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HYPERBOLICITY AND BIAUTOMATICITY
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Abstract. We construct a CATp0q hierarchically hyperbolic group (HHG) acting ge-
ometrically on the product of a hyperbolic plane and a locally-finite tree which is not
biautomatic. This gives the first example of an HHG which is not biautomatic, the first
example of a non-biautomatic CATp0q group of flat-rank 2, and the first example of an
HHG which is injective but not Helly. Our proofs heavily utilise the space of geodesic
currents for a hyperbolic surface.

1. Introduction

Let H be a locally compact group with Haar measure µ. A discrete subgroup Γ ă H is
a lattice if µpH{Γq is finite. We say Γ is uniform is H{Γ is compact. Roughly speaking,
we say a lattice Γ ă H1 ˆH2 is irreducible if the projection of Γ Ñ Hi is non-discrete and
if Γ does not split as a direct product of two infinite groups (see Section 2 for details).
Throughout we will denote the n-regular tree by Tn and its automorphism group by Tn.

Automatic and biautomatic groups were developed in the 1980s; with a detailed account
given in the book [Eps+92] by Epstein, Cannon, Holt, Levy, Paterson, and Thurston.
In the 1990s Alonso and Bridson introduced the class of semihyperbolic groups [AB95]
which contains all CATp0q and biautomatic groups. In recent work of Leary and Minasyan
[LM21], the authors construct irreducible uniform lattices in IsompE2nq ˆ T2m (m ě 2,
n ě 1), giving the first examples of CATp0q groups which are not biautomatic. These
groups were classified up to isomorphism by the second author [Val21a] and studied in
the context of fibring by the first author [Hug22a]. It follows from [Hug21b] and [Val21b]
that all known examples of CATp0q but not biautomatic groups are either constructed
from or contain non-biautomatic Leary–Minasyan groups as subgroups.

In the 2010s, the coarse geometric class of hierarchically hyperbolic groups (HHGs)
and spaces (HHSs) were introduced by Behrstock, Hagen and Sisto in [BHS17a] with the
motivation coming from isolating the main geometric features common to mapping class
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groups and compact special groups. Very roughly these are spaces admitting a coordinate
system and hierarchy consisting of and parameterised by hyperbolic spaces, and groups of
isometries acting geometrically whilst preserving the hierarchy and coordinate structure.
The theory has received a lot of attention; being studied and developed by numerous
authors [BHS17b; DHS17; DHS17; Spr18a; Spr18b; AB19; ANS19; BR19; DMS20; RS20;
PS22].

As previously mentioned some of the main motivation for, and examples of, HHGs come
from CATp0q cubical groups [BHS17b; HS20] which are known to be biautomatic by the
work of Niblo and Reeves [NR98]. A 2021 result of Haettel, Hoda and Petyt shows that
HHGs are semihyperbolic [HHP20], as a corollary this gave a new proof that mapping
class groups are semihyperbolic (see also [DMS20] and [Ham09]). One may hope that
proving HHGs are biautomatic would give another proof that mapping class groups are
biautomatic. Thus, a natural question is whether every HHG is biautomatic? It appears
to be open whether any non-biautomatic Leary–Minasyan groups are HHGs—although
experts expect them not to be. In this paper we construct the first example of an HHG
which is not biautomatic.

Theorem A. There exists a non-residually finite torsion-free uniform irreducible lattice
Γ ă PSL2pRq ˆT24 such that Γ is a hierarchically hyperbolic group but is not biautomatic.

The group we construct is a “hyperbolic” analogue of the groups introduced by Leary–
Minasyan in [LM21]. Indeed, Γ is an HNN-extension of an arithmetic surface where the
stable letter commensurates the surface whilst acting as an infinite order elliptic isometry
of the hyperbolic plane RH2. That the action is by isometries allows us to deduce that
Γ is a CATp0q lattice acting freely cocompactly on the product RH2 ˆ T24, where T24 is
the Bass–Serre tree. Note that we adopt the lattice viewpoint so we may use results of
[Hug21b]. From here we apply [Hug22b, Corollary 3.3] to deduce Γ is an HHG.

Our strategy to show that Γ is not biautomatic is very different to Leary–Minasyan’s
work (for example Γ is neither constructed from nor contains a Leary–Minasyan group).
Instead of studying the boundary of a biautomatic structure, we develop a new method to
show the failure of biautomaticity. In particular, we use deep work of Martínez-Granado
and Thurston on extending functions to the space of geodesic currents of a hyperbolic
surface [Mar20; MT21].

The question of whether every automatic group is biautomatic first appeared in [Eps+92,
Question 2.5.6] and [GS91, Remark 6.19]. We do not know if the group Γ is automatic.
In spite of this we can still deduce an amusing consequence.

Corollary B. At least one of the following statements is false:

(1) Every HHG is automatic.
(2) Every automatic group is biautomatic.
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Note that the analogous statement with “CATp0q group” instead of “HHG” follows from
the work of Leary and Minasyan [LM21]. However, since Γ is CATp0q it can be deduced
here too.

Question 1.1. Is the group Γ automatic?

Recall that the flat-rank of a CATp0q group Γ (acting on X), denoted flat-rankpΓq, is
the maximal rank of an isometrically embedded Euclidean space in X.

In [FHT11, Question 43] it was asked if every group acting geometrically on a piece-
wise Euclidean CATp0q 2-complex group is biautomatic. (See [FHT11] and [MOP21]
for recent progress.) One may hope to relax the hypothesis “2-dimensional piece-wise
Euclidean CATp0q” to “flat-rank 2 CATp0q”. Indeed, all previous examples of CATp0q but
not biautomatic groups have had flat-rank at least 3. The next corollary, which follows
from the Flat Torus Theorem, shows that one cannot.

Corollary C. There exists a CATp0q group Γ with flat-rankpΓq “ 2, that is not biauto-
matic.

In [HP20] the authors introduce a property regarding commensurators of abelian sub-
groups, Condition (C), and show that its failure is closely related to Leary–Minasyan
groups [HP20, Proposition 8.4]. A natural question would be to ask whether the failure of
Condition (C) for a CATp0q group is equivalent to the failure of biautomaticity. However,
by [HP20, Theorem 1.3], the group Γ has Condition (C) and fails to be biautomatic.

In [BHS19, Theorem 7.3] it is shown that HHGs are coarse median spaces as introduced
by Bowditch [Bow13]. We say a group is a coarse median group if it acts geometrically
on a coarse median space and the coarse median operator is equivariant up to bounded
error. In [Pet22, Remark 3.14] it is shown that HHGs are coarse median groups. We
remark that Γ appears to be the first example of a coarse median group of type F which
is not biautomatic.

The group Γ also appears as an example highlighting the difference between discrete and
non-discrete versions of “injective” metric spaces. We say that a geodesic metric space
(respectively a graph) X is injective (respectively Helly) if the collection of all metric
balls in X satisfies the Helly property. Injective metric spaces and Helly graphs, as well
as groups acting on them geometrically—injective groups and Helly groups, respectively—
have been extensively studied [Isb64; Dre84; Lan13; DL16; BC08; Cha+20; HO21]. The
following result gives a negative answer to the question in [Hae21, Page 4].

Corollary D. There exists a group Γ which is injective but not Helly and not biautomatic.

Proof. It follows from Theorem A that Γ is not biautomatic. Moreover, Helly groups are
biautomatic [Cha+20, Theorem 1.5(1)], and so Γ is not Helly. On the other hand, for every
metric space X there exists a “smallest” injective metric space EpXq, called the injective
hull of X, into which X embeds isometrically, so that a group action on X extends to an
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action on EpXq [Isb64]. It is known that EpRH2q is proper and finite Hausdorff distance
away from the image of RH2 ãÑ EpRH2q [Hae21, Proposition 4.6]; it also follows from
the definitions that (real) trees are injective and that the ℓ8 product X ˆ8 Y of injective
spaces X and Y is injective. Therefore, the geometric action of Γ on RH2 ˆ8 T24 extends
to a geometric action on the proper injective metric space EpRH2q ˆ8 T24, and so Γ is
injective, as required. □

On the other hand, one may replace the Helly property with a coarse Helly property
to study the classes of coarsely injective and coarsely Helly graphs and groups. Coarsely
injective and coarsely Helly groups have been studied in [HHP20; Cha+20; OV20]; in
particular, it has been shown that all HHGs are coarsely injective [HHP20, Corollary H].
It is currently unknown if all coarsely Helly groups are biautomatic, or even if they all
are Helly.

Question 1.2. Is Γ coarsely Helly?

It has been communicated to us by Alexander Engel and Damian Osajda that they have
shown certain mapping class groups are not Helly. Such groups are HHGs and therefore
coarsely injective.

It is a well known open problem whether S-arithmetic lattices are biautomatic. Indeed,
this is a special case of [McC07, Problem 34] in McCammonds list (after the American
Institute of Mathematics meeting ‘Problems in Geometric Group Theory’ April 23–27,
2007). It would be extremely interesting to adapt the methods here to apply to a uniform
S-arithmetic lattice in PSL2pRq ˆ PSL2pQpq. The main issue is showing that vertex
stabilisers in the action on the Bruhat–Tits tree Tp`1 are quasi-convex with respect to
any biautomatic structure on the lattice. Note that since such a lattice is residually finite,
so if this strategy can be implemented successfully, one would also get a negative answer
to [LM21, Question 12.4].

We end with a broad conjecture which would vastly generalise our work here. The
reader is directed to Section 2 for definitions.

Conjecture 1.3. Let H be a semi-simple real Lie group with trivial centre and no compact
factors. Let T be the automorphism group of a locally-finite unimodular leafless tree.
Suppose T is non-discrete. If Γ is an irreducible non-residually finite uniform pH ˆ T q-
lattice, then Γ is not biautomatic.

1.1. Outline of the paper. In Section 2 we revise the necessary background on lattices,
biautomatic structures, geodesic currents on a hyperbolic surface, and the intersection
form. The remainder of the article is then dedicated to proving Theorem A.

The strategy of the proof of Theorem A is as follows. We first assume that Γ has a
biautomatic structure pB,Mq and consider a biautomatic structure pA,Lq induced by
pB,Mq on a quasi-convex subgroup G; here G is a vertex stabiliser in the action of Γ
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on T . The group G acts freely cocompactly on a copy of RH2 and so can be identified
with a subgroup of PSL2pRq, giving rise to a Riemann surface Σ “ GzPSL2pRq. The
next step is to show that stable word length function τL : G Ñ R with respect to pA,Lq

takes only rational values and extends over the space of geodesic currents of Σ. Now,
the translation length function of G also extends to the space of geodesic currents of Σ.
Moreover, using the density of the projection of Γ to PSL2pRq we show that both functions
agree. Now, the translation length function takes values which are not rational multiples
of each other. This is a contradiction, and so Γ cannot be biautomatic.

In Section 3 we study stable word length τL on a biautomatic structure pA,Lq as a
function from G Ñ R. The key results, Proposition 3.1 and Lemma 3.5, imply that for a
hyperbolic group G the function takes rational values.

In Section 4 we show that the function τL, viewed as a function on the homotopy
classes of closed curves on Σ, satisfies a technical property known as “quasi-smoothing”
(see Proposition 4.2). This allows us to extend τL continuously to the space of geodesic
currents of Σ.

In Section 5 we complete our study of functions on geodesic currents. The key result,
Proposition 5.6, is that if t is an elliptic isometry of RH2 commensurating G such that
xG, ty is dense in PSL2pRq, and if a continuous function F on the space of geodesic
currents of Σ is in a sense “t-invariant”, then F pγq is a constant multiple of the length of
the geodesic representative of γ, where γ is a closed curve on Σ. In the remaining sections,
we construct a lattice Γ ă PSL2pRq ˆT that will allow us to apply this result for F “ τL.

In Section 6 we study properties of irreducible uniform lattices in PSL2pRq ˆ T for
sufficiently general trees. In particular, for a non-residually finite lattice we prove that
projection to PSL2pRq is dense (Lemma 6.1) and that a vertex stabiliser of the action on
the tree T is quasi-convex with respect to any biautomatic structure (Proposition 6.3).

In Section 7 we construct Γ; an explicit example of a non-residually finite irreducible
uniform lattice in PSL2pRq ˆ T24 as an HNN-extension. The key tool is the arithmetic
of quaternion algebras which allow us to ensure the stable letter acts on RH2 as an
infinite order elliptic isometry that commensurates the vertex group. We show that the
translation lengths on RH2 of some elements of a vertex stabiliser in the tree are not
rational multiples of each other (Lemma 7.3).

In Section 8 we prove Theorem A. In the appendix (Appendix A) we detail a presenta-
tion of Γ.
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2. Preliminaries

2.1. Lattices and graphs of groups. Our example will be constructed as a lattice in
PSL2pRqˆT24. To this end we record some definitions and results we will use in Section 6
and Section 7.

Definition 2.1. Let H be a locally compact topological group with right invariant Haar
measure µ. A discrete subgroup Γ ď H is a lattice if the covolume µpH{Γq is finite. A
lattice is uniform if H{Γ is compact and non-uniform otherwise. Let S be a right H-set
such that for all s P S, the stabilisers Hs are compact and open, then if Γ ď H is discrete
the stabilisers in the action of Γ on S are finite.

Let X be a locally finite, connected, simply connected simplicial complex. The group
H “ AutpXq of simplicial automorphisms of X naturally has the structure of a locally
compact topological group, where the topology is given by uniform convergence on com-
pacta.

Note that T the automorphism group of a locally-finite tree T admits lattices if and
only if the group T is unimodular (that is the left and right Haar measures coincide).
In this case we say T is unimodular. We say a tree T is leafless if it has no vertices of
valence one.

Two notions of irreducibility for a lattice will feature in this paper.

Definition 2.2. Let T be a locally-finite unimodular leafless tree not isometric to R and
let T “ AutpT q be non-discrete and cocompact. Let Γ be a uniform pPSL2pRqˆT q-lattice.
We say that Γ is weakly irreducible if one (and hence both—see [Hug21b, Proposition 3.4])
of the images of the projections πPSL2pRq : Γ Ñ PSL2pRq and πT : Γ Ñ T are non-discrete.
We say Γ is algebraically irreducible if there is no finite index subgroup Γ1ˆΓ2 of Γ with Γ1

and Γ2 infinite. By [CM09, Theorem 4.2], the two notions of irreducibility are equivalent
for a pPSL2pRq ˆ T q-lattice Γ. So if Γ is either (and hence both) weakly or algebraically
irreducible we will simply state that Γ is irreducible.

To construct and study lattices in product with a tree we will utilise the graph of lattices
construction from [Hug21b]. Before we do this we will define graphs of groups following
Bass [Bas93].

Definition 2.3. A graph of groups pA,Aq consists of a connected graph A together with
some extra data A “ pVA, EA,ΦAq. This data consists of vertex groups Av P VA for
each vertex v, edge groups Ae “ Ae P EA for each (oriented) edge e, and monomorphisms
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pαe : Ae Ñ Aιpeqq P ΦA for every oriented edge in A. We will often refer to the vertex and
edge groups as local groups and the monomorphisms as structure maps.

Definition 2.4. The path group πpAq has generators the vertex groups Av and elements
te for each edge e P EA along with the relations:

$

’

&

’

%

The relations in the groups Av,

te “ t´1
e ,

teαepgqt´1
e “ αepgq for all e P EA and g P Ae “ Ae.

,

/

.

/

-

Definition 2.5. We will often abuse notation and write A for a graph of groups. The
fundamental group of a graph of groups can be defined in two ways. Firstly, considering
reduced loops based at a vertex v in the graph of groups, in this case the fundamental
group is denoted π1pA, vq (see [Bas93, Definition 1.15]). Secondly, with respect to a
maximal or spanning tree of the graph. Let X be a spanning tree for A, we define
π1pA, Xq to be the group generated by the vertex groups Av and elements te for each
edge e P EA with the relations:

$

’

’

’

&

’

’

’

%

The relations in the groups Av,

te “ t´1
e for each (oriented) edge e,

teαepgqt´1
e “ αepgq for all g P Ae,

te “ 1 if e is an edge in X.

,

/

/

/

.

/

/

/

-

Note that the definitions are independent of the choice of basepoint v and spanning tree
X and both definitions yield isomorphic groups so we can talk about the fundamental
group of A, denoted π1pAq.

We say a group G is covirtually isomorphic to H if there exists a finite normal subgroup
N Ĳ G such that G{N – H. We are now ready to define a graph of PSL2pRq-lattices.

Definition 2.6. A graph of PSL2pRq-lattices pA,A, ψq is a graph of groups pA,Aq that
is equipped with a morphism of graphs of groups ψ : A Ñ PSL2pRq such that:

(1) Each local group Aσ P A is covirtually a PSL2pRq-lattice and the image ψpAσq is
a PSL2pRq-lattice;

(2) The local groups are commensurable in Γ “ π1pAq and their images are commen-
surable in PSL2pRq;

(3) For each e P EA the element te of the path group πpAq is mapped under ψ to an
element of CommPSL2pRqpψepAeqq.

The relevance of a graph of PSL2pRq-lattices is the following special case of [Hug21b,
Theorem A].

Theorem 2.7. [Hug21b, Theorem A] Let pA,A, ψq be a finite graph of PSL2pRq-lattices
with locally-finite unimodular non-discrete Bass-Serre tree T , and fundamental group Γ.
Suppose T “ AutpT q admits a uniform lattice. If each local group Aσ is covirtually
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a uniform PSL2pRq-lattice, and the kernel Kerpψ|Aσq acts faithfully on T , then Γ is a
uniform pPSL2pRq ˆ T q-lattice and hence a CATp0q group. Conversely, if Λ is a uniform
pPSL2pRq ˆ T q-lattice, then Λ splits as a finite graph of uniform PSL2pRq-lattices with
Bass-Serre tree T .

2.2. Biautomatic structures. We are interested in studying when a group G is biauto-
matic; we briefly introduce the necessary definitions and basic results on biautomaticity
below, and refer the interested reader to [Eps+92] for a more comprehensive account.

We remark that the nowadays standard definition of a biautomatic structure that we
give below differs from [Eps+92, Definition 2.5.4] (see [Amr21] for an explanation). How-
ever, for finite-to-one structures these definitions are equivalent [Amr21, Theorem 6].

Let G be a group with a finite generating set A. Formally, we view A as a finite set
together with a function π0

A : A Ñ G that extends to a surjective monoid homomorphism
πA : A

˚ Ñ G, where A˚ is the free monoid on A; we say that a word v P A˚ labels the
element πApvq P G. For simplicity, we will assume that A is symmetric (πApAq “ πApAq´1)
and contains the identity (πAp1q “ 1G for an element 1 P A). We denote by dA the
combinatorial metric on the Cayley graph CaypG,Aq of G.

We study (combinatorial) paths in CaypG,Aq. Given a path p in CaypG,Aq and an
integer t P t0, . . . , |p|u, where |p| is the length of p, we denote by ppptq P G the t-th vertex
of p, so that ppp0q and ppp|p|q are the starting and ending vertices of p, respectively. We
further define ppptq P G for any t P Zě0 Y t8u by setting ppptq “ ppp|p|q whenever t ą |p|.

Definition 2.8. Let G be a group with a finite symmetric generating set A containing
the identity, and let L Ď A˚. We say pA,Lq is a (uniformly finite-to-one) biautomatic
structure on G if

(i) L is recognised by a finite state automaton over A;
(ii) there exists N ě 1 such that 1 ď |π´1

A pgq X L| ď N for every g P G; and
(iii) L satisfies the “two-sided fellow traveller property”: there exists a constant ζ ě 1

such that if p and q are paths in CaypG,Aq labelled by words in L and satisfying
dApppp0q, pqp0qq ď 1 and dApppp8q, pqp8qq ď 1, then dApppptq, pqptqq ď ζ for all t.

We say G is biautomatic if it has some uniformly finite-to-one biautomatic structure.

The standard notion of a biautomatic structure appearing in the literature (cf [Eps+92])
is more general than the notion of a uniformly finite-to-one biautomatic structure as
defined here. Nevertheless, it can be shown that every biautomatic group (in the sense
of [Eps+92], for instance) has a uniformly finite-to-one biautomatic structure [Eps+92,
Theorem 2.5.1] and so is biautomatic in our sense as well. In this paper, we assume all
biautomatic structures to be uniformly finite-to-one.

We record the following result for future reference; for part (i), it is enough to take ν
to be larger than the number of states in an automaton over A recognising L.
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Theorem 2.9 (D. B. A. Epstein et al. [Eps+92, Lemma 2.3.9 & Theorem 3.3.4]). Let
pA,Lq be a biautomatic structure on a group G. Then there exists a constant ν ě 1 with
the following properties:

(i) if v P A˚ is a subword of a word w P L, then there exist u1, u2 P A˚ such that
|u1|, |u2| ď ν and u1vu2 P L, and if v is a prefix (respectively suffix) of w, then we
can take u1 “ 1 (respectively u2 “ 1);

(ii) if v, w P L are such that πApvq “ πApwaq or πApvq “ πApawq for some a P A, then
ˇ

ˇ|v| ´ |w|
ˇ

ˇ ď ν; and
(iii) any path in CaypG,Aq labelled by a word in L is a pν, νq-quasi-geodesic.

The following notion will be crucial in our arguments.

Definition 2.10. Let pA,Lq be a biautomatic structure on a group G, and let H Ď G.
We say that H is L-quasiconvex if there exists a constant ξ ě 1 such that every path in
CaypG,Aq starting and ending at vertices of H and labelled by a word in L belongs to
the ξ-neighbourhood of H.

The importance of the notion of L-quasiconvexity can be summarised in the following
result. It can be extracted from the proofs of [GS91, Theorem 3.1 & Proposition 4.3] and
from [Eps+92, Lemma 2.3.9].

Theorem 2.11 (S. Gersten and H. Short; D. B. A. Epstein et al.). Let pB,Mq be a
biautomatic structure on a group G.

(i) For any g1, . . . , gn P G, the centraliser CGptg1, . . . , gnuq is M-quasiconvex.
(ii) Let H ď G be an M-quasiconvex subgroup. Then there exists a biautomatic struc-

ture pA,Lq on H and a constant κ ě 1 such that if v P M and w P L represent
the same element of G, then

ˇ

ˇ|v| ´ |w|
ˇ

ˇ ď κ.

A biautomatic structure pA,Lq on H ď G appearing in Theorem 2.11(ii) will be called
a biautomatic structure associated to pB,Mq.

Finally, we record the following observation.

Lemma 2.12. Let pA,Lq be a biautomatic structure on a group G, let H1 ď H2 ď G, and
suppose that rH2 : H1s ă 8. Then H1 is L-quasiconvex if and only if H2 is L-quasiconvex.

Proof. Note that since rH2 : H1s ă 8, there exists a constant λ ě 1 such that H2

belongs to the λ-neighbourhood of H1 in CaypG,Aq. Moreover, let ζ ě 1 be the constant
appearing in Definition 2.8(iii).

Suppose first that H1 is L-quasiconvex, and let ξ1 ě 1 be the constant appearing in
Definition 2.10. Let p2 be a path in CaypG,Aq labelled by a word in L with pp2p0q, pp2p8q P

H2. Since H2 belongs to the λ-neighbourhood of H1, there exist g´, g` P H1 such that
dApg´, pp2p0qq ď λ and dApg`, pp2p8qq ď λ; moreover, since πA|L is surjective, there exists
a path p1 in CaypG,Aq labelled by a word in L, starting at g´ and ending at g`. It then
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follows that p2 is in the λζ-neighbourhood of p1, and p1 is in the ξ1-neighbourhood of H1.
Therefore, p2 is in the pλζ ` ξ1q-neighbourhood of H1, and so of H2; it follows that H2 is
L-quasiconvex, as required.

Conversely, suppose that H2 is L-quasiconvex, and let ξ2 ě 1 be the constant appearing
in Definition 2.10. Then any path in CaypG,Aq labelled by a word in L and with endpoints
in H1 belongs to the ξ2-neighbourhood of H2, and so to the pξ2 ` λq-neighbourhood of
H1. It follows that H1 is L-quasiconvex, as required. □

2.3. Geodesic currents. We now fix a closed orientable Riemannian surface Σ of con-
stant curvature ´1, and let G “ π1pΣq. We also fix the universal covering map rΣ Ñ Σ

and the G-action by isometries on rΣ. Let I`prΣq be the set of oriented (i.e. directed)
geodesic lines on rΣ. Since each such geodesic line is uniquely determined by its end-
points on BrΣ – S1, we can topologise I`prΣq by identifying it with the open cylinder
tpx, yq P S1 ˆ S1 | x ‰ yu. Note that the G-action on rΣ induces an action of G on I`prΣq.

By an (oriented) curve on Σ we mean a free homotopy class of essential continuous maps
S1 Ñ Σ. We denote by C`pΣq the set of all curves on Σ, which can also be identified with
the set of non-trivial G-conjugacy classes. Given a primitive curve γ P C`pΣq (meaning
that γ ‰ ηn for any η P C`pΣq and n ě 2), we may associate a Borel measure µγ on
I`prΣq as follows: let pγ : S1 Ñ Σ be the unique (up to reparametrisation of S1) geodesic
representative of γ, let Apγq Ă I`prΣq be the set of all lifts of pγ, and let µγpEq :“ |EXApγq|

for any Borel subset E Ď I`prΣq. We may also define this when γ is not primitive, by
setting µηn :“ nµη for primitive η P C`pΣq and n ě 2. By construction, Apγq, and so µγ,
is G-invariant; moreover, one can see that Apγq is discrete in I`pΣq, implying that µγ is
a Radon measure. This motivates the following definition.

Definition 2.13. An (oriented) geodesic current on Σ is a G-invariant Radon measure
on I`prΣq. The set of all geodesic currents on Σ form a topological space G`pΣq under the
weak* topology: we have µn Ñ µ in G`pΣq if and only if

ş

f dµn Ñ
ş

f dµ for all continuous
functions f : I`prΣq Ñ R with compact support. By slightly abusing the notation, we will
identify a curve γ P C`pΣq with the corresponding geodesic current γ :“ µγ P G`pΣq, and
will therefore view C`pΣq as a subset of G`pΣq.

It is known that a current µ is uniquely determined by the values of
ş

f dµ for compactly
supported continuous functions f : I`prΣq Ñ R, as a consequence of the following theorem.

Theorem 2.14 (Riesz Representation Theorem; see [Mar20, Theorem 1.7.13]). Let X
be a locally compact Hausdorff space, and let CcpXq be the set of continuous functions
f : X Ñ R with compact support. For any linear functional F : CcpXq Ñ R such that
F pfq ě 0 whenever fpxq ě 0 for all x P X, there exists a unique Radon measure µ on X

such that F pfq “
ş

f dµ for all f P CcpXq. In particular, if µ and µ1 are Radon measures
on X such that

ş

f dµ “
ş

f dµ1 for all f P CcpXq, then µ “ µ1.
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A core part of this paper is based on studying certain functions f : C`pΣq Ñ R. The
terminology we use below roughly follows the terminology of [MT21] and [Mar20]; how-
ever, since the functions we consider are assumed to satisfy the additive union property
in the sense of [MT21, Definition 1.1], we are able to make some simplifications to the
statements of results. Given two maps pγ1, pγ2 : S1 Ñ Σ, a crossing of pγ1 and pγ2 is a pair
px1, x2q P S1 ˆ S1 such that pγ1px1q “ pγ2px2q, and a self-crossing of pγ : S1 Ñ Σ is a pair
px1, x2q P S1 ˆ S1 such that x1 ‰ x2 and pγpx1q “ pγpx2q. A crossing or a self-crossing is
essential if, roughly speaking, it is unavoidable in a homotopy class: see [MT21, Defini-
tion 2.6 & Lemma 2.8].

Definition 2.15. Let f : C`pΣq Ñ R.

(i) We say f is homogeneous if fpγnq “ nfpγq for all γ P C`pΣq and n ě 1.
(ii) We say f satisfies the join quasi-smoothing property if there exists a constant

ζ ě 0 such that the following holds. Let px1, x2q be an essential crossing of maps
pγ1, pγ2 : S1 Ñ Σ representing curves γ1, γ2 P C`pΣq, respectively, and let γ P C`pΣq

be the homotopy class of a curve obtained by cutting pγi at xi and regluing the
four resulting endpoints in a way that respects the orientation of the pγi. Then
fpγq ď fpγ1q ` fpγ2q ` ζ.

(iii) We say f satisfies the split quasi-smoothing property if there exists a constant
ζ ě 0 such that the following holds. Let px1, x2q be an essential self-crossing of
a map pγ : S1 Ñ Σ representing a curve γ P C`pΣq, and let γ1, γ2 P C`pΣq be
the homotopy classes of the two curves obtained by cutting pγ at x1 and x2 and
regluing the four resulting endpoints in a way that respects the orientation of pγ.
Then fpγ1q ` fpγ2q ď fpγq ` ζ.

Given a function f : C`pΣq Ñ R that satisfies the join and split quasi-smoothing prop-
erties, the following result allows us to construct such a function that is also homogeneous.

Theorem 2.16 (D. Martínez-Granado and D. P. Thurston [MT21, Theorem B]). Let
f : C`pΣq Ñ R be a function satisfying the join and split quasi-smoothing properties.
Then the function f : C`pΣq Ñ R defined by fpγq “ limnÑ8 fpγnq{n is well-defined,
homogeneous, and satisfies the join and split quasi-smoothing properties.

The main motivation for these definitions arises from the following result that is crucial
in our argument.

Theorem 2.17 (D. Martínez-Granado and D. P. Thurston [MT21, Theorem A]). Let
f : C`pΣq Ñ R be a homogeneous function satisfying the join and split quasi-smoothing
properties. Then f extends to a unique continuous homogeneous function f : G`pΣq Ñ R.

As a consequence of Theorems 2.16 and 2.17, if a function f : C`pΣq Ñ R satisfies
the join and split quasi-smoothing properties, then f : C`pΣq Ñ R extends to a unique
continuous homogeneous function f : G`pΣq Ñ R.
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Another property we will use is “positive linearity”. We say a function f : G`pΣq Ñ R is
positively linear if fpc1µ1 `c2µ2q “ c1fpµ1q`c2fpµ2q for all c1, c2 ě 0 and µ1, µ2 P G`pΣq.

Lemma 2.18. Let f : C`pΣq Ñ R be a homogeneous function satisfying the join and split
quasi-smoothing properties. Then the function f : G`pΣq Ñ R given by Theorem 2.17 is
positively linear.

Proof. Let R`C`pΣq Ă G`pΣq be the subspace of currents of the form
ř

i ciγi for some
ci ě 0 and γi P C`pΣq. Since f : C`pΣq Ñ R is homogeneous, we can extend it to a function
pf : R`C`pΣq Ñ R by setting pfp

ř

i ciγiq :“
ř

i cifpγiq. The fact that f : C`pΣq Ñ R
satisfies the join and split quasi-smoothing properties in our terminology implies that
pf : R`C`pΣq Ñ R satisfies quasi-smoothing in the terminology of [MT21]. In particular,
by the uniqueness in Theorem 2.17, the restriction of f : G`pΣq Ñ R to R`C`pΣq coincides
with pf . By the definition of pf , it therefore follows that fpc1µ1 `c2µ2q “ c1fpµ1q`c2fpµ2q

for all c1, c2 ě 0 and µ1, µ2 P R`C`pΣq. Since R`C`pΣq is dense in G`pΣq [Bon88,
Proposition 2] and since f : G`pΣq Ñ R is continuous, it follows that f : G`pΣq Ñ R is
positively linear, as required. □

2.4. Intersection numbers. Finally, we study the intersection numbers between cur-
rents. Let DI`prΣq Ă I`prΣq ˆ I`prΣq be the set of pairs pγ1, γ2q of geodesic lines on rΣ

that intersect transversely; one can show that DI`prΣq is a 4-manifold. The G-action on
rΣ induces a free and properly discontinuous action on DI`prΣq, and so we may define the
quotient DI`pΣq :“ DI`prΣq{G.

Definition 2.19. Let µ1, µ2 P G`pΣq. The product measure µ1 ˆµ2 on I`prΣq ˆI`prΣq is
G-invariant, so it induces a measure µ1 b µ2 on DI`pΣq. The intersection number of µ1

and µ2, denoted ιΣpµ1, µ2q, is the total mass of the measure µ1 b µ2. We write ιpµ1, µ2q

for ιΣpµ1, µ2q when the surface Σ is clear.

For γ1, γ2 P C`pΣq, one may check that ιpγ1, γ2q is equal to the standard geometric
intersection number of geodesic representatives pγ1, pγ2 : S1 Ñ Σ, i.e. the number of points
at which pγ1 and pγ2 intersect transversely. Moreover, it turns out that the intersection
number is always finite, and induces a continuous function G`pΣq ˆ G`pΣq Ñ R:

Theorem 2.20 (F. Bonahon [Bon86, §4.2]). For any µ1, µ2 P G`pΣq, we have ιpµ1, µ2q ă

8. Moreover, the function ι : G`pΣq ˆ G`pΣq Ñ R is homogeneous and continuous.

We say λ P G`pΣq is a filling current if every geodesic line in rΣ transversely intersects
another geodesic line contained in the support of λ.

Proposition 2.21 (F. Bonahon [Bon88, Proposition 4 and its proof]). Let λ P G`pΣq

be a filling current. Then ιpλ, µq ą 0 for all µ P G`pΣq, and the subspace tµ P G`pΣq |

ιpλ, µq ď 1u of G`pΣq is compact.

We record the following observation on intersection numbers for future reference.
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Lemma 2.22. Let φ : Σ1 Ñ Σ be a k-sheeted covering map (for some k ă 8) that is a
local isometry, and let rφ : rΣ1 Ñ rΣ be a lift of φ. Then ιΣ1pµ1 ˝ rφ, µ2 ˝ rφq “ k ¨ ιΣpµ1, µ2q

for all µ1, µ2 P G`pΣq.

Proof. The isometry rφ induces a homeomorphism I`p rΣ1q ˆ I`p rΣ1q Ñ I`prΣq ˆ I`prΣq

that maps DI`p rΣ1q onto DI`prΣq; let rφ1 : DI`p rΣ1q Ñ DI`prΣq be this induced map.
Moreover, we can canonically identify DI`pΣq with the set of triples px, t1, t2q, where
x P Σ and t1, t2 P T 1

xΣ – S1 are such that t1 ‰ t2, and the topology is the “usual”
one (see [Bon86]); this viewpoint allows us to see that φ induces a k-sheeted covering
map φ1 : DI`pΣ1q Ñ DI`pΣq. One may check that we have pΣ ˝ rφ1 “ φ1 ˝ pΣ1 , where
pΣ : DI`prΣq Ñ DI`pΣq and pΣ1 : DI`p rΣ1q Ñ DI`pΣ1q are the canonical covering maps.
It follows that pµ1 ˝ rφq b pµ2 ˝ rφq “ pµ1 b µ2q ˝φ1, i.e. we have rpµ1 ˝ rφq b pµ2 ˝ rφqs pAq “

pµ1 b µ2qpφ1pAqq for every Borel subset A Ď DI`pΣ1q such that φ1|A is injective. This
implies that rpµ1 ˝ rφq b pµ2 ˝ rφqs pDI`pΣ1qq “ k ¨ pµ1 b µ2qpDI`pΣqq, as required. □

3. Stable word lengths

Throughout this section, we fix a biautomatic group G with a (uniformly finite-to-one)
biautomatic structure pA,Lq. We define several functions G Ñ R associated to lengths of
words in L, and study the relationship between them.

Proposition 3.1. Let g P G, and for each n ě 1 let wn P L be a word representing gn.
Then the sequence p|wn|{nq

8

n“1 converges and the limit limnÑ8 |wn|{n is rational.

Proof. Suppose first that g has finite order, and so the subgroup xgy is finite. Since pA,Lq

is finite-to-one, it follows that the set twn | n ě 1u is finite, and so the sequence p|wn|q
8

n“1

is bounded. Therefore, |wn|{n Ñ 0 P Q as n Ñ 8, which implies the result.
Suppose now that g has infinite order. By Theorem 2.11(i), the centraliser CGpgq is L-

quasiconvex (with associated structure pA1,L1q, say), and so finitely generated, implying
(again by Theorem 2.11) that its centre ZpCGpgqq is L1-quasiconvex (with associated
structure pA2,L2q, say). Thus ZpCGpgqq is a finitely generated abelian group containing
g, and so (as g has infinite order) we have ZpCGpgqq “ HˆF , where H – ZN , g P H, and
F is finite. In particular, H has finite index in ZpCGpgqq, and is therefore L2-quasiconvex;
let pB,Mq be the associated biautomatic structure on H.

By applying Theorem 2.11(ii) three times, it follows that there exists a constant κ ě 1

such that for each n ě 1, if vn P M is a word representing gn then
ˇ

ˇ|vn| ´ |wn|
ˇ

ˇ ď κ.
Moreover, since pB,Mq is a biautomatic structure on H – ZN , there exists a constant
ρ ě 0 and a function f : H Ñ Q such that fphnq “ nfphq for all h P H and n ě 1, and
such that

ˇ

ˇfphq ´ |u|
ˇ

ˇ ď ρ for any h P H and any word u P M representing h [Val21b,
Proposition 4.2 and its proof]. In particular, for each n ě 1 we have

ˇ

ˇ

ˇ

ˇ

|wn|

n
´ fpgq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

|vn|

n
´
fpgnq

n

ˇ

ˇ

ˇ

ˇ

`
κ

n
“

ˇ

ˇfpgnq ´ |vn|
ˇ

ˇ ` κ

n
ď
ρ ` κ

n
,
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and so |wn|{n Ñ fpgq P Q as n Ñ 8, as required. □

Motivated by this, we introduce the following terminology.

Definition 3.2. Let g P G.

(i) The L-word length of g, denoted |g|L, is the length of the shortest word in L
representing g.

(ii) The conjugacy L-word length of g is defined as }g}L :“ minhPG |hgh´1|L.
(iii) The stable L-word length of g is defined as τLpgq :“ limnÑ8 |gn|L {n.

It follows from Proposition 3.1 that τLpgq is well-defined: indeed, this number is equal
to limnÑ8

|wn|

n
in the notation of the Proposition. We make the following easy observation.

Lemma 3.3. We have τLphgh´1q “ τLpgq for all g, h P G.

Proof. Let ν ě 1 be the constant given in Theorem 2.9, and let wn, vn P L be the shortest
words representing gn, hgnh´1, respectively. Then

ˇ

ˇ|wn| ´ |vn|
ˇ

ˇ ď 2νmaxt|h|A, 1u, and so
τLpgq “ limnÑ8 |wn|{n “ limnÑ8 |vn|{n “ τLphgh´1q, as required. □

In particular, it follows that τLpgq “ minhPG τLphgh´1q “ minhPG limnÑ8 |hgnh´1|L {n

for any g P G. In the remainder of this section, we prove that if G is hyperbolic then
the minimum and the limit in this expression can be swapped, and therefore τLpgq “

limnÑ8 }gn}L {n for all g P G.

Lemma 3.4. Suppose G is hyperbolic. Then there exist constants λ ě 1 and ε ě 0

satisfying the following property. Let g P G be an element of infinite order, and let w P L
be a word representing a conjugate of g with |w| “ }g}L. Then any bi-infinite path in
CaypG,Aq labelled by ¨ ¨ ¨www ¨ ¨ ¨ is a pλ, εq-quasi-geodesic.

Proof. Let ν ě 1 be the constant given in Theorem 2.9. Then there exist constants
ℓ, λ ě 1 and ε ě 0 such that every ℓ-local pν, 2νpν ` 1qq-quasi-geodesic in CaypG,Aq is a
pλ, εq-quasi-geodesic [CDP90, Chapitre 3, Théorème 1.4]. Moreover, if w P A˚ is a word
representing an infinite order element, then any bi-infinite path in CaypG,Aq labelled by
¨ ¨ ¨www ¨ ¨ ¨ is a quasi-geodesic [GH90, Proposition 8.21]. Since A is finite, there are only
finitely many words w P L of length ă ℓ; therefore, after increasing λ ě 1 and ε ě 0 if
necessary, we may assume that for every word w P L with |w| ă ℓ representing an element
of infinite order, a path in CaypG,Aq labelled by ¨ ¨ ¨www ¨ ¨ ¨ is a pλ, εq-quasi-geodesic.

It is therefore enough to show the following: if g P G and w P L are such that w
represents g and |w| “ }g}L ě ℓ, and if γ Ď CaypG,Aq is a bi-infinite path labelled
by ¨ ¨ ¨www ¨ ¨ ¨ , then any subpath of γ of length ď ℓ is a pν, 2νpν ` 1qq-quasi-geodesic.
Thus, let η Ă γ be a subpath of length ď ℓ from h P γ to k P γ. We aim to show that
|η| ď νdAph, kq ` 2νpν ` 1q.

Since |η| ď ℓ ď |w|, it follows that η is labelled by a subword of ww; however, since
paths labelled by w are pν, νq-quasi-geodesic, we may without loss of generality assume
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h

w1
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k v
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w1

u2

u1

Figure 1. The proof of Lemma 3.4. The thick path is γ, the red subpath is η,
and the blue and green paths are labelled by words in L.

that η is not labelled by subword of w. Thus η is labelled by a word w1w2, where w1 and
w2 are a suffix and a prefix of w, respectively. Since |w1| ` |w2| “ |η| ď ℓ ď |w|, it follows
that w “ w2vw1 for some v P A˚. Since v is a subword of a word in L, there exist words
u1, u2 P A˚ of length ď ν such that u1vu2 P L. See Figure 1.

Now let g1 P G be the element represented by w1w2v P A˚, so that g and g1 are
conjugate in G, and let w1 P L be a word representing g1. By construction, we have
w1, u1vu2 P L, and there exist paths in CaypG,Aq labelled by those two words that start
distance ď dAph, kq ` |u1| ď dAph, kq ` ν apart and end distance ď |u2| ď ν apart.
Therefore,

|w| “ }g}L ď |w1
| ď |u1vu2| ` νpdAph, kq ` 2νq ď |v| ` 2ν ` νpdAph, kq ` 2νq

“ |w| ´ |η| ` νdAph, kq ` 2νpν ` 1q.

It follows that |η| ď νdAph, kq ` 2νpν ` 1q, as required. □

Lemma 3.5. Suppose G is hyperbolic. Then }gn}L {n Ñ τLpgq as n Ñ 8 for every g P G.

Proof. Fix g P G. If g has finite order, then the set t}gn}L | n ě 1u is bounded, implying
that }gn}L {n Ñ 0 “ τLpgq as n Ñ 8, as required. Therefore, we may without loss of
generality assume that g has infinite order. After replacing g by its conjugate if necessary
(we can do this by Lemma 3.3), we may assume }g}L “ |w1| for some word w1 P L
representing g.

For each n ě 1, let hn P G and wn P L be such that wn represents h´1
n gnhn and

}gn}L “ |wn|. By replacing hn with hng
M for some M “ Mpnq P Z if necessary, we may

assume that dAphn, 1Gq ď dAphn, g
mq for all m P Z (when n is fixed); in particular, we

may take h1 “ 1G. Let γn be a bi-infinite path in CaypG,Aq labelled by ¨ ¨ ¨wnwnwn ¨ ¨ ¨

such that a sub-ray of γn labelled by wnwnwn ¨ ¨ ¨ starts at the vertex hn.
By Lemma 3.4, there exist constants λ ě 1 and ε ě 0 such that each γn is a pλ, εq-

quasi-geodesic. Furthermore, since γn and γ1 contain vertices gmnhn and gmn, respectively,
for all m P Z, it follows that γn and γ1 have the same endpoints on the boundary BG.
Therefore, by [CDP90, Chapitre 3, Théorème 3.1], there exists a constant β ě 0 such that
γn is Hausdorff distance ď β away from γ1 for each n P Z. See Figure 2.
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Figure 2. The proof of Lemma 3.5.

Now since hn P γn, there exists a vertex kn P γ1 such that dAphn, knq ď β. Since γ1
is the union of the xgy-translates of a path labelled by w1 and starting at 1G, we have
dApgM , knq ď |w1| for some M “ Mpnq P Z. But then the minimality of dAphn, 1Gq implies
that

dAphn, 1Gq ď dAphn, g
M

q ď dAphn, knq ` dApgM , knq ď β ` |w1|.

As A is finite, it follows that the set C :“ thn | n ě 1u is finite.
Now for each h P C and n ě 1, let vn,h P L be a word representing h´1gnh P G. We

then have }gn}L “ mint|vn,h| | h P Cu. Furthermore, it follows from Proposition 3.1 that
|vn,h|{n Ñ τLphgh´1q and therefore, by Lemma 3.3, |vn,h|{n Ñ τLpgq as n Ñ 8, for each
h P C. As C is finite, we thus have }gn}L {n Ñ τLpgq as n Ñ 8, as required. □

4. Quasi-smoothing

Throughout this section, we fix a hyperbolic group G together with a (uniformly finite-
to-one) biautomatic structure pA,Lq on G. We use the notation of Definition 3.2.

Lemma 4.1. Let G be a hyperbolic group, and let pA,Lq be a finite-to-one biautomatic
structure on G. Then there exists a constant ξ ě 0 such that the following hold:

(i) for all g, h P G, we have |gh|L ď |g|L ` |h|L ` ξ;
(ii) for all g, h P G, we have |gh|L ď |g|L ` ξ|h|A and |hg|L ď |g|L ` ξ|h|A;
(iii) for all g, h P G and w P L such that w represents gh and a prefix of w represents

g, we have |g|L ` |h|L ď |gh|L ` ξ.

Proof. Let ν be the constant given by Theorem 2.9. Since CaypG,Aq is hyperbolic, there
exists a constant δ such that geodesic triangles in CaypG,Aq are δ-slim, and a constant β
such that any two pν, νq-quasi-geodesics with the same endpoints are Hausdorff distance
ď β away from each other [CDP90, Chapitre 3, Théorème 1.2]. In particular, pν, νq-quasi-
geodesic triangles in CaypG,Aq are pδ ` 2βq-slim. We set

ξ :“ νp2δ ` 4β ` 4ν ` 3q.

(i) Let v1, v2, w P L be words representing g, h and gh, respectively, such that |g|L “

|v1|, |h|L “ |v2| and |gh|L “ |w|. Let γ, ζ1, ζ2 Ď CaypG,Aq be the paths from 1G
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(a) Part (i).
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Figure 3. The proof of Lemma 4.1. The blue paths have length ď ν, and the
green dashed lines have length ď δ ` 2β ` 1.

to gh (respectively from 1G to g, from g to gh) labelled by w (respectively v1, v2).
Then these three paths form a pν, νq-quasi-geodesic triangle in CaypG,Aq, which
must be pδ ` 2βq-slim. Thus, if we write γ “ γ1γ2 and ζ1 “ ζ11ζ12 in such a way
that the endpoints of γ1 and ζ11 are distance ď δ ` 2β apart and γ1 is as long as
possible, then we can write ζ2 “ ζ21ζ22 in such a way that the starting points of
γ2 and ζ22 are distance ď δ ` 2β ` 1 apart.

Let w1, w2, v
1
1, v

1
2 P A˚ be the labels of γ1, γ2, ζ11, ζ22, respectively. Then there

exist words u1, u2, t1, t2 P A˚, all of length ď ν, such that w1u1, u2w2, v
1
1t1, t2v

1
2 P L;

see Figure 3a. It follows that the endpoints of the paths starting at 1G and
labelled by w1u1 and by v1

1t1 are distance ď δ ` 2β ` 2ν apart, implying that
ˇ

ˇ|w1u1| ´ |v1
1t1|

ˇ

ˇ ď νpδ` 2β ` 2νq. Similarly,
ˇ

ˇ|u2w2| ´ |t2v
1
2|

ˇ

ˇ ď νpδ` 2β ` 1` 2νq.
It follows that

|gh|L “ |w| ď |w1u1| ` |u2w2| ď |v1
1t1| ` |t2v

1
2| ` νp2δ ` 4β ` 4ν ` 1q

ď |v1
1| ` |v1

2| ` νp2δ ` 4β ` 4ν ` 1q ` 2ν ď |v1| ` |v2| ` ξ “ |g|L ` |h|L ` ξ,

as required.
(ii) This is trivially true if h “ 1G. Otherwise, it is immediate from the choice of ν

that |gh|L , |hg|L ď |g|L ` ν|h|A ď |g|L ` ξ|h|A.
(iii) Let w “ v1v2, so that v1 and v2 represent g and h, respectively. Since v1 and v2

are a prefix and a suffix, respectively, of a word in L, it follows that v1u1, u2v2 P L
for some u1, u2 P A˚ with |u1|, |u2| ď ν; see Figure 3b. It then follows that
|g|L ď |v1u1|`ν|u1| and |h|L ď |u2v2|`ν|u2|. Moreover, we have

ˇ

ˇ |gh|L ´|w|
ˇ

ˇ ď ν,
implying that

|g|L ` |h|L ď |v1u1| ` |u2v2| ` νp|u1| ` |u2|q “ |v1| ` |v2| ` p|u1| ` |u2|qpν ` 1q

ď |w| ` 2νpν ` 1q ď |gh|L ` ν ` νp2ν ` 2q ď |gh|L ` ξ,

as required. □
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Now let Σ be a closed orientable hyperbolic surface, let G “ π1pΣq, and let pA,Lq be a
biautomatic structure on G as before. We may then identify C`pΣq with the set of non-
trivial conjugacy classes in G. Since the function }´}L : G Ñ R is by definition invariant
under conjugacy in G, it factors through a function C`pΣq Ñ R which we also denote by
}´}L. We aim to show that }´}L : C`pΣq Ñ R satisfies the join and split quasi-smoothing
properties: see Definition 2.15.

Proposition 4.2. The function }´}L satisfies the join and split quasi-smoothing proper-
ties.

Proof. Let V “ CaypG,Aq{G: that is, V is a rose—a graph with one vertex—with one
loop edge for each element of A. We will not distinguish pointed loops in V from their
pointed homotopy classes, allowing us to assign to each such loop a label w P A˚. Let
πV : CaypG,Aq Ñ V and πΣ : rΣ Ñ Σ be the canonical covering maps, and let θ : V Ñ Σ

be a continuous map that sends each edge in V to a pointed loop on Σ labelled by the
corresponding element of A Ă G “ π1pΣq.

Since θ ˝ πV maps loops in CaypG,Aq to nullhomotopic loops in Σ and so induces
a trivial map π1pCaypG,Aqq Ñ π1pΣq, it follows that θ ˝ πV “ πΣ ˝ rθ for some map
rθ : CaypG,Aq Ñ rΣ. Moreover, rθ is clearly G-equivariant; since V and Σ are both compact
and the G-action on rΣ is properly discontinuous, it follows by the Švarc–Milnor Lemma
that rθ is a pλ, εq-quasi-isometry for some λ ě 1 and ε ě 0, implying that the diameter of
rθ´1prxq is at most λε for any rx P rΣ. In particular, if x1, x2 P V are such that θpx1q “ θpx2q,
then there are lifts rx1 P π´1

V px1q and rx2 P π´1
V px2q such that rθprx1q “ rθprx2q. This implies

that dCaypG,Aqprx1, rx2q ď λε; therefore, if rγ : r0, 1s Ñ CaypG,Aq is a geodesic from rx1 to rx2,
then γ :“ πV ˝rγ is a path in V of length ď λε that is mapped (under θ) to a nullhomotopic
loop on Σ.

Let ν be the constant given by Theorem 2.9, and let β ě 0 be the constant such that
any two pν, νq-quasi-geodesic paths in CaypG,Aq with the same endpoints are Hausdorff
distance ď β apart: such a β exists by [CDP90, Chapitre 3, Théorème 1.2]. We set

ζ :“ ξmaxt9 ` 2λε, 7 ` 2β ` 2λεu,

where ξ is the constant given in Lemma 4.1. We now prove the (i) join quasi-smoothing
and (ii) split quasi-smoothing properties.

(i) For i P t1, 2u, let γi P C`pΣq, and let wi P L represent an element in the conjugacy
class corresponding to γi such that |wi| “ }γi}L; moreover, let σi : S1 Ñ V be
the (pointed) loop on V labelled by wi, so that the loop pγi :“ θ ˝ σi is in the
free homotopy class γi. Suppose py1, y2q is an essential crossing of pγ1 and pγ2, so
that pγ1py1q “ pγ2py2q, and let γ P C`pΣq be the path obtained by the join quasi-
smoothing procedure as in Definition 2.15. We can thus write σ1 “ σ11 ¨ σ12 and
σ2 “ σ21 ¨ σ22 for some σij : r0, 1s Ñ V , where we write σ1 ¨ σ2 for concatenation of
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paths σ1 and σ2 (under some reparametrisation), so that pθ ˝ σ11q ¨ pθ ˝ σ22q ¨ pθ ˝

σ21q ¨ pθ ˝ σ12q is in the homotopy class γ.
Let xi :“ σipyiq P V for i P t1, 2u, so that θpx1q “ θpx2q. Then, as explained

above, there exists a path η : r0, 1s Ñ V from x1 to x2 of length ď λε such that
the loop θ ˝ η is nullhomotopic in Σ. It follows that θ ˝ pσ11 ¨ η ¨ σ22 ¨ σ21 ¨ η ¨ σ12q

is a well-defined loop that is in the homotopy class γ, where η : r0, 1s Ñ V can be
taken to be the “reverse” of η. See Figure 4a.

By adding or removing initial and terminal subpaths of length at most one
to/from the paths σij, η and η, we may modify our construction so that each of
these paths start and end at the vertex of V . In particular, there exist paths
σ1
11, σ

1
12, σ

1
21, σ

1
22, η

1, η1 : r0, 1s Ñ V , all starting and ending at the vertex of V , such
that σ1 “ σ1

11 ¨ σ1
12 and σ2 “ σ1

21 ¨ σ1
22, such that η1 and η1 have length ď λε ` 2,

and such that σ1
11 ¨ η1 ¨ σ1

22 ¨ σ1
21 ¨ η1 ¨ σ1

12 is a well-defined loop that is mapped under
θ to the homotopy class γ.

Let w11, w12, w21, w22, v, v P A˚ be the labels of the paths σ1
11, σ

1
12, σ

1
21, σ

1
22, η

1, η1,
respectively. We then have w1 “ w11w12 P L, w2 “ w21w22 P L, and |v|, |v| ď

λε ` 2; moreover, the G-conjugacy class of w11vw22w21vw12 corresponds to the
homotopy class γ. If, given u P A˚, we write |u|L for |g|L, where g P G is the
element represented by u, then Lemma 4.1 implies that

}γ}L ď |w11vw22w21vw12|L ď |w11v|L ` |w22|L ` |w21v|L ` |w12|L ` 3ξ

ď |w11|L ` |w22|L ` |w21|L ` |w12|L ` p3 ` 2pλε ` 2qqξ

ď |w11w12|L ` |w21w22|L ` p3 ` 2pλε ` 2q ` 2qξ ď }γ1}L ` }γ2}L ` ζ,

as required.
(ii) Let γ P C`pΣq, and let w P L represent an element in the conjugacy class corre-

sponding to γ such that |w| “ }γ}L; moreover, let σ : S1 Ñ V be the (pointed) loop
on V labelled by w, so that the loop pγ :“ θ˝σ is in the free homotopy class γ. Sup-
pose py1, y2q is an essential self-crossing of pγ, and let γ1, γ2 P C`pΣq be the paths
obtained by the split quasi-smoothing procedure as in Definition 2.15. Similarly to
the previous case (see Figure 4b), we may find paths σ1

1, σ
1
2, σ

1
3, η

1, η1 : r0, 1s Ñ V ,
all starting and ending at the vertex of V , such that σ “ σ1

1 ¨ σ1
2 ¨ σ1

3, such that
σ1
1 ¨ η1 ¨ σ1

3 and σ1
2 ¨ η1 are well-defined loops that are mapped (under θ) to the

free homotopy classes γ1 and γ2, respectively, and such that η1 and η1 have length
ď λε ` 2.

Let w1, w2, w3, v, v P A˚ be the labels of the paths σ1
1, σ

1
2, σ

1
3, η

1, η1, respectively.
It then follows that w “ w1w2w3 P L, that |v|, |v| ď λε ` 2, and that the G-
conjugacy classes of w1vw3 and w2v correspond to the homotopy classes γ1 and
γ2, respectively. Now let u P L be a word such that u and w1w2 represent the
same element of G. Since u and w1w2 are both pν, νq-quasi-geodesic words, we
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σ11

η

σ22

σ21

η

σ12

θ

θpηq θpηq

θpσ22q

θpσ21qθpσ12q

θpσ11q

(a) Join quasi-smoothing, (i).

σ1

σ2

σ3

ηη

θ

θpηq θpηq

θpσ3q

θpσ2q

θpσ1q

(b) Split quasi-smoothing, (ii).

Figure 4. The proof of Proposition 4.2. The top pictures represent the
situation in V , the bottom ones in Σ. The red point is the one at which the
quasi-smoothing procedure is done, and the blue paths have length ď λε.

can write u “ u1u2 so that u1s and w1 represent the same element of G for some
s P A˚ with |s| ď β; consequently, s´1u2 and w2 also represent the same element
of G. We then have

}γ1}L ` }γ2}L ď |w1vw3|L ` |w2v|L ď |w1v|L ` |w3|L ` |w2v|L ` ξ

ď |w1|L ` |w3|L ` |w2|L ` p1 ` 2pλε ` 2qqξ

“ |u1s|L ` |w3|L `
ˇ

ˇs´1u2
ˇ

ˇ

L ` p5 ` 2λεqξ

ď |u1|L ` |w3|L ` |u2|L ` p5 ` 2λε ` 2βqξ

ď |u|L ` |w3|L ` p5 ` 2λε ` 2β ` 1qξ

“ |w1w2|L ` |w3|L ` p6 ` 2λε ` 2βqξ

ď |w1w2w3|L ` p6 ` 2λε ` 2β ` 1qξ ď }γ}L ` ζ,

as required. □

5. Invariant measures

In this section, we fix a closed orientable hyperbolic surface Σ and let G “ π1pΣq. We
view G as a uniform lattice in PSL2pRq – Isom`

prΣq, the group of orientation-preserving
isometries of the universal cover rΣ – RH2 of Σ.

Note that PSL2pRq acts smoothly, freely and transitively on T 1
rΣ, the unit tangent

bundle of rΣ. We thus have a diffeomorphism PSL2pRq – T 1
rΣ. Under this diffeomorphism,
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the G-action on T 1
rΣ corresponds to the G-action on PSL2pRq by left multiplication, and

the R-action on T 1
rΣ by translations along lifts of geodesic lines on rΣ corresponds to the

action of a subgroup R – R on PSL2pRq by right multiplication; see [Mar20, §1.8.3]. After
noticing that PSL2pRq{R – I`prΣq, we can then identify G`pΣq with a certain space of
measures on PSL2pRq, as follows.

Proposition 5.1 (Y. Benoist and H. Oh [BO07, Proposition 8.1]). Let G 1pΣq be the space
of Radon measures on PSL2pRq that are G-invariant on the left and R-invariant on the
right, equipped with the weak* topology. Then the map

G`
pΣq Ñ G 1

pΣq,

µ ÞÑ µ1,

where µ1pEq “
ş

λRpg´1E X Rq dµpgRq for a Borel subset E Ď PSL2pRq and λR is a left
Haar measure on R, is a homeomorphism.

Throughout this section, we will thus identify G`pΣq with the space G 1pΣq in Proposi-
tion 5.1. We will assume all the measures on PSL2pRq in this section to be R-invariant
on the right. We will also fix a left Haar measure λΣ on PSL2pRq. We may rescale λΣ
so that ιpγ, λΣq is equal to the length of the geodesic representative pγ : S1 Ñ Σ for any
γ P C`pΣq: see [Mar20, §1.8.3].

Now let µ be a Radon measure on PSL2pRq that is G0-invariant for some finite index
subgroup G0 of G. We then construct a current pµ P G`pΣq as follows. Let g1, . . . , gs be a
right transversal of G0 in G. Given a Borel subset E Ď PSL2pRq, we then set

pµpEq :“ s´1
s

ÿ

i“1

µpgiEq.

It is straightforward to check that pµ is indeed G-invariant and does not depend on the
choice of the right transversal G0.

We consider the following special case. Let µ P G`pΣq, and let t P PSL2pRq be such
that G0 :“ t´1GtXG has finite index in G. Then the measure µpt´q is G0-invariant. We
define µptq :“ pµ1, where µ1 “ µpt´q.

Given an element t P PSL2pRq, we write ẍG, t ÿ for the submonoid of PSL2pRq generated
by G Y ttu, and ẍt ÿ for the submonoid generated by t.

Lemma 5.2. Let t P PSL2pRq be an elliptic isometry of RH2. If xG, ty is dense in
PSL2pRq, then so is ẍG, t ÿ.

Proof. If t has finite order (m, say), then we have t´1 “ tm´1 P ẍt ÿ and so xG, ty “ ẍG, t ÿ.
Therefore, without loss of generality we may assume that t has infinite order.

Since t is elliptic, it stabilises a point x0 P RH2. As t has infinite order, the submonoid
ẍt ÿ of StabPSL2pRqpx0q – S1 is infinite, and so dense in StabPSL2pRqpx0q (by the Dirichlet’s
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Approximation Theorem, for instance). In particular, for any open neighbourhood U Ď

PSL2pRq of t´1, there exists m P N such that tm P U .
Now let V Ď PSL2pRq be open. Since xG, ty is dense, there exists h P xG, ty such that

h P V . We can write h “ h0t
´1h1t

´1 ¨ ¨ ¨ t´1hn for some h0, . . . , hn P ẍG, t ÿ. Consider the
map φ : PSL2pRq Ñ PSL2pRq defined by φpgq “ h0gh1g ¨ ¨ ¨ ghn, and note that φpt´1q “

h P V . Since the multiplication in PSL2pRq is continuous, so is the map φ, implying that
φ´1pV q is an open neighbourhood of t´1 in PSL2pRq. But then tm P φ´1pV q for some
m P N, implying that φptmq P V X ẍG, t ÿ, and in particular that V X ẍG, t ÿ ‰ ∅. As V
was an arbitrary open subset, it follows that ẍG, t ÿ is dense in PSL2pRq, as required. □

Lemma 5.3. Let t P PSL2pRq be an element such that G0 :“ t´1Gt X G has finite index
in G, and such that the monoid ẍG, t ÿ is dense in PSL2pRq. Let µ P G`pΣq be a non-zero
current such that µptq “ µ. Then µ “ k ¨ λΣ for some k ą 0.

Proof. We aim to show that µph´q “ µ for all h P PSL2pRq: this will imply the result by
the uniqueness of the Haar measure.

Let f : PSL2pRq Ñ R be a continuous function with compact support K Ă PSL2pRq,
and consider the map If : PSL2pRq ÞÑ R given by If pgq “

ş

f dµpg´q. Such a map If is
continuous: see [Gaa73, Lemma 15 on p. 278] and its proof.

Now since µ is G-invariant, it follows that If pghq “ If phq whenever g P G, implying
that If factors through the map PSL2pRq Ñ GzPSL2pRq – T 1Σ. Since T 1Σ is compact,
so is the image of If , and so If attains its infimum: that is, the set

Mf :“ tx P PSL2pRq | If pxq ď If pyq for all y P PSL2pRqu

is non-empty.
Now let g1, . . . , gs be a right transversal of G0 in G with g1 “ 1. We then have

µpEq “ µptqpEq “ s´1
řs

i“1 µptgiEq for any Borel subset E. In particular, it follows that
for any x P PSL2pRq,

If pxq “

ż

f dµpx´q “ s´1
s

ÿ

i“1

ż

f dµptgix´q “ s´1
s

ÿ

i“1

If ptgixq.

Therefore, if x P Mf then If ptgixq “ If pxq for all i. In particular, If ptxq “ If pxq: that is,
tx P Mf .

Thus, if x P Mf , then tx P Mf and gx P Mf for all g P G, implying that ẍG, t ÿMf Ď Mf .
As ẍG, t ÿ is dense in PSL2pRq and Mf ‰ ∅, it follows that Mf is also dense; as If is
continuous, this implies that If is actually constant on PSL2pRq. But since f was arbitrary,
it follows from Theorem 2.14 that µph´q “ µ for all h P PSL2pRq, as required. □

Lemma 5.4. Let t P PSL2pRq be an element such that G0 :“ t´1Gt X G has finite index
in G, and let µ P G`pΣq. Then ιpµptq, λΣq “ ιpµ, λΣq.

Proof. Let g1, . . . , gs be a right transversal of G0 in G with g1 “ 1. For 1 ď i ď s, let
Σi Ñ Σ be the finite covering map corresponding to the subgroup g´1

i G0gi ď G, and let
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Σ0 Ñ Σ be the finite covering map corresponding to the subgroup tG0t
´1 ď G. Then

the element tgi P PSL2pRq induces an isometry φi : Σi Ñ Σ0, and also a diffeomorphism
rφi : PSL2pRq Ñ PSL2pRq such that µ1 ˝ rφi “ µ1ptgi´q P G`pΣiq for any µ1 P G`pΣ0q. Note
that we have rG : tG0t

´1s “ rG : g´1
i G0gis “ s for all i, since the surfaces Σ0,Σ1, . . . ,Σs

are pairwise isometric (and therefore have the same genus) and since rG : G0s “ s.
Now since λΣ is a left Haar measure, we have λΣ “ λΣptgi´q “ λΣ ˝ rφi for all i. It then

follows by Lemma 2.22 that

ιΣpµ, λΣq “ s´1ιΣ0pµ, λΣq “ s´2
s

ÿ

i“1

ιΣ0pµ, λΣq “ s´2
s

ÿ

i“1

ιΣi
pµ ˝ rφi, λΣ ˝ rφiq

“ s´2
s

ÿ

i“1

ιΣi
pµptgi´q, λΣq “ s´1

s
ÿ

i“1

ps ¨ rg´1
i G0gi : pGsq

´1ι
pΣpµptgi´q, λΣq

“ rG : pGs
´1ι

pΣ ps´1
řs

i“1 µptgi´q, λΣq “ rG : pGs
´1ι

pΣpµptq, λΣq “ ιΣpµptq, λΣq,

where pG “
Şs

i“1 g
´1
i G0gi and pΣ Ñ Σ is the finite cover corresponding to pG ď G. Thus

ιpµptq, λΣq “ ιpµ, λΣq, as required. □

Lemma 5.5. Let t P PSL2pRq be an element such that G0 :“ t´1Gt X G has finite index
in G. Let µ P G`pΣq be a non-zero current, and define pµnq8

n“0 Ă G`pΣq inductively by
µ0 “ µ and µn “ µ

ptq
n´1 for n ě 1. Then the closure of t

řn
i“0 ciµi | n ě 0, ci P r0,8qu in

G`pΣq contains a non-zero current µ such that µptq “ µ.

Proof. Consider the sequence pµnq8
n“1 Ă G`pΣq, where µn “ n´1

řn´1
i“0 µi. By Lemma 5.4,

we have ιpµn´1, λΣq “ ιpµ
ptq
n´1, λΣq “ ιpµn, λΣq for all n ě 1, and therefore ιpµn, λΣq “

ιpµ, λΣq by induction on n. It follows that ιpµn, λΣq “ ιpµ, λΣq for all n ě 1. But by
Proposition 2.21, the subspace tµ1 P G`pΣq | ιpµ1, λΣq ď ιpµ, λΣqu of G`pΣq is compact,
implying that the sequence pµnq8

n“1 has a convergent subsequence: µnm
Ñ µ as m Ñ

8, say. Note that we have ιpµ, λΣq “ limmÑ8 ιpµnm
, λΣq “ ιpµ, λΣq since ιp´, λΣq is

continuous (by Theorem 2.20), whereas ιpµ, λΣq ą 0 since µ ‰ 0 and λΣ is filling (by
Proposition 2.21), so µ ‰ 0. We aim to show that µptq “ µ.

Let g1, . . . , gs be a right transversal of G0 in G with g1 “ 1, and for 1 ď i ď s, let
Σi Ñ Σ be the finite covering map corresponding to the subgroup g´1

i G0gi ď G. Note
that since µnm

Ñ µ as m Ñ 8, we also have µnm
ptgi´q Ñ µptgi´q in G`pΣiq, and

therefore µptq
nm Ñ µptq as m Ñ 8. We aim to show that we also have µptq

nm Ñ µ as m Ñ 8;
this will imply that

ş

f dµ “
ş

f dµptq for every continuous function f : PSL2pRq Ñ R with
compact support, and the result will then follow by Theorem 2.14.

Let D be a (relatively compact) fundamental domain for the action of G on PSL2pRq

by left multiplication, and let K Ă PSL2pRq be compact. We claim that µnpKq ď µpDKq

for all n ě 0. Indeed, since we have µn “ µ
ptq
n´1 “ s´1

řs
i“1 µn´1ptgi´q for all n ě 1

and since µ0 “ µ, it follows by induction on n that µn “ s´n
řsn

i“1 µphi´q for some
h1, . . . , hsn P PSL2pRq. We can pick some k1, . . . , ksn P G such that kihi P D for each i.
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Note that µpkihi´q “ µphi´q since µ is G-invariant; therefore,

µnpKq “ s´n
sn
ÿ

i“1

µpkihiKq ď s´n
sn
ÿ

i“1

µpDKq “ µpDKq,

as claimed.
Now let f : PSL2pRq Ñ R be a continuous function with compact support K. Since

µ
ptq
n ´ µn “ n´1pµn ´ µq for any n ě 1, we have

ˇ

ˇ

ˇ

ˇ

ż

f dµptq
n ´

ż

f dµn

ˇ

ˇ

ˇ

ˇ

“ n´1

ˇ

ˇ

ˇ

ˇ

ż

f dµn ´

ż

f dµ

ˇ

ˇ

ˇ

ˇ

ď n´1

ˆ
ˇ

ˇ

ˇ

ˇ

ż

f dµn

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

f dµ

ˇ

ˇ

ˇ

ˇ

˙

ď n´1
}f}

8
pµnpKq ` µpKqq ď n´1

}f}
8

pµpDKq ` µpKqq ,

and therefore
ˇ

ˇ

ˇ

ş

f dµ
ptq
n ´

ş

f dµn

ˇ

ˇ

ˇ
Ñ 0 as n Ñ 8. On the other hand, since µnm

Ñ µ

we have
ˇ

ˇ

ş

f dµnm
´

ş

f dµ
ˇ

ˇ Ñ 0 as m Ñ 8. Since nm Ñ 8 as m Ñ 8, it follows that
ˇ

ˇ

ˇ

ş

f dµ
ptq
nm ´

ş

f dµ
ˇ

ˇ

ˇ
Ñ 0 as m Ñ 8. But as f was arbitrary, it follows that indeed µptq

nm Ñ µ

(in the weak* topology) as m Ñ 8, as required. □

Proposition 5.6. Let t P PSL2pRq be an elliptic isometry of RH2 such that t´1Gt X G

has finite index in G and such that xG, ty is dense in PSL2pRq. Let F : G`pΣq Ñ r0,8q be
a continuous positively linear function such that F pγptqq “ F pγq for all γ P C`pΣq. Then
F “ k ¨ ιp´, λΣq for some k ě 0.

Proof. Let k “ F pλΣq{ιpλΣ, λΣq. We will aim to show that F pγq “ k ¨ ιpγ, λΣq for all
γ P C`pΣq. As R`C`pΣq is dense in G`pΣq [Bon88, Proposition 2] and as F and ιp´, λΣq

are positively linear and continuous, this will imply the result.
Let γ P C`pΣq, and define pγnq8

n“0 inductively by γ0 “ γ and γn “ γ
ptq
n´1 for n ě 1.

Since F is positively linear and F pγ1ptqq “ F pγ1q for any γ1 P C`pΣq, it follows that
F pγnq “ F pγq for all n ě 0; on the other hand, ιpγn, λΣq “ ιpγ, λΣq for all n ě 0 by
Lemma 5.4 and induction on n. Since f and ιp´, λΣq are positively linear, it also follows
that F pµq{ιpµ, λΣq “ F pγq{ιpγ, λΣq whenever µ “

řn
i“0 ciγi for some c0, . . . , cn ě 0. Since

F and ιp´, λΣq are continuous, it follows from Lemma 5.5 that there exists a non-zero
current µ P G`pΣq such that F pµq{ιpµ, λΣq “ F pγq{ιpγ, λΣq and µ “ µptq.

Now by Lemma 5.2, the submonoid ẍG, t ÿ is dense in PSL2pRq. Therefore, it follows
from Lemma 5.3 that µ “ k1 ¨ λΣ for some k1 ą 0. Thus

F pγq “
F pµq

ιpµ, λΣq
ιpγ, λΣq “

k1 ¨ F pλΣq

k1 ¨ ιpλΣ, λΣq
ιpγ, λΣq “ k ¨ ιpγ, λΣq,

as required. □

6. Lattices in the hyperbolic plane and a tree

In this section we will collect a number of results about irreducible cocompact lattices
in the product of PSL2pRq and the automorphism group T of a locally-finite unimodular
leafless tree T . Will assume T is non-discrete. Throughout Γ will be an irreducible
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cocompact lattice in PSL2pRq ˆ T . Note that by [Hug21b, Corollary 3.6] Γ is either
an irreducible S-arithmetic lattice and T is a pp ` 1q-regular tree for some prime p, or
Γ is non-residually finite. In either case, by Theorem 2.7 Γ contains a commensurated
subgroup G isomorphic to the fundamental group of a closed compact surface which arises
as a finite index subgroup of a vertex stabiliser of the action of Γ on T .

First, we will investigate the density of the projection of Γ to PSL2pRq.

Lemma 6.1. The projection P of Γ to PSL2pRq is dense.

Proof. If Γ is linear then P contains an S-arithmetic lattice and such a subgroup of
PSL2pRq is dense. Thus, we may assume Γ is non-residually finite. By Theorem 2.7 Γ

splits as a graph of groups in which each vertex group is a finite extension of a uniform
lattice in PSL2pRq. In particular, P contains a uniform PSL2pRq-lattice and hence is
Zariski-dense in PSL2pRq. A Zariski-dense subgroup of SL2pRq is either dense or discrete.
Indeed the Lie algebra of its closure is an ideal, hence either 0 or sl2pRq. Now, since Γ is
irreducible, P is non-discrete and so we conclude that P is dense in PSL2pRq. □

Our next task is to show there is a commensurated surface subgroup of Γ which is M-
quasiconvex with respect to any biautomatic structure pB,Mq. The key fact is that in a
biautomatic group the centraliser of a finite set is M-quasiconvex (see Theorem 2.11(i)).
Before this we will need a lemma.

Lemma 6.2. If Γ is non-residually finite, then we have a short exact sequence

1 F Γ P 1
πPSL2pRq

where F is fundamental group of a graph of finite groups and P is linear. In particular, if
Γ is torsion-free, then F is a free group. In both cases F is infinite, not virtually abelian,
and every locally finite subgroup of F is finite.

Proof. Since Γ is non-residually finite Γ does not admit any faithful linear representation
and so F is non-trivial. Now, Γ splits as a graph of finite-by-Fuchsian groups and each
Fuchsian group is isomorphic to its image in P . It follows that the action of F on T has
finite stabilisers. In particular, F is the fundamental group of a graph of finite groups. If
Γ is torsion-free, then each vertex and edge stabiliser of the F -action on T is trivial. It
follows that F admits a free action on a tree and so must be free. That P is linear follows
from the fact PSL2pRq is linear.

Since Γ is CATp0q, it has only finitely many conjugacy classes of finite subgroups,
implying that any ascending sequence of finite subgroups of Γ terminates. It follows that
Γ (and so F ) has no infinite locally finite subgroups. We claim that if F was finite then
F must act trivially on T . Indeed, if F was finite then it acts on T elliptically with fixed
point set T F a subtree of T . By normality of F in Γ, the subtree T F is Γ-invariant. But
Γ is a uniform lattice and T is leafless, so Γ acts minimally on T . Thus, F is infinite. It
remains to show that F is not virtually abelian.
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Since F is infinite and not locally finite, it contains a finitely generated infinite subgroup.
Such a subgroup cannot be torsion (otherwise it would fix a point in T , contradicting the
fact that the action of F on T has finite stabilisers); it follows that F contains an infinite
order element g. Since the action of F on T has finite stabilisers, g must be hyperbolic
in this action; let ℓ Ď T be the axis of g. Since T is non-discrete it follows that T is
not a line; moreover, since the Γ-action on T is cocompact and since T is leafless and
locally-finite, there exists an element h P Γ such that hℓ ‰ ℓ. Then g and hgh´1 are two
hyperbolic elements of F that have distinct axes, so gn does not commute with hgmh´1

for any n,m ‰ 0. This implies that F is not virtually abelian. □

Proposition 6.3. Suppose pB,Mq is a finite-to-one biautomatic structure on Γ. If Γ is
non-residually finite and torsion-free, then any vertex stabiliser of the action on T is an
M-quasiconvex subgroup.

Proof. Let G be a commensurated surface subgroup of Γ. Let F “ KerpπPSL2pRqq and
note by Lemma 6.2 that F is a non-abelian free subgroup acting freely on T . Let g, h be
contained in this free group and suppose that they do not commute.

We claim since G is commensurated and F is normal, the elements g and h commute
with the subgroup S “ G X Gg X Gh which has finite index in G. Indeed, let s P S and
note s and sg fix vertices of T . It follows that the commutator rs, gs lies in Gg. The
commutator rs, gs maps trivially under the projection to PSL2pRq, but the projection
restricted to Gg is injective. Thus, rs, gs “ 1 and the claim follows.

By the previous claim, C :“ CΓptg, huq contains S. Now, g and h have distinct axes so
C must fix a vertex on T . In particular, C is a finite-index subgroup of a vertex stabiliser
containing a finite index subgroup S of G, implying that C is commensurable with G in
Γ. Finally, since C is the centraliser of a finite set if follows from Theorem 2.11 that C is
M-quasiconvex. By Lemma 2.12, it follows that G is M-quasiconvex as well. □

Finally, we record this proposition for later use. It is a special case of [Hug22b, Corol-
lary 3.3].

Proposition 6.4. Γ is a hierarchically hyperbolic group.

7. An explicit example

Throughout this section we will use quaternion algebras and arithmetic Fuchsian groups
derived from them, for the relevant background the reader should consult [Kat92, Chap-
ter 5]. The construction appeared in the first author’s PhD thesis, however, the example
there is different to the one given here [Hug21a, Section 4.5.2].

Let Q be the quaternion algebra p2, 13qQ, this is a 4-dimensional algebra over Q with
basis t1, i, j, ku satisfying the relations i2 “ 2, j2 “ 13 and k “ ij “ ´ji. The algebra Q
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has a representation φ : Q Ñ M2pRq given by

1 ÞÑ

«

1 0

0 1

ff

, i ÞÑ

«?
2 0

0 ´
?
2

ff

, j ÞÑ

«

0 1

13 0

ff

, k ÞÑ

«

0
?
2

´13
?
2 0

ff

.

Let t “ 1
3
p1 ` 3i ` kq P Q, and note that

φptq “

«

1
3
p3

?
2 ` 1q 1

3

?
2

´13
3

?
2 1

3
p1 ´ 3

?
2q

ff

;

it follows that the image of φptq in PSL2pRq is an infinite order elliptic isometry of RH2.
A basis for a maximal order M of Q is given by the following quaternions

ta, b, c, du :“

"

3

2
`

3

2
i ´

1

2
j ´

1

2
k,

3

2
´

3

2
i ´

1

2
j `

1

2
k,

5

2
` i ´

1

2
j,

7

2
` 2i `

1

2
j

*

;

this has image given by

φpaq “

«

3
2
p
?
2 ` 1q ´1

2
p
?
2 ` 1q

13
2

p
?
2 ´ 1q 3

2
p1 ´

?
2q

ff

, φpbq “

«

3
2
p1 ´

?
2q 1

2
p
?
2 ´ 1q

´13
2

p
?
2 ` 1q 3

2
p
?
2 ` 1q

ff

,

φpcq “

«

1
2
p2

?
2 ` 5q ´1

2

´13
2

1
2
p5 ´ 2

?
2q

ff

, φpdq “

«

1
2
p4

?
2 ` 7q 1

2
13
2

1
2
p7 ´ 4

?
2q

ff

.

Conjugating M by t we obtain another maximal order N . Let U1pMq and U1pNq denote
the groups of norm one quaternions under multiplication in M and N respectively. Note
that their image under φ is contained in SL2pRq.

Denote the image of U1pMq and U1pNq under φ after projecting to PSL2pRq by PM and
PN respectively. Both of these groups are isomorphic to the fundamental group of a genus
2 surface (this may be verified in Magma). It is easy to see φptq commensurates U1pMq

and hence U1pMq and U1pNq share a common finite index subgroup. The intersection
K “ PM X PN has index 12 in both PM and PN , in particular, K is the fundamental
group of a genus 13 surface. We compute, using Dehn’s algorithm a word in a, b, c, d for
t´1gt for each generator g of K. We will denote the subgroup generated by these words
H and note that H t “ K.

We now build a HNN-extension Γ “ PM˚Ht“K . The group has 5 generators which
(abusing notation) we label a, b, c, d, t and admits a presentation with 27 relations,
displayed in Appendix A.

Lemma 7.1. Γ is an irreducible uniform lattice in PSL2pRq ˆ T24.

Proof. Since Γ is a graph of groups equipped with a morphism to PSL2pRq such that the
vertex stabiliser Γv is a uniform PSL2pRq lattice and the stable letter commensurates Γv,
it follows Γ is a graph of lattices in the sense of Definition 2.6. The two embeddings of
the edge group have index 12 in Γv so the Bass–Serre tree of Γ is 24-regular. Thus, Γ is a
uniform lattice in PSL2pRq ˆ T24 by Theorem 2.7. The image of the subgroup generated
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by stable letter t in PSL2pRq is clearly non-discrete because it is generated by an infinite
order elliptic isometry. The irreducibility now follows from [Hug21b, Proposition 3.4]. □

Lemma 7.2. Γ is non-residually finite.

Proof. Because Γ is an HNN-extension the first Betti number of Γ is at least 1 (in fact a
direct computation yields it is exactly 1). Since Γ is an irreducible lattice it follows from
[Hug21b, Proposition 3.7] that Γ is non-residually finite. □

Lemma 7.3. The translation lengths of a and c in their action on RH2 are not rational
multiples of each other.

Proof. For a hyperbolic isometry g of PSL2pRq its translation length is

τpgq “ 2 cosh´1

ˆ

1

2
trpg̃q

˙

where g̃ is a choice of lift of g to SL2pRq. It follows that we have

τpaq “ 2 log

ˆ

3

2
`

?
5

2

˙

and τpcq “ 2 log

ˆ

5

2
`

?
21

2

˙

.

Suppose that p
q
τpaq “ τpcq where p, q P Z, p, q ě 1, then we have

ˆ

3

2
`

?
5

2

˙p

“

ˆ

5

2
`

?
21

2

˙q

.

The left hand side is always of the form m1 `m2

?
5 and the right hand side is always of

the form m3 ` m4

?
21 for some rational numbers m1, m2, m3, m4 ą 0. This is clearly

impossible and we conclude that τpaq is not a rational multiple of τpcq. □

8. Proof of Theorem A

Theorem A. There exists a non-residually finite torsion-free irreducible uniform lattice
Γ ă PSL2pRq ˆT24 such that Γ is a hierarchically hyperbolic group but is not biautomatic.

Proof. Let Γ be the HNN-extension constructed in Section 7. Then, Γ is an irreducible
uniform lattice in PSL2pRq ˆ T24 by Lemma 7.1, non-residually finite by Lemma 7.2,
torsion-free by construction, and a hierarchically hyperbolic group by Proposition 6.4. It
remains to show Γ is not biautomatic.

Let pG ă Γ be a vertex stabiliser for the Γ-action on the Bass–Serre tree T24 of Γ.
By construction, we have Γ “ x pG,pty for an element pt P Γ such that t :“ πPSL2pRqpptq is
an infinite order elliptic isometry of RH2. Moreover, the group G :“ πPSL2pRqp

pGq is a
torsion-free uniform lattice in PSL2pRq, and the projection πPSL2pRqpΓq “ xG, ty is dense
in PSL2pRq by Lemma 6.1. As pG is commensurated in Γ, it follows that t´1Gt X G has
finite index in G. Let Σ “ GzRH2, so that Σ is a closed orientable hyperbolic surface
and G – π1pΣq.
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Now suppose for contradiction that pB,Mq is a (uniformly finite-to-one) biautomatic
structure on Γ. By Proposition 6.3, the subgroup pG ă Γ is M-quasiconvex; let pA,Lq

be the biautomatic structure on pG associated to pB,Mq, as given by Theorem 2.11. As
πPSL2pRq maps pG isomorphically to G, we will identify pA,Lq with a biautomatic structure
on G. Consider the function }´}L : G Ñ R, as defined in Definition 3.2. By construction,
}´}L is invariant under conjugacy in G, and therefore factors through a function C`pΣq Ñ

R which we also denote by }´}L. Similarly, it follows from Lemma 3.3 that the function
τL : G Ñ R (as defined in Definition 3.2) factors through a function τL : C`pΣq Ñ R.

By Proposition 4.2, the function }´}L : C`pΣq Ñ R satisfies the join and split quasi-
smoothing properties, and therefore, by Theorem 2.16, the function τ 1

L : C`pΣq Ñ R
defined by τ 1

Lpγq “ limnÑ8 }γn}L {n is homogeneous and satisfies the join and split
quasi-smoothing properties. By Lemma 3.5, we have τ 1

L “ τL. Thus, by Theorem 2.17,
τL : C`pΣq Ñ R extends to a unique continuous homogeneous function τL : G`pΣq Ñ R,
which is also positively linear by Lemma 2.18.

We now claim that τLpγq “ τLpγptqq for every γ P C`pΣq (in the notation of Section 5).
Indeed, let γ P C`pΣq, let g P G be an element corresponding to γ, let r ě 1 be such that
t´1grt P G, and let g1, . . . , gs be a right transversal of t´1Gt X G in G. Then, for each
i, the measure γrptgi´q is a curve on Σ corresponding to the element ptgiq

´1grtgi P G.
Furthermore, it follows from Theorem 2.11 that the restriction of τM : Γ Ñ R to pG –

G coincides with τL : G Ñ R; in particular, by Lemma 3.3 we have τLpptgiq
´1grtgiq “

τMpptgiq
´1grtgiq “ τMpgrq “ τLpgrq. As τL : G`pΣq Ñ R is positively linear, we then have

r ¨ τLpγptq
q “ s´1

s
ÿ

i“1

r ¨ τLpγptgi´qq “ s´1
s

ÿ

i“1

τLpγrptgi´qq “ s´1
s

ÿ

i“1

τLpptgiq
´1grtgiq

“ s´1
s

ÿ

i“1

τLpgrq “ τLpgrq “ τLpγrq “ r ¨ τLpγq,

and thus τLpγq “ τLpγptqq, as claimed.
We now apply Proposition 5.6 with F “ τL; therefore, there exists a constant k ą 0

such that τL “ k ¨ ιp´, λΣq. In particular, since ιpγ, λΣq ą 0 for all γ P C`pΣq by
Proposition 2.21, we have τLpγ1q

τLpγ2q
“

ιpγ1,λΣq

ιpγ2,λΣq
for any γ1, γ2 P C`pΣq. But note that ιpγ, λΣq

is precisely the length of the geodesic representative S1 Ñ Σ of γ, which is equal to the
translation length of a lift of γ in its action on RH2. In particular, if γa, γc P C`pΣq

correspond to the elements a, c P G appearing in Lemma 7.3, we then have τLpγaq

τLpγcq
R Q.

This contradicts Proposition 3.1, which implies that τL takes only rational values. □
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Appendix A. A presentation of the group

The group Γ constructed in Section 7 is generated by a, b, c, d, and t subject to the
following 27 relations:

a´1dcbc´1ab´1d´1
“ 1,

td´1a2cb´1c´1t´1
“ d,

td´1a2ca´1dt´1
“ a2c´1,

td´1a2cbd´1a´1dt´1
“ acb´1,

td´1adc´1d´1adca´2dt´1
“ baba´1,

td´1adc´1a´1dt´1
“ b2c´1,

td´1adbc´1ab´1c´1dba´1ca´1cb´1c´1t´1
“ bdc´1b´1,

tb2c´1a´2dt´1
“ cbd´1a´1,

td´2a2d´1a´1dt´1
“ c3,

td´1ab´1d´1adt´1
“ cdc´1,

tba´1cba´1dba´1ca´1cb´1c´1t´1
“ a´1bc´1b´1,

td´1adcba´1d´1a´1dt´1
“ a´1cb,

td´1a2dcd´1a´1dt´1
“ a´1db´1,

td´1adcb´1c´1a´1da´2dt´1
“ b´1ab´1a´1,

td´1adcb´2a´2dt´1
“ b´1cba´1,

td´1adcb´1c´1ba´2dt´1
“ b´1dba´1,

td´1ad2ba´1cb´2c´1d´1a´1dt´1
“ c´1a2,

td´1ada´2dba´1d´1a´1dt´1
“ c´1b2,

td´1a2d´1ac´1abc´1a´1a´1dt´1
“ abad´1a´1,

td´1a2d´1cb´2c´1d´1a´1dt´1
“ ab2a,

td´1a2d´1ab´3c´1d´1a´1dt´1
“ abca,

td´1a2d´1ac´1b´1c´1d´1a´1dt´1
“ abda,

td´1a2cb´1a´1dba´1dba´1ca´1cb´1c´1t´1
“ adac´1b´1,

td´1a2cb´2c´1d´1a2d´1a´1dt´1
“ adbc,

td´1a2c´1dba´1d´1a´1dt´1
“ ab´1ab,

td´1adc´1d´1acb´1a´1cb´1c´1t´1
“ bcab´1,

td´1adc´1d´1ad´1adba´1dt´1
“ bcba´1c´1.
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