-
isometry q : G Ñ H induces a finite collection P such that q : pG,Pq Ñ pH,Qq is a quasi-isometry
of pairs, this is precisely [MS21, Theorem 1.1]. Then the second statement of Theorem A and
Q ãÑh pH,T q imply that P˚ ãÑh pG,Sq. □

Uniform Quasi-actions. The second numbered hypothesis of Theorem A raises the problem:
Given a group H with a generating set T and a quasi-isometry q : G Ñ H of finitely generated
groups, is there a generating set S Ă G such that q : ΓpG,Sq Ñ ΓpH,T q is a quasi-isometry of
Cayley graphs?

We show that a positive answer to this question is equivalent to asking that the quasi-action
of G on H induced by q is T -uniform in the following sense, see Proposition C.
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Definition 1.10 (Uniform induced quasi-action). Let G and H be finitely generated groups and
let q : G Ñ H be a quasi-isometry with quasi-inverse q̄. Let T Ă H be a generating set (possibly
infinite). We say that the quasi-action of G on H induced by q is uniform with respect to T if
there are constants L ě 1, C ě 0 such that for each g P G the function qg : H Ñ H given by
qgphq “ qpg ¨ q̄phqq is an pL,Cq-quasi-isometry qg : ΓpH,T q Ñ ΓpH,T q.

Example 1.11 (Uniform quasi-action and finite extensions). Let H be a finite index normal
subgroup of finitely generated group G and let T be a generating set of H invariant under
conjugation by G. The G-action by conjugation on H preserves the word metric induced by T .
On the other hand, any transversal R of H in G induces a quasi-isometry q : G Ñ H given by
qphgq “ h for h P H and g P R. In this case the quasi-action of G on H induced by q is uniform
with respect to T , see Lemma 2.8.

Proposition C (Proposition 2.5). Let G and H be groups with finite generating sets S0 and T0,
and let q : ΓpG,S0q Ñ ΓpH,T0q be a quasi-isometry. Let T Ă H containing T0. The following
statements are equivalent:

(1) The quasi-action of G on H induced by q is uniform with respect to T .
(2) There is S Ă G containing S0 such that q : ΓpG,Sq Ñ ΓpH,T q is a quasi-isometry.

Corollary D. Let G and H be finitely generated groups with finite collections of infinite subgroups
P and Q respectively. Suppose q : pG,Pq Ñ pH,Qq is a quasi-isometry of pairs inducing a T -
uniform quasi-action of G on H. If Q ãÑh pH,T q, then P˚ ãÑh G.

Proof. Since the quasi-action of G on H induced by q is T -uniform, Proposition C implies that
there is a generating set S of G such that q : ΓpG,Sq Ñ ΓpH,T q is a quasi-isometry. Then the
second statement of Theorem A and Q ãÑh pH,T q imply that P˚ ãÑh pG,Sq. □

Let us remark that for this last corollary, in the case that T is finite, then there is a finite
S Ă G such that P ãÑh pG,Sq; this case is implied by the results on quasi-isometric rigidity of
relative hyperbolicity in [BDM09].

Finite Extensions. The following application is a particular instance of Theorem 4.3 in the
main body of the article.

Theorem E (Theorem 4.3). Let H be a finite index normal subgroup of a finitely generated group
G, and let Q be a finite collection of infinite subgroups of H such that Q ãÑh pH,T q. Suppose:

(1) The set T is invariant under conjugation by G.
(2) The collection thQh´1 : h P H and Q P Qu is invariant under conjugation by G.

If Q˚ is a refinement of Q in G, then Q˚ ãÑh G.

Example 1.12. Let G “ xa, b, t : tat´1 “ b, t2 “ 1y – F2 ¸ Z2, let H “ xa, by, and let
Q “ txay, xbyu. Note that Q ãÑh H, and, for instance one can take Q˚ “ txayu and observe that
Q˚ ãÑh G. In contrast, for Q0 “ txayu ãÑh H the theorem does not apply since the conjugates
of xay in H are not invariant under conjugation by elements of G.

The next result illustrates concrete examples were Theorem E applies.
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Theorem F (Theorem 5.2). Let A be a finitely generated group with a (not necessarily finite)
generating set T , and let H be a finite collection of infinite subgroups such that H ãÑh pA, T q.
If F ď AutpAq is finite, T and H are F -invariant, and the F -action on H is free, then HF ãÑh

pA ¸ F, T Y F q where HF is collection of representatives of F -orbits in H.

Example 1.13. Let A “ ˚n
i“1Bi with each Bi isomorphic to a fixed finitely generated group

B. Let F “ Zn act on A by cyclically permuting the copies of B. Consider the generating set
of A given by T “

Ťn
i“1Bizt1u, then T is F -invariant. Now, the collection H “ tB1, . . . , Bnu is

hyperbolically embedded into pA, T q and F acts freely by conjugation on H. All of the hypotheses
of the previous theorem have been verified so we conclude that B1 ãÑh pA ¸ F, T Y F q.

Organization. The rest of the article is divided into four sections. Section 2 is on quasi-actions,
it contains the proof of Proposition C as well as some corollaries. The proof of Theorem A is the
content of Section 3. Then Sections 4 and 5 contain the proofs of Theorem E and Theorem F
respectively.

Acknowledgements. The first author would like to thank his PhD supervisor Professor Ian
Leary. The first author was supported by the Engineering and Physical Sciences Research Council
grant number 2127970. This work has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant
agreement No. 850930). The second author acknowledges funding by the Natural Sciences and
Engineering Research Council of Canada, NSERC. Both authors would like to thank Luis Jorge
Sánchez Saldaña.

2. Uniform quasi-actions

Definition 2.1 (Uniform quasi-action). Let G be a group and let X be a metric space. Let QIpXq

denote the set of quasi-isometries X Ñ X. A function G Ñ QIpXq, g ÞÑ fg, is a quasi-action if
there is K ě 0 such that for any g1, g2 P G

(1) the map fg1g2 is at distance at most K from the map fg1 ˝ fg2 in the L8-distance, and
(2) the map fg1 ˝ fg´1

1
is at distance at most K from the identity.

The quasi-action G Ñ QIpXq is uniform if there are constants L ě 1 and C ě 0 such that for
any g P G the map fg is an pL,Cq-quasi-isometry.

It is well known that a quasi-isometry q : G Ñ H of finitely generated groups induces a uniform
quasi-action of G on H:

Definition 2.2 (Uniform quasi-action induced by a quasi-isometry). Let G be a group with
a word metric induced by a finite generating set, let X be a metric space, let q : G Ñ X and
q̄ : X Ñ G be pL0, C0q-quasi-isometries such that q ˝ q̄ and q̄ ˝ q are at distance less than C0 from
the identity maps on X and G respectively. For g P G, let

Lg : G Ñ G, x ÞÑ gx;

and let
qg : X Ñ X qg “ q ˝ g ˝ q̄.

It is an exercise to verify that there are constants L ě 1 and C ě 0 such that:
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‚ For g P G, qg : X Ñ X is an pL,Cq-quasi-isometry.
‚ (G quasi-acts on X) For g1, g2 P G, the map qg1g2 is at distance at most C from the map
qg1 ˝ qg2 ; and the map qg1 ˝ qg´1

1
is at distance at most C from the identity.

‚ (G acts C0-transitively on X) For every x, y P X there is g P G such that distGpx, qgpyqq ď

C.

The map G Ñ QIpXq given by g ÞÑ qg is called the uniform quasi-action of G on X induced by
q and q̄.

Remark 2.3 (Equivalence of Definitions 2.2 and 1.10 ). In the context of Definition 1.10, if the
induced quasi-action of G on H is uniform with respect to T , then G Ñ QIpΓpH,T qq given by
g ÞÑ qq is a uniform quasi-action in the sense of Definition 2.2. Indeed, since T contains a finite
generating set of H there is M ą 0 such that distpH,T q ď M distpH,T0q. Hence if two functions
H Ñ H are at finite L8-distance with respect to distpH,T0q, then the same holds for distpH,T q.

Definition 2.4 (Cayley Graph). Let G be a group with a generating set S. The Cayley graph
ΓpG,Sq of G with respect to S is the G-graph with vertex set G and edge set ttg, gsu : g P G, s P

Su.

Proposition 2.5 (Proposition C). Let G and H be groups with finite generating sets S0 and T0,
and let q : ΓpG,S0q Ñ ΓpH,T0q be a quasi-isometry. Let T Ă H containing T0. The following
statements are equivalent:

(1) The quasi-action of G on H induced by q is uniform with respect to T .
(2) There is S Ă G containing S0 such that q : ΓpG,Sq Ñ ΓpH,T q is a quasi-isometry.

Proof. That the second statement implies the first one is immediate. Conversely, suppose that q
and q̄ are pL0, C0q-quasi-isometries ΓpG,S0q Ñ ΓpH,T0q and ΓpH,T0q Ñ ΓpG,S0q respectively.
Without loss of generality assume that qpeq “ e and q̄peq “ e where e denotes the identity in
each corresponding group.

Let K0 “ L0 ` C0 ` 1 and define

S “ tf´1g P G : there are h P H and t P T such that

distpH,T0qpqpfq, hq ď K0 and distpH,T0qpqpgq, htq ď K0u.

Note that S0 Ă S since q : ΓpG,S0q Ñ ΓpH,T0q is an pL0, C0q-quasi-isometry. In particular, S is
a generating set of G.

Let L1 ě 1 and C1 ě 0 be such that the G-action on H induced by q is pL1, C1q-uniform with
respect to T . In particular, for every g P G the function qg : H Ñ H is an pL1, C1q-quasi-isometry
ΓpH,T q Ñ ΓpH,T q.

Now, we prove that if the induced quasi-action of G on H is uniform with respect to T , then
q : ΓpG,Sq Ñ ΓpH,T q is a quasi-isometry. Observe that every vertex of ΓpH,T q is at distance
at most C0 from qpGq with respect to distpH,T0q and hence with respect to distpH,T q. Below we
prove inequalities (1) and (2) which will conclude proof.

Claim: There is constant L̄ such that

distpH,T qpqpaq, qpbqq ď L̄ distpG,Sqpa, bq.(1)

for any a, b P G.



HYPERBOLICALLY EMBEDDED SUBGROUPS AND QUASI-ISOMETRIES OF PAIRS 7

Proof of claim: Let s P S. Then there are f, g P G, h P H and t P T such that s “ f´1g and

distpH,T0qpqpfq, hq ď K0, distpH,T0qpqpgq, htq ď K0.

It follows that
distpH,T qpqf peq, qgpeqq “ distpH,T qpqpfq, qpgqq ď 2K0 ` 1.

Since the quasi-action of G on ΓpH,T q is pL1, C1q-uniform, the previous inequality implies that

distpH,T qpe, qpsqq “ distpH,T qpqepeq, qf´1gpeqq

ď L1 distpH,T qpqf ˝ qepeq, qf ˝ qf´1gpeqq ` C1

ď L1 distpH,T qpqf peq, qgpeqq ` 3C1

ď L1p2K0 ` 1q ` 3C1 “: L̄0.

For any g P G and s P S, we have that

distpH,T qpqpgq, qpgsqq “ distpH,T qpqgpeq, qgspeqq

ď L1 distpH,T qpqg´1 ˝ qgpeq, qg´1 ˝ qgspeqq ` C1

ď L1 distpH,T qpe, qg´1gspeqq ` 3C1

ď L1 distpH,T qpqpeq, qpsqq ` 3C1.

and hence
distpH,T qpqpgq, qpgsqq ď distpH,T0qpqpgq, qpgsqq ď L̄

where L̄ “ L1pL̄0q ` 3C1. If a, b P G and ru0, . . . , uℓs is a geodesic in ΓpG,Sq from a to b, then
the triangle inequality implies inequality (1). ˛

Claim: For any a, b P G we have

(2) distpG,Sqpa, bq ď distpH,T qpqpaq, qpbqq.

Proof of claim: Suppose that rh0, . . . , hℓs is a geodesic in ΓpH,T q from qpaq to qpbq. Since
q : ΓpG,S0q Ñ ΓpH,T0q is a pL0, C0q-quasi-isometry, for each i, there is gi P G such that
distpH,T0qpqpgiq, hiq ď C0. Let g0 “ a and gℓ “ b. Observe that g´1

i gi`1 P S for 0 ď i ă ℓ,
and hence distpG,Sqpgi, gi`1q ď 1. Now, rg0, . . . , gℓs is a path in ΓpG,Sq from a to b and therefore
distpG,Sqpa, bq ď distpH,T qpqpaq, qpbqq proving inequality (2). ˛ □

Corollary 2.6. Let G and H be groups with finite generating sets S0 and T0. Let q : G Ñ H

be a group homomorphism which is also an pL0, C0q-quasi-isometry q : ΓpG,S0q Ñ ΓpH,T0q. If
T Ă H contains T0, then there is S Ă G containing S0 such that q : ΓpG,Sq Ñ ΓpH,T q is a
quasi-isometry.

Proof. Let q̄ : H Ñ G be a quasi-inverse of q and, by increasing L0 and C0 if necessary, assume
that q̄ : ΓpH,T0q Ñ ΓpG,S0q is a pL0, C0q-quasi-isometry. Moreover, suppose q ˝ q̄ and q̄ ˝ q

are at distance at most C0 from the corresponding identity maps with respect to distpH,T0q and
distpG,S0q. Note that for any g P G,

qgphq “ qpg ¨ q̄phqq “ qpgq ¨ qpq̄phqq.
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Hence qg is an p1, C0q-quasi-isometry since it is the composition of q ˝ q̄ followed by the isometry
given by multiplication on the left by qpgq. Then the proof concludes by invoking Proposition 2.5.

□

The following result is the particular case of Corollary 2.6 in which H is a finite index subgroup
of G. In this case, one can give a more algebraic description of the generating set S. The proof
follows the same lines as the previous argument modulo Lemma 2.8.

Proposition 2.7. Let H be a finite index normal subgroup of a finitely generated group G.
Let T be a generating set of H, let R be a right transversal of H in G, and let S “ T Y R.
If the G-action by conjugation on H is a uniform quasi-action on ΓpH,T q, then the inclusion
ΓpH,T q ãÑ ΓpG,Sq is a quasi-isometry.

We divert the proof of the proposition after the following lemma.

Lemma 2.8. Let H be a finite index normal subgroup of a finitely generated group G. Let T be
a generating set of H containing a finite generating set T0, let R be transversal of H in G, let
S0 be a finite generating set of G, and let q : ΓpG,S0q Ñ ΓpH,T0q be the quasi-isometry defined
by qphgq “ h for h P H and g P R. The following statements are equivalent:

(1) The G-action by conjugation on H is a uniform quasi-action on ΓpH,T q.
(2) The quasi-action of G on H induced by q is uniform with respect to T .

Proof. Take as the quasi-inverse of q the inclusion H ãÑ G. For h P H, let Lh : H Ñ H be given
by Lhpxq “ hx, i.e. multiplication on the left. Note that Lh : ΓpH,T q Ñ ΓpH,T q is an isometry
for every h P H.

Let g P G and suppose that g “ h˚g˚ where h˚ P H and g˚ P R. Then

qgphq “ qpghq “ qpghg´1h˚g˚q “ ghg´1h˚ “ h˚g˚hg
´1
˚ h´1

˚ h˚ “ h˚g˚hg
´1
˚

and hence
qg “ Lh˚

˝ Adpg˚q,

where Adpg˚q is conjugation by g˚. It follows qg : ΓpH,T q Ñ ΓpH,T q is an pL,Cq-quasi-isometry
for all g P G if and only if Adpg˚q : ΓpH,T q Ñ ΓpH,T q is an pL,Cq-quasi-isometry for all g˚ P R.
In particular, the first statement implies the second by Remark 2.3, and the second statement
implies the first since the constants L and C hold for all conjugations. □

Proof of Proposition 2.7. Let T0 Ă T be a finite generating set of H, let S0 “ T0YR. Note that S0

is a finite generating set of G. Then q : ΓpG,S0q Ñ ΓpH,T0q is a pL0, C0q quasi-isometry for some
L0 ě 1 and C0 ě 0, and the quasi-inverse q̄ can be taken as the inclusion ΓpH,T0q ãÑ ΓpG,S0q.

Observe that in ΓpG,Sq the vertices g “ hr and qpgq “ h are adjacent since r P S. Therefore,
if rv0, . . . , vℓs is a geodesic path in ΓpH,T q from qpaq to qpbq, then ra, v0, . . . , vℓ, bs is a path in
ΓpG,Sq from a to b, and hence

distpG,Sqpa, bq ď distpH,T qpqpaq, qpbqq ` 2.

We now prove the other inequality. Since the G-action on H by conjugation is a uniform
quasi-action on ΓpH,T q, Lemma 2.8 implies that the quasi-action of G on H induced by q is
pL1, C1q-uniform with respect to T , for some L1 ě 1 and C1 ě 0.
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Let K0 “ L0 ` C0 ` 1. Observe that

S Ď tf´1g P G : there are h P H and t P T such that

distpH,T0qpqpfq, hq ď K0 and distpH,T0qpqpgq, htq ď K0u.

Indeed, let s P S “ T Y R, there are two cases. First, if s P T let f “ h “ e and g “ t “ s;
and second if s P R let f “ h “ e, g “ s and t any element of T0. Then, exactly as in the first
claim in the proof of Proposition 2.5, one defines a constant L̄ “ L̄pL1, C1,K0q and deduces the
inequality

(3) distpH,T qpqpaq, qpbqq ď L̄ distpG,Sqpa, bq.

It remains to show

(4) distpG,Sqpa, bq ď distpH,T qpqpaq, qpbqq ` 2.

for any a, b P G, concluding the proof. This is clear since ΓpH,T q is a subgraph of ΓpG,T q and
distG,Spg, qpgqq ď 1 for any g P G. □

The following example by Minasyan and Osin illustrates the need for the hypothesis relating
to the conjugation action in Corollary 2.7.

Example 2.9. [MO19] Let H “ xa, by be the free group of rank two, let G “ xa, b, t : tat´1 “

b, t2 “ ey, let T “ tb, a, a´1, a2, a´2, . . .u and S “ T Y ttu. The inclusion ΓpH,T q Ñ ΓpG,Sq

is not a quasi-isometry. Indeed, in G we have tant´1 “ bn and hence distpG,Sqpe, b
nq “ 3 but

distpH,T qpe, b
nq “ n for every n. In particular, the map ΓpH,T q Ñ ΓpH,T q given by h ÞÑ tht´1

is not a quasi-isometry, and hence the G-action on H by conjugation is not an action by quasi-
isometries.

3. Quasi-isometries and Hyperbolically embedded subgroups

In this section, we will prove Theorem A. The theorem is obtained by putting together a simple
characterization of hyperbolically embedded subgroups in terms of coned-off Cayley graphs which
appeared in work of Rashid and the second author, see [MR21, Propositions 1.5 and 5.8]; some
results about quasi-isometries of pairs from [HMS21], and some basic facts about hyperbolically
embedded subgroups from [DGO17]. Below we state these results and then we discuss the proof
of Theorem 3.11.

Definition 3.1 (Reduced collections). A collection of subgroups Q of a group H is reduced if
for any P,Q P Q and g P H, if P and gQg´1 are commensurable subgroups then P “ Q and
g P P .

Remark 3.2. An almost malnormal collection is reduced.

Definition 3.3 (Fine). Let Γ be a graph and let v be a vertex of Γ. Let

TvΓ “ tw P V pΓq | tv, wu P EpΓqu.

denote the set of the vertices adjacent to v. For x, y P TvΓ, the angle metric =vpx, yq is the
length of the shortest path in the graph Γztvu between x and y, with =vpx, yq “ 8 if there is
no such path. The graph Γ is fine at v if pTvΓ,=vq is a locally finite metric space. The graph Γ

is fine at C Ď V pΓq if Γ is fine at v for all v P C.
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Definition 3.4 (Coned-off Cayley graph). Let G be a group, let P be an arbitrary collection
of subgroups of G, and let S be a subset of G. Denote by G{P the set of all cosets gP with
g P G and P P P. The coned-off Cayley graph of G with respect to P is the graph Γ̂pG,P, Sq

with vertex set G Y G{P and edges are of the following type

‚ tg, gsu for s P S,
‚ tx, gP u for g P G, P P P and x P gP .

We call vertices of the form gP cone points.

Proposition 3.5. [MR21] Let P be a collection of infinite subgroups of G and let S be a subset
of G. Then P ãÑh pG,Sq if and only if the Coned-off Cayley graph Γ̂pG,P, Sq is a connected
hyperbolic graph which is fine at every cone vertex.

Proposition 3.6. [HMS21, Proposition 5.6] Let G and H be groups, let S Ă G and T Ă H, and
let S0 Ă S and T0 Ă T be finite generating sets of G and H respectively. Consider collections P
and Q of subgroups of G and H respectively. Let q : G Ñ H be a function.

Suppose q is a quasi-isometry ΓpG,Sq Ñ ΓpH,T q, is a quasi-isometry of pairs pG,P, S0q Ñ

pH,Q, T0q, and 9q is a bijection G{P Ñ H{Q.

(1) Let q̂ “ q Y 9q, then q̂ is a quasi-isometry Γ̂pG,P, Sq Ñ Γ̂pH,Q, T q.
(2) If Γ̂pH,Q, T q is fine at cone vertices, then Γ̂pG,P, Sq is fine at cone vertices.
(3) If Q ãÑh pH,T q, then P ãÑh pG,Sq.

Items (1) and (2) of Proposition 3.6 are taken from [HMS21, Proposition 5.6], and the last
item is a direct consequence of Proposition 3.5.

Proposition 3.7. [HMS21, Proposition 5.12] Let q : pG,Pq Ñ pH,Qq be a pL,C,Mq-quasi-
isometry of pairs. Then

(1) 9q is a surjective function G{P Ñ H{Q if Q is reduced.
(2) 9q is a bijection G{P Ñ H{Q if P and Q are reduced.

Proposition 3.8. [HMS21, Proposition 6.2] Let P˚ be a refinement of a finite collection of
subgroups P of a finitely generated group G. If P is a finite index subgroup of CommGpP q for
every P P P, then pG,Pq and pG,P˚q are quasi-isometric pairs via the identity map on G.

Proposition 3.9. [HMS21, Proposition 6.7] Let q : pG,Pq Ñ pH,Qq be a quasi-isometry of pairs.
If Q is an almost malnormal finite collection of infinite subgroups and P is a finite collection,
then any refinement P˚ of P is almost malnormal.

Proposition 3.10. [DGO17, Proposition 4.33] Let P be a collection of subgroups of a group G.
If P ãÑh G then P is an almost malnormal collection.

We are now ready to prove Theorem A.

Theorem 3.11 (Theorem A). Let q : G Ñ H be a quasi-isometry of finitely generated groups,
let P and Q be finite collections of subgroups of G and H respectively, and let S and T be (not
necessarily finite) generating sets of G and H respectively. Suppose

(1) q : pG,Pq Ñ pH,Qq is a quasi-isometry of pairs, and
(2) q : ΓpG,Sq Ñ ΓpH,T q is a quasi-isometry.
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The following statements hold:

(1) If P and Q are reduced collections in G and H respectively; then P ãÑh pG,Sq if and
only if Q ãÑh pG,T q.

(2) If Q contains only infinite subgroups and Q ãÑh pG,T q then P˚ ãÑh pG,Sq.

Proof. For the first statement, since P and Q are reduced, Proposition 3.7 implies that 9q : G{P Ñ

H{Q is a bijection. Then Proposition 3.6 implies that Γ̂pG,P, Sq is hyperbolic and fine at cone
vertices if and only if Γ̂pH,Q, T q is hyperbolic and fine at cone vertices. Then Proposition 3.5
concludes the proof of the first statement.

The second statement is a consequence of the first statement as follows. That Q ãÑh H implies
that Q is an almost malnormal collection of subgroups in H, see Proposition 3.10. It follows
that Q is reduced in H. Then, since Q contains only infinite subgroups, Proposition 3.9 implies
that P˚ is reduced. By Proposition 3.8, q : pG,P˚q Ñ pH,Qq is a quasi-isometry of pairs. Then
Q ãÑh H and the first statement of the proposition imply that P˚ ãÑ pG,Sq. □

4. Hyperbolically embedded subgroups and commensurability

In this section we prove Theorem E. The argument uses the following proposition which is
a strengthening of [MS21, Proposition 2.15]. It essentially follows from the proof in the cited
article; but we have included the proof for the convenience of the reader.

Proposition 4.1. Let H be a finite index subgroup of a finitely generated group G, and let Q be
a finite collection of subgroups of H. The following statements are equivalent:

(1) The inclusion H ãÑ G is a quasi-isometry of pairs pH,Qq ãÑ pG,Qq.
(2) For any Q P Q and g P G, there is Q1 P Q and h P H such that hdistGpgQ, hQ1q ă 8.

Proof. That (1) implies (2) is trivial. Assume statement (2). Since H is a finite index subgroup
of the finitely generated group G, assume H ãÑ G is an pL,Cq quasi-isometry. Since H is finite
index in G, and Q is a finite collection, the H-action on G{Q has finitely many orbits. For
gQ P G{Q, let

hdistGpgQ,H{Qq :“ min
␣

hdistGpgQ, hQ1q : hQ1 P H{Q
(

.

Let R be a finite collection of orbit representatives of the H-action on G{Q. By hypothesis, for
gQ P R there is hQ1 P H{Q such that hdistpgQ, hQ1q ă 8 and therefore

M “ maxthdistGpgQ,H{Qq : gQ P Ru ă 8

is a well defined integer since R is a finite set. Since the subset H{Q of G{Q is H-invariant,

hdistGpgQ,H{Qq “ hdistGphgQ,H{Qq

for every gQ P R and h P H. Since R is a collection of representatives of orbits of G{Q,

hdistGpgQ,H{Qq ď M

for every gQ P G{Q. Hence pH,Qq ãÑ pG,Qq is an pL,C,Mq quasi-isometry of pairs . □

Remark 4.2. Let G be a group and let T and S generating sets with finite symmetric difference.
Then the identity map on G is a quasi-isometry ΓpG,T q Ñ ΓpG,Sq.



HYPERBOLICALLY EMBEDDED SUBGROUPS AND QUASI-ISOMETRIES OF PAIRS 12

Theorem 4.3 (Theorem E). Let H be a finite index normal subgroup of a finitely generated
group G, and let Q be a finite collection of infinite subgroups of H such that Q ãÑh pH,T q.
Suppose:

(1) The G-action by conjugation on H is a uniform quasi-action on ΓpH,T q.
(2) The collection thQh´1 : h P H and Q P Qu is invariant under conjugation by G.

If Q˚ is a refinement of Q in G and R is a transversal of H in G, then Q˚ ãÑh pG,T Y Rq.

Proof. Since H is finitely generated, by adding a finitely many elements we can assume that T

generates H. Note that this preserves Q ãÑh pH,T q by [DGO17, Cor. 4.27], and the quasi-
isometry type of ΓpH,T q by Remark 4.2. Under this assumption, the conclusion will follow from
the second statement of Theorem 3.11 applied to the quasi-isometry of finitely generated groups
given by the inclusion H ãÑ G.

Since Q ãÑh pH,T q, Q is an almost malnormal collection, see Proposition 3.10. The assump-
tion that Q consist only of infinite subgroups implies that for any Q P Q,

Q “ CommHpQq “ CommGpQq X H.

Since H is finite index in G, we have that Q is finite index in CommGpQq. Then, Proposition 3.8
implies that the identity map on G is a quasi-isometry of pairs pG,Qq ÝÑ pG,Q˚q. On the other
hand, since the collection thQh´1 : h P H and Q P Qu is invariant under conjugation by elements
of G, we have for any g P G and Q P Q there is h P H such that gQg´1 “ hQ1h´1 and hence

hdistGpgQ, hQ1q ď hdistGpgQ,Qgq ` hdistGpQg, pQ1qhq ` hdistppQ1qh, hQ1q ă 8.

Proposition 4.1 implies that H ãÑ G is a quasi-isometry of pairs pH,Qq Ñ pG,Qq. It follows
that H ãÑ G is a quasi-isometry of pairs pH,Qq Ñ pG,Q˚q as it is the composition pH,Qq ãÑ

pG,Qq ÝÑ pG,Q˚q. Let R be a transversal of H in G and let S “ T Y R. Since the G-action
by conjugation on H is uniform on ΓpH,T q, Proposition 2.7 implies that H ãÑ G is a quasi-
isometry ΓpH,T q Ñ pG,Sq. The hypothesis of Theorem 3.11 has been verified and therefore,
Q ãÑh pH,T q implies Q˚ ãÑh pG,Sq. □

5. Semi-direct products and Hyperbolically embedded subgroups

In this section we will prove Theorem F about semi-direct products. The hypothesis of the
following proposition and theorem reflects the issues posed by the example of Minasyan and Osin
(Example 2.9).

Proposition 5.1. Let A be a group with (not necessarily finite) generating set T , let H be a
collection of subgroups, and let F ď AutpAq be a finite subgroup. Suppose that T and H are
F -invariant, and the F -action on H is free. Let HF be a collection of representatives of F -orbits
in H. Then the inclusion A ãÑ A ¸ F induces:

(1) a quasi-isometry ΓpA, T q Ñ ΓpA ¸ F, T Y F q;
(2) and, if A is finitely generated, a quasi-isometry of pairs pA,Hq Ñ pA ¸ F,HF q.

Proof. To prove the first statement, let S “ T Y F and let distT and distS be the word metrics
on A and A ¸ F induced by T , and S respectively. Let q : A ãÑ A ¸ F be the inclusion, and
let q̄ : A ¸ F Ñ A such that for a P A and f P F , q̄pafq “ a. Note that q̄ is a well defined
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A-equivariant map since each element of A ¸ F can be expressed as a product af in a unique
way. Observe that q̄ ˝q is the identity on A, and q ˝ q̄ is at distance one from the identity map on
A ¸ F with respect to distS . Since the Cayley graph ΓpA, T q is a subgraph of ΓpA ¸ F, T Y F q,
it is immediate that for any u, v P A, distSpqpuq, qpvqq ď distT pu, vq. To conclude the proof the
statement, we show that for any u, v P A ¸ F , distT pq̄puq, q̄pvqq ď distSpu, vq. Note that it is
enough to consider the case that distSpu, vq “ 1. Let w1, w2 P A¸F such that distSpw1, w2q “ 1.
Then w1 “ a1f1 and w2 “ a2f2 and q̄pwiq “ ai. It follows that g “ pa1f1q´1a2f2 P T Y F .
Observe that

g “ f´1
1 a´1

1 a2f2 “ pa´1
1 qf

´1
1 f´1

1 a2f2 “ pa´1
1 qf

´1
1 a

f´1
1

2 f´1
1 f2 “ pa´1

1 a2qf
´1
1 f´1

1 f2 P T Y F.

There are two cases, either g P T or g P F , since T X F “ H. We regard T Y F and F as a
subset and a subgroup of A ¸ F respectively. If g P T , then f1 “ f2 and hence pa´1

1 a2qf
´1
1 P T ;

since T is F -invariant, a1 and a2 are adjacent in Γ, and hence distT pq̄pw1q, q̄pw2qq “ 1. If g P F ,
then a1 “ a2 and hence distT pq̄pw1q, q̄pw2qq “ 0.

For the second statement, suppose that A is finitely generated and let dist denote word metric
on A ¸ F induced by finite generating set, and let hdistA¸F be the induced Hausdorff distance.
Let M “ maxfPF distp1, fq. Since the inclusion A ãÑ A ¸ F is a quasi-isometry of finitely
generated groups and HF Ă H, it is enough to prove that for any H P H there is a left coset
pA ¸ F q{HF at Haudorff distance at most M in A ¸ F . Let H P H. Since the F -action on H
by conjugation is free, there is a unique f P F and a unique K P HF such that H “ fKf´1.
Observe that

hdistpH, fKq “ hdistpfKf´1, fKq ď distp1, f´1q ď M,

and this completes the proof. □

Theorem 5.2 (Theorem F). Let A be a finitely generated group with (not necessarily finite)
generating set T , and let H be a finite collection of infinite subgroups such that H ãÑh pA, T q.
If F ď AutpAq is finite, T and H are F -invariant and the F -action on H is free, then HF ãÑh

pA ¸ F, T Y F q where HF is collection of representatives of F -orbits in H.

Proof. By Proposition 5.1, the inclusion A ãÑ A¸F induces a quasi-isometry ΓpA, T q Ñ ΓpA¸

F, T YF q, and a quasi-isometry of pairs pA,Hq Ñ pA¸F,HF q. Since H ãÑh A, the collection H
is almost malnormal in A; then the assumption that F acts freely on H implies that a refinement
of H in A¸F is HF , this was observed in Example 1.6. Since H contains only infinite subgroups
and H ãÑh A, Theorem 3.11 implies that HF ãÑh pA ¸ F, T Y F q. □
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