COMMENSURATING HNN-EXTENSIONS: HIERARCHICAL
HYPERBOLICITY AND BIAUTOMATICITY

SAM HUGHES AND MOTIEJUS VALIUNAS

ABSTRACT. We construct a CAT(0) hierarchically hyperbolic group (HHG) acting ge-
ometrically on the product of a hyperbolic plane and a locally-finite tree which is not
biautomatic. This gives the first example of an HHG which is not biautomatic, the first
example of a non-biautomatic CAT(0) group of flat-rank 2, and the first example of an
HHG which is injective but not Helly. Our proofs heavily utilise the space of geodesic

currents for a hyperbolic surface.

1. INTRODUCTION

Let H be a locally compact group with Haar measure p. A discrete subgroup I' < H is
a lattice if p(H/T) is finite. We say T is uniform is H/T" is compact. Roughly speaking,
we say a lattice I' < Hy x Hs is irreducible if the projection of I' — H; is non-discrete and
if I' does not split as a direct product of two infinite groups (see Section 2 for details).
Throughout we will denote the n-regular tree by 7, and its automorphism group by 7,,.

Automatic and biautomatic groups were developed in the 1980s; with a detailed account
given in the book [Eps+92| by Epstein, Cannon, Holt, Levy, Paterson, and Thurston.
In the 1990s Alonso and Bridson introduced the class of semihyperbolic groups [AB95]
which contains all CAT(0) and biautomatic groups. In recent work of Leary and Minasyan
[LM21], the authors construct irreducible uniform lattices in Isom(E?") x Ty, (m > 2,
n > 1), giving the first examples of CAT(0) groups which are not biautomatic. These
groups were classified up to isomorphism by the second author [Val2la] and studied in
the context of fibring by the first author [Hug22a|. It follows from [Hug21b| and [Val21b]
that all known examples of CAT(0) but not biautomatic groups are either constructed
from or contain non-biautomatic Leary—Minasyan groups as subgroups.

In the 2010s, the coarse geometric class of hierarchically hyperbolic groups (HHGs)
and spaces (HHSs) were introduced by Behrstock, Hagen and Sisto in [BHS17a] with the

motivation coming from isolating the main geometric features common to mapping class

(S. Hughes) MATHEMATICAL INSTITUTE, ANDREW WILES BUILDING, OBSERVATORY QUARTER, UNI-
VERSITY OF OXFORD, OXFORD OX2 6GG, UK

(M. Valiunas) INSTYTUT MATEMATYCZNY, UNIVERSYTET WROCLAWSKI, PLAC GRUNWALDZKI 2/4,
50-384 WROCLAW, POLAND

E-mail addresses: sam.hughes@maths.ox.ac.uk, valiunas@math.uni.wroc.pl.

Date: 24 March, 2023.

2020 Mathematics Subject Classification. 20F65, 20F10, 57K20 (primary), 57M50, 37E30, 20F67

(secondary).
1



BIAUTOMATICITY AND HIERARCHICAL HYPERBOLICITY 2

groups and compact special groups. Very roughly these are spaces admitting a coordinate
system and hierarchy consisting of and parameterised by hyperbolic spaces, and groups of
isometries acting geometrically whilst preserving the hierarchy and coordinate structure.
The theory has received a lot of attention; being studied and developed by numerous
authors [BHS17b; DHS17; DHS17; Spr18a; Spr18b; AB19; ANS19; BR19; DMS20; RS20;
PS22].

As previously mentioned some of the main motivation for, and examples of, HHGs come
from CAT(0) cubical groups [BHS17b; HS20] which are known to be biautomatic by the
work of Niblo and Reeves [NR98|. A 2021 result of Haettel, Hoda and Petyt shows that
HHGs are semihyperbolic [HHP20|, as a corollary this gave a new proof that mapping
class groups are semihyperbolic (see also [DMS20] and [Ham09]). One may hope that
proving HHGs are biautomatic would give another proof that mapping class groups are
biautomatic. Thus, a natural question is whether every HHG is biautomatic? It appears
to be open whether any non-biautomatic Leary-Minasyan groups are HHGs—although
experts expect them not to be. In this paper we construct the first example of an HHG

which is not biautomatic.

Theorem A. There exists a non-residually finite torsion-free uniform irreducible lattice

I' < PSLy(R) x Tyy such that T is a hierarchically hyperbolic group but is not biautomatic.

The group we construct is a “hyperbolic” analogue of the groups introduced by Leary—
Minasyan in [LM21]. Indeed, I" is an HNN-extension of an arithmetic surface where the
stable letter commensurates the surface whilst acting as an infinite order elliptic isometry
of the hyperbolic plane RH2. That the action is by isometries allows us to deduce that
I is a CAT(0) lattice acting freely cocompactly on the product RH? x 754, where Ty is
the Bass—Serre tree. Note that we adopt the lattice viewpoint so we may use results of
[Hug21b]. From here we apply [Hug22b, Corollary 3.3| to deduce T" is an HHG.

Our strategy to show that I' is not biautomatic is very different to Leary—Minasyan’s
work (for example I' is neither constructed from nor contains a Leary—Minasyan group).
Instead of studying the boundary of a biautomatic structure, we develop a new method to
show the failure of biautomaticity. In particular, we use deep work of Martinez-Granado
and Thurston on extending functions to the space of geodesic currents of a hyperbolic
surface [Mar20; MT21].

The question of whether every automatic group is biautomatic first appeared in [Eps+92,
Question 2.5.6] and [GS91, Remark 6.19]. We do not know if the group I" is automatic.

In spite of this we can still deduce an amusing consequence.

Corollary B. At least one of the following statements is false:

(1) Every HHG is automatic.

(2) Every automatic group is biautomatic.
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Note that the analogous statement with “CAT(0) group” instead of “HHG” follows from
the work of Leary and Minasyan |[LM21|. However, since I' is CAT(0) it can be deduced
here too.

Question 1.1. Is the group I' automatic?

Recall that the flat-rank of a CAT(0) group I' (acting on X)), denoted flat-rank(T"), is
the maximal rank of an isometrically embedded Fuclidean space in X.

In [FHT11, Question 43| it was asked if every group acting geometrically on a piece-
wise Euclidean CAT(0) 2-complex group is biautomatic. (See [FHT11| and [MOP21]
for recent progress.) One may hope to relax the hypothesis “2-dimensional piece-wise
Euclidean CAT(0)” to “fat-rank 2 CAT(0)”. Indeed, all previous examples of CAT(0) but
not biautomatic groups have had flat-rank at least 3. The next corollary, which follows

from the Flat Torus Theorem, shows that one cannot.

Corollary C. There ezists a CAT(0) group I' with flat-rank(I") = 2, that is not biauto-

matic.

In [HP20] the authors introduce a property regarding commensurators of abelian sub-
groups, Condition (C), and show that its failure is closely related to Leary—Minasyan
groups [HP20, Proposition 8.4]. A natural question would be to ask whether the failure of
Condition (C) for a CAT(0) group is equivalent to the failure of biautomaticity. However,
by [HP20, Theorem 1.3|, the group I' has Condition (C) and fails to be biautomatic.

In [BHS19, Theorem 7.3] it is shown that HHGs are coarse median spaces as introduced
by Bowditch [Bow13]. We say a group is a coarse median group if it acts geometrically
on a coarse median space and the coarse median operator is equivariant up to bounded
error. In [Pet22, Remark 3.14] it is shown that HHGs are coarse median groups. We
remark that I' appears to be the first example of a coarse median group of type F which
is not biautomatic.

The group I' also appears as an example highlighting the difference between discrete and
non-discrete versions of “injective” metric spaces. We say that a geodesic metric space
(respectively a graph) X is injective (respectively Helly) if the collection of all metric
balls in X satisfies the Helly property. Injective metric spaces and Helly graphs, as well
as groups acting on them geometrically—injective groups and Helly groups, respectively—
have been extensively studied [Isb64; Dre84; Lan13; DL16; BC08; Cha+20; HO21|. The

following result gives a negative answer to the question in [Hae21, Page 4|.
Corollary D. There exists a group I which is injective but not Helly and not biautomatic.

Proof. 1t follows from Theorem A that I' is not biautomatic. Moreover, Helly groups are
biautomatic [Cha+20, Theorem 1.5(1)], and so I is not Helly. On the other hand, for every
metric space X there exists a “smallest” injective metric space E(X), called the injective

hull of X, into which X embeds isometrically, so that a group action on X extends to an
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action on F(X) [Isb64]. Tt is known that E(RH?) is proper and finite Hausdorff distance
away from the image of RH? — E(RH?) |[Hae21, Proposition 4.6]; it also follows from
the definitions that (real) trees are injective and that the ¢, product X x, Y of injective
spaces X and Y is injective. Therefore, the geometric action of I' on RH? x ., T34 extends
to a geometric action on the proper injective metric space F(RH?) x4 To4, and so T is

injective, as required. 0

On the other hand, one may replace the Helly property with a coarse Helly property
to study the classes of coarsely injective and coarsely Helly graphs and groups. Coarsely
injective and coarsely Helly groups have been studied in [HHP20; Cha+20; OV20]; in
particular, it has been shown that all HHGs are coarsely injective [HHP20, Corollary HJ.
It is currently unknown if all coarsely Helly groups are biautomatic, or even if they all

are Helly.
Question 1.2. Is I' coarsely Helly?

It has been communicated to us by Alexander Engel and Damian Osajda that they have
shown certain mapping class groups are not Helly. Such groups are HHGs and therefore
coarsely injective.

It is a well known open problem whether S-arithmetic lattices are biautomatic. Indeed,
this is a special case of [McCO07, Problem 34| in McCammonds list (after the American
Institute of Mathematics meeting ‘Problems in Geometric Group Theory’ April 23-27,
2007). It would be extremely interesting to adapt the methods here to apply to a uniform
S-arithmetic lattice in PSLy(R) x PSLy(Q,). The main issue is showing that vertex
stabilisers in the action on the Bruhat-Tits tree 7,,; are quasi-convex with respect to
any biautomatic structure on the lattice. Note that since such a lattice is residually finite,
so if this strategy can be implemented successfully, one would also get a negative answer
to [LM21, Question 12.4].

We end with a broad conjecture which would vastly generalise our work here. The

reader is directed to Section 2 for definitions.

Conjecture 1.3. Let H be a semi-simple real Lie group with trivial centre and no compact
factors. Let T be the automorphism group of a locally-finite unimodular leafless tree.
Suppose T' is non-discrete. If T is an irreducible non-residually finite uniform (H x T)-

lattice, then I' is not biautomatic.

1.1. Outline of the paper. In Section 2 we revise the necessary background on lattices,
biautomatic structures, geodesic currents on a hyperbolic surface, and the intersection
form. The remainder of the article is then dedicated to proving Theorem A.

The strategy of the proof of Theorem A is as follows. We first assume that I" has a
biautomatic structure (B, M) and consider a biautomatic structure (A, £) induced by

(B, M) on a quasi-convex subgroup G; here GG is a vertex stabiliser in the action of T’
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on 7. The group G acts freely cocompactly on a copy of RH? and so can be identified
with a subgroup of PSLy(R), giving rise to a Riemann surface ¥ = G\PSLy(R). The
next step is to show that stable word length function 7.: G — R with respect to (A, £)
takes only rational values and extends over the space of geodesic currents of ¥. Now,
the translation length function of GG also extends to the space of geodesic currents of X.
Moreover, using the density of the projection of " to PSLy(R) we show that both functions
agree. Now, the translation length function takes values which are not rational multiples
of each other. This is a contradiction, and so I' cannot be biautomatic.

In Section 3 we study stable word length 7, on a biautomatic structure (A, L) as a
function from G — R. The key results, Proposition 3.1 and Lemma 3.5, imply that for a
hyperbolic group G the function takes rational values.

In Section 4 we show that the function 7., viewed as a function on the homotopy
classes of closed curves on X, satisfies a technical property known as “quasi-smoothing”
(see Proposition 4.2). This allows us to extend 7, continuously to the space of geodesic
currents of X.

In Section 5 we complete our study of functions on geodesic currents. The key result,
Proposition 5.6, is that if ¢ is an elliptic isometry of RH? commensurating G such that
(G,ty is dense in PSLy(R), and if a continuous function F on the space of geodesic
currents of ¥ is in a sense “t-invariant”, then F'(y) is a constant multiple of the length of
the geodesic representative of v, where « is a closed curve on X. In the remaining sections,
we construct a lattice I' < PSLy(R) x T' that will allow us to apply this result for F' = 7.

In Section 6 we study properties of irreducible uniform lattices in PSLy(R) x T for
sufficiently general trees. In particular, for a non-residually finite lattice we prove that
projection to PSLy(R) is dense (Lemma 6.1) and that a vertex stabiliser of the action on
the tree T is quasi-convex with respect to any biautomatic structure (Proposition 6.3).

In Section 7 we construct I'; an explicit example of a non-residually finite irreducible
uniform lattice in PSLy(R) x Th4 as an HNN-extension. The key tool is the arithmetic
of quaternion algebras which allow us to ensure the stable letter acts on RH? as an
infinite order elliptic isometry that commensurates the vertex group. We show that the
translation lengths on RH? of some elements of a vertex stabiliser in the tree are not
rational multiples of each other (Lemma 7.3).

In Section 8 we prove Theorem A. In the appendix (Appendix A) we detail a presenta-
tion of I'.
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2. PRELIMINARIES

2.1. Lattices and graphs of groups. Our example will be constructed as a lattice in
PSLy(R) x Ty4. To this end we record some definitions and results we will use in Section 6

and Section 7.

Definition 2.1. Let H be a locally compact topological group with right invariant Haar
measure p. A discrete subgroup I' < H is a lattice if the covolume p(H/I') is finite. A
lattice is uniform if H/T' is compact and non-uniform otherwise. Let S be a right H-set
such that for all s € S, the stabilisers H, are compact and open, then if I' < H is discrete

the stabilisers in the action of I on S are finite.

Let X be a locally finite, connected, simply connected simplicial complex. The group
H = Aut(X) of simplicial automorphisms of X naturally has the structure of a locally
compact topological group, where the topology is given by uniform convergence on com-
pacta.

Note that T" the automorphism group of a locally-finite tree 7 admits lattices if and
only if the group T is unimodular (that is the left and right Haar measures coincide).
In this case we say T is unimodular. We say a tree T is leafless if it has no vertices of
valence one.

Two notions of irreducibility for a lattice will feature in this paper.

Definition 2.2. Let 7 be a locally-finite unimodular leafless tree not isometric to R and
let ' = Aut(7) be non-discrete and cocompact. Let I" be a uniform (PSLy(R) x T')-lattice.
We say that I" is weakly irreducible if one (and hence both—see [Hug21b, Proposition 3.4])
of the images of the projections 7pgr, &) : I' = PSLy(R) and 77 : I' — T' are non-discrete.
We say I is algebraically irreducible if there is no finite index subgroup I'y x I's of I' with I'y
and I'y infinite. By [CM09, Theorem 4.2], the two notions of irreducibility are equivalent
for a (PSLy(R) x T')-lattice I'. So if T" is either (and hence both) weakly or algebraically

irreducible we will simply state that ' is irreducible.

To construct and study lattices in product with a tree we will utilise the graph of lattices
construction from [Hug21b|. Before we do this we will define graphs of groups following
Bass [Bas93].

Definition 2.3. A graph of groups (A, A) consists of a connected graph A together with
some extra data A = (VA EA ®A). This data consists of vertex groups A, € VA for

each vertex v, edge groups A, = Az € EA for each (oriented) edge e, and monomorphisms
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(e : Ae = Aye)) € PA for every oriented edge in A. We will often refer to the vertex and

edge groups as local groups and the monomorphisms as structure maps.

Definition 2.4. The path group m(A) has generators the vertex groups A, and elements
t. for each edge e € FA along with the relations:

The relations in the groups A,
te =t 1,
teaz(g)t;t = ae(g) for allee EA and g € A, = Ae.

Definition 2.5. We will often abuse notation and write A for a graph of groups. The
fundamental group of a graph of groups can be defined in two ways. Firstly, considering
reduced loops based at a vertex v in the graph of groups, in this case the fundamental
group is denoted m;(A,v) (see [Bas93, Definition 1.15]). Secondly, with respect to a
maximal or spanning tree of the graph. Let X be a spanning tree for A, we define
m (A, X) to be the group generated by the vertex groups A, and elements t, for each
edge e € EA with the relations:

The relations in the groups A,,
te =t ! for each (oriented) edge e,
teas(g)t; = ae(g) for all g € A,
t. = 1if e is an edge in X.

Note that the definitions are independent of the choice of basepoint v and spanning tree
X and both definitions yield isomorphic groups so we can talk about the fundamental
group of A, denoted m;(A).

We say a group G is covirtually isomorphic to H if there exists a finite normal subgroup
N < G such that G/N =~ H. We are now ready to define a graph of PSLy(R)-lattices.

Definition 2.6. A graph of PSLy(R)-lattices (A, A, 1)) is a graph of groups (A4, .A) that
is equipped with a morphism of graphs of groups ¢ : A — PSLy(R) such that:
(1) Each local group A, € A is covirtually a PSLy(R)-lattice and the image 1(A,) is
a PSLs(R)-lattice;
(2) The local groups are commensurable in I' = 7 (A) and their images are commen-
surable in PSLy(R);
(3) For each e € E'A the element ¢, of the path group 7(.A) is mapped under 1 to an

element of Commpg, k)(Ve(Ae)).

The relevance of a graph of PSLy(R)-lattices is the following special case of [Hug21b,
Theorem A].

Theorem 2.7. [Hug21b, Theorem A| Let (A, A 1)) be a finite graph of PSLy(R)-lattices
with locally-finite unimodular non-discrete Bass-Serre tree T, and fundamental group T.

Suppose T = Aut(T) admits a uniform lattice. If each local group A, is covirtually



BIAUTOMATICITY AND HIERARCHICAL HYPERBOLICITY 8

a uniform PSLy(R)-lattice, and the kernel Ker(i|a,) acts faithfully on T, then T is a
uniform (PSLy(R) x T)-lattice and hence a CAT(0) group. Conversely, if A is a uniform
(PSLy(R) x T)-lattice, then A splits as a finite graph of uniform PSLy(R)-lattices with
Bass-Serre tree T .

2.2. Biautomatic structures. We are interested in studying when a group G is biauto-
matic; we briefly introduce the necessary definitions and basic results on biautomaticity
below, and refer the interested reader to [Eps+92| for a more comprehensive account.

We remark that the nowadays standard definition of a biautomatic structure that we
give below differs from [Eps+92, Definition 2.5.4] (see [Amr21]| for an explanation). How-
ever, for finite-to-one structures these definitions are equivalent [Amr21, Theorem 6|.

Let G be a group with a finite generating set A. Formally, we view A as a finite set
together with a function 7% : A — G that extends to a surjective monoid homomorphism
ma: A* — G, where A* is the free monoid on A; we say that a word v € A* labels the
element 74(v) € G. For simplicity, we will assume that A is symmetric (m4(A) = w4(A)™1)
and contains the identity (m4(1) = 1g for an element 1 € A). We denote by da the
combinatorial metric on the Cayley graph Cay(G, A) of G.

We study (combinatorial) paths in Cay(G, A). Given a path p in Cay(G, A) and an
integer t € {0, ..., |p|}, where |p| is the length of p, we denote by p(t) € G the t-th vertex
of p, so that p(0) and p(|p|) are the starting and ending vertices of p, respectively. We
further define p(t) € G for any t € Z~o u {00} by setting p(t) = p(|p|) whenever ¢ > |p|.

Definition 2.8. Let GG be a group with a finite symmetric generating set A containing
the identity, and let £ < A*. We say (A, L) is a (uniformly finite-to-one) biautomatic

structure on G if

(i) L is recognised by a finite state automaton over A;
(ii) there exists N > 1 such that 1 < |7;'(g) n L] < N for every g € G; and
(iii) £ satisfies the “two-sided fellow traveller property”: there exists a constant ¢ > 1
such that if p and ¢ are paths in Cay(G, A) labelled by words in £ and satisfying
d4(p(0),q(0)) <1 and da(p(e0),q(c0)) < 1, then da(p(t), q(t)) < ¢ for all ¢.

We say G is biautomatic if it has some uniformly finite-to-one biautomatic structure.

The standard notion of a biautomatic structure appearing in the literature (cf [Eps+92|)
is more general than the notion of a uniformly finite-to-one biautomatic structure as
defined here. Nevertheless, it can be shown that every biautomatic group (in the sense
of [Eps+92|, for instance) has a uniformly finite-to-one biautomatic structure [Eps+92,
Theorem 2.5.1] and so is biautomatic in our sense as well. In this paper, we assume all
biautomatic structures to be uniformly finite-to-one.

We record the following result for future reference; for part (i), it is enough to take v

to be larger than the number of states in an automaton over A recognising L.
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Theorem 2.9 (D. B. A. Epstein et al. [Eps+92, Lemma 2.3.9 & Theorem 3.3.4]). Let
(A, L) be a biautomatic structure on a group G. Then there exists a constant v = 1 with

the following properties:

(i) if v € A* is a subword of a word w € L, then there exist uj,us € A* such that
lurl, |uz| < v and uyvus € L, and if v is a prefix (respectively suffiz) of w, then we
can take uy = 1 (respectively us = 1);

(ii) if v,w € L are such that ma(v) = Ta(wa) or ma(v) = wa(aw) for some a € A, then
o] = |w]| < v; and

(iii) any path in Cay(G, A) labelled by a word in L is a (v, v)-quasi-geodesic.
The following notion will be crucial in our arguments.

Definition 2.10. Let (A, £) be a biautomatic structure on a group G, and let H < G.
We say that H is L-quasiconvex if there exists a constant & > 1 such that every path in
Cay(G, A) starting and ending at vertices of H and labelled by a word in £ belongs to
the &-neighbourhood of H.

The importance of the notion of £-quasiconvexity can be summarised in the following
result. It can be extracted from the proofs of [GS91, Theorem 3.1 & Proposition 4.3] and
from [Eps+92, Lemma 2.3.9].

Theorem 2.11 (S. Gersten and H. Short; D. B. A. Epstein et al.). Let (B, M) be a
biautomatic structure on a group G.
(i) For any g1,...,gn € G, the centraliser Ca({g1,...,9n}) is M-quasiconver.
(i) Let H < G be an M-quasiconvez subgroup. Then there exists a biautomatic struc-
ture (A, L) on H and a constant k = 1 such that if v e M and w € L represent

the same element of G, then |[v] — |w|| < k.

A biautomatic structure (A4, L) on H < G appearing in Theorem 2.11(ii) will be called
a biautomatic structure associated to (B, M).

Finally, we record the following observation.

Lemma 2.12. Let (A, L) be a biautomatic structure on a group G, let Hy < Hy < G, and
suppose that [Hy : Hy] < 0. Then Hy is L-quasiconvex if and only if Hy is L-quasiconver.

1 such that H,

1 be the constant

Proof. Note that since [Hy : H;| < oo, there exists a constant A
belongs to the A\-neighbourhood of H; in Cay(G, A). Moreover, let ¢
appearing in Definition 2.8(iii).

=
=

Suppose first that H; is L-quasiconvex, and let & > 1 be the constant appearing in
Definition 2.10. Let py be a path in Cay(G, A) labelled by a word in £ with ps(0), p2(o0) €
H,. Since Hsy belongs to the A-neighbourhood of Hy, there exist ¢g_, g, € H; such that
da(g—,p2(0)) < X and da(g+,p2(0)) < A; moreover, since 74|, is surjective, there exists
a path p; in Cay(G, A) labelled by a word in £, starting at g_ and ending at g,. It then



BIAUTOMATICITY AND HIERARCHICAL HYPERBOLICITY 10

follows that ps is in the A(-neighbourhood of p;, and p; is in the & -neighbourhood of H;.
Therefore, p, is in the (A( + & )-neighbourhood of Hy, and so of Hy; it follows that Hy is
L-quasiconvex, as required.

Conversely, suppose that Hy is £-quasiconvex, and let &, > 1 be the constant appearing
in Definition 2.10. Then any path in Cay(G, A) labelled by a word in £ and with endpoints
in H; belongs to the &-neighbourhood of Hj, and so to the (& + \)-neighbourhood of

H;. It follows that H; is L-quasiconvex, as required. U

2.3. Geodesic currents. We now fix a closed orientable Riemannian surface ¥ of con-
stant curvature —1, and let G = m(X). We also fix the universal covering map IR
and the G-action by isometries on . Let Zt(S) be the set of oriented (i.e. directed)
geodesic lines on 3. Since each such geodesic line is uniquely determined by its end-
points on 0% =~ S!, we can topologise Z+ (i) by identifying it with the open cylinder
{(z,y) € S' x S | 2 # y}. Note that the G-action on & induces an action of G on ().

By an (oriented) curve on 3 we mean a free homotopy class of essential continuous maps
St — ¥. We denote by C*(X) the set of all curves on X, which can also be identified with
the set of non-trivial G-conjugacy classes. Given a primitive curve v € C*(X) (meaning
that v # 7" for any n € C*(X) and n > 2), we may associate a Borel measure ., on

~

Z7(X) as follows: let 7: S' — ¥ be the unique (up to reparametrisation of S') geodesic

~

representative of v, let A(y) < Z*(X) be the set of all lifts of 4, and let pu, (E) := |[EnA(y)]
for any Borel subset £ < I+(§]). We may also define this when + is not primitive, by
setting p,n := nu, for primitive n € C*(X) and n > 2. By construction, A(7), and so p.,
is G-invariant; moreover, one can see that A(v) is discrete in 7% (X), implying that /., is

a Radon measure. This motivates the following definition.

Definition 2.13. An (oriented) geodesic current on ¥ is a G-invariant Radon measure
on I*(f]). The set of all geodesic currents on ¥ form a topological space G*(X) under the
weak* topology: we have y,, — pin G*(X) if and only if { f du, — § f dpu for all continuous
functions f: I+(i) — R with compact support. By slightly abusing the notation, we will
identify a curve v € C*(X) with the corresponding geodesic current v := p, € G*(X), and

will therefore view C*(X) as a subset of G*(X).

It is known that a current g is uniquely determined by the values of { f du for compactly

~

supported continuous functions f: Z7(X) — R, as a consequence of the following theorem.

Theorem 2.14 (Riesz Representation Theorem; see [Mar20, Theorem 1.7.13]). Let X
be a locally compact Hausdorff space, and let C.(X) be the set of continuous functions
f: X — R with compact support. For any linear functional F: C.(X) — R such that
F(f) = 0 whenever f(z) = 0 for all x € X, there exists a unique Radon measure p on X
such that F(f) = fdp for all f € Co(X). In particular, if i and yi' are Radon measures
on X such that § fdu = fdu for all f € C(X), then pu =y
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A core part of this paper is based on studying certain functions f: CT(X) — R. The
terminology we use below roughly follows the terminology of [MT21| and [Mar20]|; how-
ever, since the functions we consider are assumed to satisfy the additive union property
in the sense of [MT21, Definition 1.1], we are able to make some simplifications to the
statements of results. Given two maps 71,72: S! — X, a crossing of 7, and 7, is a pair
(r1,15) € S* x S such that 7;(z1) = 2(22), and a self-crossing of 7: S! — ¥ is a pair
(r1,15) € St x S! such that @1 # x5 and J(z1) = J(xs). A crossing or a self-crossing is
essential if, roughly speaking, it is unavoidable in a homotopy class: see [MT21, Defini-
tion 2.6 & Lemma 2.8|.

Definition 2.15. Let f: C*(X) — R.
(i) We say f is homogeneous if f(4™) = nf(~) for all y € C*(X) and n > 1.

(ii) We say [ satisfies the join quasi-smoothing property if there exists a constant
¢ = 0 such that the following holds. Let (z1,x2) be an essential crossing of maps
A1,72: St — X representing curves 71,72 € C(2), respectively, and let v € C*(X)
be the homotopy class of a curve obtained by cutting 74; at x; and regluing the
four resulting endpoints in a way that respects the orientation of the 4;. Then
f(y) < fln) + flr) + ¢

(iii) We say f satisfies the split quasi-smoothing property if there exists a constant
¢ = 0 such that the following holds. Let (z1,x2) be an essential self-crossing of
a map 7: S! — ¥ representing a curve v € C*(X), and let 1,7 € CT(X) be
the homotopy classes of the two curves obtained by cutting 5 at x; and z, and

regluing the four resulting endpoints in a way that respects the orientation of 7.

Then f(y1) + f(r2) < f(v) + ¢

Given a function f: C*(X) — R that satisfies the join and split quasi-smoothing prop-

erties, the following result allows us to construct such a function that is also homogeneous.

Theorem 2.16 (D. Martinez-Granado and D. P. Thurston [MT21, Theorem B|). Let
f:CT(X) — R be a function satisfying the join and split quasi-smoothing properties.
Then the function f: CtH(X) — R defined by f(y) = lim,_o f(Y")/n is well-defined,

homogeneous, and satisfies the join and split quasi-smoothing properties.

The main motivation for these definitions arises from the following result that is crucial

in our argument.

Theorem 2.17 (D. Martinez-Granado and D. P. Thurston [MT21, Theorem Al|). Let
f:CT(X) — R be a homogeneous function satisfying the join and split quasi-smoothing

properties. Then [ extends to a unique continuous homogeneous function f: GH(X) — R.

As a consequence of Theorems 2.16 and 2.17, if a function f: C*(¥) — R satisfies
the join and split quasi-smoothing properties, then f: C*(X) — R extends to a unique
continuous homogeneous function f: G*(%) — R.



BIAUTOMATICITY AND HIERARCHICAL HYPERBOLICITY 12

Another property we will use is “positive linearity”. We say a function f: G*(¥X) — R is

positively linear if f(cipy + capa) = ¢ f(1) + o f (u2) for all ¢1,co = 0 and pq, us € G (X).

Lemma 2.18. Let f: C*(X) — R be a homogeneous function satisfying the join and split
quasi-smoothing properties. Then the function f: GH(X) — R given by Theorem 2.17 is

positively linear.

Proof. Let R,.C*(X) < G*(X) be the subspace of currents of the form ), ¢;y; for some
¢; = 0andy; € CH(X). Since f: C*(X) — R is homogeneous, we can extend it to a function
f R,C*(¥) — R by setting J?(Zl civi) = 2, ¢if(vi). The fact that f: C*(X) — R
satisfies the join and split quasi-smoothing properties in our terminology implies that
f: R, C*(X) — R satisfies quasi-smoothing in the terminology of [MT21]. In particular,
by the uniqueness in Theorem 2.17, the restriction of f: G*(X) — R to R,C*(X) coincides
with f. By the definition of f, it therefore follows that flerpr +eopn) = e f(pr) +eaf (u2)
for all ¢;,co = 0 and py, e € RiCT(X). Since Ri.CT(X) is dense in G*(X) [BonS8s,
Proposition 2| and since f: G7(X) — R is continuous, it follows that f: GT(3) — R is

positively linear, as required. 0

2.4. Intersection numbers. Finally, we study the intersection numbers between cur-
rents. Let DI*(f]) c I+(§]) x IT*(2) be the set of pairs (71,72) of geodesic lines on 5

that intersect transversely; one can show that DZ* (%) is a 4-manifold. The G-action on
5 induces a free and properly discontinuous action on DI*(i), and so we may define the
quotient DZ*(X) := DI+ (2)/G.

~ ~

Definition 2.19. Let uy, ps € G*(X). The product measure iy x g on Z(X) x Z(X) is
G-invariant, so it induces a measure p; [X] g on DZH(X). The intersection number of py
and pg, denoted tx(py, p2), is the total mass of the measure py Xl po. We write ¢(puq, p2)
for vs;(p1, 2) when the surface 3 is clear.

For 1,7 € C*(X), one may check that ¢(71,72) is equal to the standard geometric
intersection number of geodesic representatives 41, 9: S' — X, i.e. the number of points
at which 47 and 75 intersect transversely. Moreover, it turns out that the intersection

number is always finite, and induces a continuous function G*(X) x G*(3) — R:

Theorem 2.20 (F. Bonahon [Bon86, §4.2|). For any u1, ps € GH(X), we have (1, p2) <

0. Moreover, the function v: GT(X) x GH(X) — R is homogeneous and continuous.

We say A € G (X)) is a filling current if every geodesic line in S transversely intersects

another geodesic line contained in the support of .

Proposition 2.21 (F. Bonahon [Bon88, Proposition 4 and its proof]). Let A\ € G*(%)
be a filling current. Then t(A, 1) > 0 for all p € GT(X), and the subspace {u € GH(X) |
t(A, n) <1} of GH(XE) is compact.

We record the following observation on intersection numbers for future reference.
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Lemma 2.22. Let ¢: ¥/ — ¥ be a k-sheeted covering map (for some k < ) that is a
local isometry, and let @: S — 5 be a lift of @. Then vsi(p1 0 @, pa 0 P) =k - ts(p, p2)
for all py, pa € G*(3).

Proof. The isometry @ induces a homeomorphism Z+(3) x ZT(3/) — () x (%)
that maps DI+ () onto DI (E); let @F: DIH(X) — DIT(E) be this induced map.
Moreover, we can canonically identify DZ*(X) with the set of triples (x,t1,t;), where
r € Y and ty,ty € TIY =~ S! are such that t; # t5, and the topology is the “usual”
one (see [Bon86]); this viewpoint allows us to see that ¢ induces a k-sheeted covering
map ¢': DIT(¥) — DI*(X). One may check that we have py o @' = ¢’ o pyy, where
ps: DIT(S) — DIT(X) and psy: DIT(S) — DIT(X') are the canonical covering maps.
It follows that (p1 0 @)Xl (g0 @) = (1 X o) 0 ¢, i.e. we have [(1 0 @)X (2 0 @)] (A) =
(1 X o) (¢'(A)) for every Borel subset A < DZ* (YY) such that ¢'|4 is injective. This
implies that [(11 0 @)X (u2 0 )] (DZT(X)) = k- (11 X p2) (DI (X)), as required. O

3. STABLE WORD LENGTHS

Throughout this section, we fix a biautomatic group G with a (uniformly finite-to-one)
biautomatic structure (A, £). We define several functions G — R associated to lengths of

words in £, and study the relationship between them.

Proposition 3.1. Let g € G, and for each n > 1 let w, € L be a word representing g".

Then the sequence (|wy,|/n)._, converges and the limit lim,, o |w,|/n is rational.

Proof. Suppose first that g has finite order, and so the subgroup {g) is finite. Since (A, £)
is finite-to-one, it follows that the set {w, | n > 1} is finite, and so the sequence (|w,|);"_,
is bounded. Therefore, |w,|/n — 0 € Q as n — o0, which implies the result.

Suppose now that ¢ has infinite order. By Theorem 2.11(i), the centraliser Cg(g) is £-
quasiconvex (with associated structure (A;, £1), say), and so finitely generated, implying
(again by Theorem 2.11) that its centre Z(Cq(g)) is Li-quasiconvex (with associated
structure (As, L£y), say). Thus Z(Cg(g)) is a finitely generated abelian group containing
g, and so (as g has infinite order) we have Z(Cg(g)) = H x F', where H ~ Z" g€ H, and
F is finite. In particular, H has finite index in Z(Cg(g)), and is therefore L£o-quasiconvex;
let (B, M) be the associated biautomatic structure on H.

By applying Theorem 2.11(ii) three times, it follows that there exists a constant x > 1
such that for each n > 1, if v, € M is a word representing ¢" then |jv,| — |w,|| < k.
Moreover, since (B, M) is a biautomatic structure on H = Z" , there exists a constant
p = 0 and a function f: H — Q such that f(h") = nf(h) for all h e H and n > 1, and
such that ‘f(h) — ]uH < p for any h € H and any word u € M representing h [Val21b,

Proposition 4.2 and its proof]. In particular, for each n = 1 we have

[onl _ 1(g")

n n

Ko !f(g")—|vn|!+ﬁ<p+/’v
n_ n = n

M—f(g) <

< +
n

Y
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and so |w,|/n — f(g) € Q as n — oo, as required. d

Motivated by this, we introduce the following terminology.

Definition 3.2. Let g € G.
(i) The L-word length of g, denoted |g|,, is the length of the shortest word in £

representing g.
(ii) The conjugacy L-word length of g is defined as |g|, := mingeq |hgh™|,.
(iii) The stable L-word length of g is defined as 72(g) := lim, .« [9"| /7.

It follows from Proposition 3.1 that 7.(g) is well-defined: indeed, this number is equal

[wn|

to lim,, ., =™ in the notation of the Proposition. We make the following easy observation.
Lemma 3.3. We have 1.(hgh™) = 72(g) for all g,h € G.

Proof. Let v = 1 be the constant given in Theorem 2.9, and let w,,, v, € L be the shortest
words representing ¢", hg"h ™!, respectively. Then ||w,| — |v,|| < 2v max{|h[4,1}, and so

72(9) = lim, o [wy|/n = lim, o |v,|/n = 72(hgh™!), as required. O

In particular, it follows that 7-(g) = mingeg 72(hgh™') = minpeg lim, oo [hg"h ™|, /n
for any g € GG. In the remainder of this section, we prove that if G is hyperbolic then
the minimum and the limit in this expression can be swapped, and therefore 7,.(g) =

lim,, o |¢"||, /0 for all g € G.

Lemma 3.4. Suppose G is hyperbolic. Then there exist constants A = 1 and ¢ = 0
satisfying the following property. Let g € G be an element of infinite order, and let w € L
be a word representing a conjugate of g with |w| = |g|,. Then any bi-infinite path in

Cay(G, A) labelled by - - - www - -+ is a (N, €)-quasi-geodesic.

Proof. Let v > 1 be the constant given in Theorem 2.9. Then there exist constants
¢, X\ =1 and € > 0 such that every (-local (v, 2v(v + 1))-quasi-geodesic in Cay(G, A) is a
(), e)-quasi-geodesic [CDP90, Chapitre 3, Théoréme 1.4]|. Moreover, if w € A* is a word
representing an infinite order element, then any bi-infinite path in Cay(G, A) labelled by
—www - -+ s a quasi-geodesic [GHI0, Proposition 8.21|. Since A is finite, there are only
finitely many words w € L of length < /; therefore, after increasing A > 1 and € > 0 if
necessary, we may assume that for every word w € £ with |w| < £ representing an element
of infinite order, a path in Cay(G, A) labelled by - - - www - - - is a (A, £)-quasi-geodesic.
It is therefore enough to show the following: if ¢ € G and w € L are such that w
represents ¢ and |w| = [g|, = ¢, and if v = Cay(G, A) is a bi-infinite path labelled
by -+ www---, then any subpath of v of length < ¢ is a (v, 2v(v + 1))-quasi-geodesic.
Thus, let n = v be a subpath of length < ¢ from h € v to k € v. We aim to show that
In| < vda(h, k) +2v(v+1).
Since |n| < ¢ < |w], it follows that n is labelled by a subword of ww; however, since

paths labelled by w are (v, v)-quasi-geodesic, we may without loss of generality assume
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FIGURE 1. The proof of Lemma 3.4. The thick path is 7, the red subpath is 7,
and the blue and green paths are labelled by words in L.

that 7 is not labelled by subword of w. Thus 7 is labelled by a word w;ws, where w; and
wy are a suffix and a prefix of w, respectively. Since |w;| + |we| = |n| < € < |w], it follows
that w = wovw; for some v € A*. Since v is a subword of a word in £, there exist words
uy, ug € A* of length < v such that ujvug € L. See Figure 1.

Now let ¢’ € G be the element represented by wjwyv € A*, so that g and ¢ are
conjugate in G, and let w’ € L be a word representing ¢’. By construction, we have
w', uyvus € L, and there exist paths in Cay(G, A) labelled by those two words that start
distance < da(h, k) + |ur| < da(h,k) + v apart and end distance < |up| < v apart.

Therefore,

lw| = ||g]; < |w'| < |wvus| + v(da(h, k) +2v) < Jv| + 2v 4+ v(da(h, k) + 2v)
= |w| —|n| + vda(h, k) + 2v(v + 1).

It follows that || < vda(h, k) + 2v(v + 1), as required. O

Lemma 3.5. Suppose G is hyperbolic. Then |g"|,/n — 1:(g) asn — o for every g € G.

Proof. Fix g € G. If ¢ has finite order, then the set {|¢"||, | n > 1} is bounded, implying
that |¢"|,/n — 0 = 72(g9) as n — oo, as required. Therefore, we may without loss of
generality assume that g has infinite order. After replacing g by its conjugate if necessary
(we can do this by Lemma 3.3), we may assume |g||, = |wq| for some word wy € L
representing g.

For each n > 1, let h, € G and w, € L be such that w, represents h;'g"h, and
lg™||l; = |wn|. By replacing h, with h,g" for some M = M (n) € Z if necessary, we may
assume that d4(h,,lg) < da(h,,g™) for all m € Z (when n is fixed); in particular, we
may take h; = 1g. Let 7, be a bi-infinite path in Cay(G, A) labelled by - - - w,w,w,, - - -
such that a sub-ray of v, labelled by w,w,w, - - - starts at the vertex h,,.

By Lemma 3.4, there exist constants A > 1 and ¢ > 0 such that each v, is a (), ¢)-
quasi-geodesic. Furthermore, since 7, and ; contain vertices ¢""h,, and ¢"", respectively,
for all m € Z, it follows that 7, and 7; have the same endpoints on the boundary 0G.
Therefore, by [CDP90, Chapitre 3, Théoréme 3.1|, there exists a constant 5 > 0 such that

v, is Hausdorff distance < g away from 7, for each n € Z. See Figure 2.
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FIGURE 2. The proof of Lemma 3.5.

Now since h,, € 7,, there exists a vertex k, € v such that da(h,,k,) < . Since 7,
is the union of the (g)-translates of a path labelled by w; and starting at 15, we have
da(g™, k,) < |wy| for some M = M(n) € Z. But then the minimality of d4(h,, 1) implies
that

da(hn, 1a) < da(hn, g™) < da(hn, k) + da(g™ kn) < B+ |wi.

As A is finite, it follows that the set C' := {h,, | n > 1} is finite.

Now for each h € C' and n > 1, let v,, € L be a word representing h~'g"h € G. We
then have ||¢g"| . = min{|v, | | h € C}. Furthermore, it follows from Proposition 3.1 that
|vnnl/n — T£(hgh™') and therefore, by Lemma 3.3, |v,4]/n — 72(g) as n — oo, for each

h e C. As C is finite, we thus have ||¢g"|, /n — 72(g) as n — o0, as required. O

4. QUASI-SMOOTHING

Throughout this section, we fix a hyperbolic group G together with a (uniformly finite-

to-one) biautomatic structure (A, £) on G. We use the notation of Definition 3.2.

Lemma 4.1. Let G be a hyperbolic group, and let (A, L) be a finite-to-one biautomatic
structure on G. Then there exists a constant £ = 0 such that the following hold:
(i) for all g,h € G, we have |gh|, < |g|, + |hl, + &;
(ii) for all g,h € G, we have |gh|, < |g|, + &|h|a and |hg|, < |g|, + &|h|a;
(iii) for all g,h € G and w € L such that w represents gh and a prefix of w represents
g, we have |g|, + |h|, < [ghl, +¢.

Proof. Let v be the constant given by Theorem 2.9. Since Cay(G, A) is hyperbolic, there
exists a constant 0 such that geodesic triangles in Cay(G, A) are d-slim, and a constant /3
such that any two (v, v)-quasi-geodesics with the same endpoints are Hausdorff distance
< (8 away from each other [CDP90, Chapitre 3, Théoréme 1.2|. In particular, (v, v)-quasi-
geodesic triangles in Cay (G, A) are (§ + 25)-slim. We set

€:=v(20+ 40 + 4v + 3).

i) Let vy, v9,w € L be words representing g, h and gh, respectively, such that |g|, =
c
|v1], |h|, = |vo] and |gh|, = |w|. Let 7,1, ¢ < Cay(G, A) be the paths from 1g
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FIGURE 3. The proof of Lemma 4.1. The blue paths have length < v, and the
green dashed lines have length < § + 238 + 1.

to gh (respectively from 1¢ to g, from g to gh) labelled by w (respectively vy, vg).
Then these three paths form a (v, v)-quasi-geodesic triangle in Cay(G, A), which
must be (0 + 23)-slim. Thus, if we write v = y17, and {; = (11(32 in such a way
that the endpoints of 77 and (;; are distance < § + 25 apart and 7, is as long as
possible, then we can write (s = (21(22 in such a way that the starting points of
v and (o9 are distance < + 25 + 1 apart.

Let wy, wy, v}, vh € A* be the labels of 1,79, (11, (22, respectively. Then there
exist words uy, ug, t1,ts € A*, all of length < v, such that wyuy, usws, vity, tavh € L;
see Figure 3a. It follows that the endpoints of the paths starting at 15 and
labelled by wju; and by vjt; are distance < 6 + 25 + 2v apart, implying that
lwiug| = [vita]| < v(8 + 2B + 2v). Similarly, |[usws| — |t2v|] < V(6 + 28+ 1+ 2v).
It follows that

\gh|, = |w| < Jwiug| + Jusws| < Jvity| + [t2vh] + (20 + 46 + 4v + 1)
< |+ s + v (20 + 48 + 4v + 1) + 2v < |vg| + |va| + € = |9, + |h], + &,

as required.

(ii) This is trivially true if h = 1. Otherwise, it is immediate from the choice of v
that [ghl, . [hgl, < Igl, + vIhla < lgl, + JALs.

(iii) Let w = w109, so that v; and vy represent g and h, respectively. Since v; and v
are a prefix and a suffix, respectively, of a word in L, it follows that vyuy, usve € L
for some wy,up € A* with |uy|, |us| < v; see Figure 3b. It then follows that
9], < |viur|+v|ui| and |h|; < usvs| +v|us|. Moreover, we have | |gh|, — |w|| <

implying that
9l + Rl < [viua| + [ugva| + v(|ur| + ug|) = |oi] + |va| + (Jua| + [ua|)(v + 1)
< |wl+2v(v+1) <|gh|, +v+vQ2v+2) <|gh|, +&,

as required. O
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Now let ¥ be a closed orientable hyperbolic surface, let G = (%), and let (A, £) be a
biautomatic structure on G as before. We may then identify C*(3) with the set of non-
trivial conjugacy classes in G. Since the function |—|, : G — R is by definition invariant
under conjugacy in G, it factors through a function C*(3) — R which we also denote by
|—| ;- We aim to show that ||—|, : C*(X) — R satisfies the join and split quasi-smoothing

properties: see Definition 2.15.

Proposition 4.2. The function |—||, satisfies the join and split quasi-smoothing proper-

ties.

Proof. Let V' = Cay(G, A)/G: that is, V is a rose—a graph with one vertex—with one
loop edge for each element of A. We will not distinguish pointed loops in V' from their
pointed homotopy classes, allowing us to assign to each such loop a label w € A*. Let
my: Cay(G,A) —» V and 7x: 3 — ¥ be the canonical covering maps, and let §: V — X
be a continuous map that sends each edge in V' to a pointed loop on ¥ labelled by the
corresponding element of A ¢ G = m(X).

Since 0 o my maps loops in Cay(G, A) to nullhomotopic loops in ¥ and so induces
a trivial map m (Cay(G, A)) — (%), it follows that 6 o 7y = 7 o § for some map
g Cay(G,A) — 3. Moreover, fis clearly G-equivariant; since V and ¥ are both compact
and the G-action on 3 is properly discontinuous, it follows by the Svarc-Milnor Lemma
that 6 is a (), €)-quasi-isometry for some A = 1 and ¢ > 0, implying that the diameter of
-1(%) is at most Ae for any ¥ € . In particular, if z;, 2, € V are such that 6(z;) = 6(z>),
then there are lifts ¥, € ;' (z1) and ¥, € 7" (22) such that 0(%1) = 6(%,). This implies
that deay(c,.a)(T1, T2) < Ae; therefore, if 5: [0, 1] — Cay (G, A) is a geodesic from ' to Ty,
then 7 := my 07 is a path in V of length < Ae that is mapped (under 6) to a nullhomotopic
loop on ..

Let v be the constant given by Theorem 2.9, and let § > 0 be the constant such that
any two (v, v)-quasi-geodesic paths in Cay(G, A) with the same endpoints are Hausdorff
distance < § apart: such a [ exists by [CDP90, Chapitre 3, Théoréme 1.2|. We set

¢ :=E&max{9 + 2)\e, 7 + 20 + 2\e},

where ¢ is the constant given in Lemma 4.1. We now prove the (i) join quasi-smoothing

and (ii) split quasi-smoothing properties.

(i) Forie {1,2}, let v; e C*(X), and let w; € L represent an element in the conjugacy
class corresponding to 7; such that |w;| = ||vi|,; moreover, let o;: S' — V be
the (pointed) loop on V labelled by w;, so that the loop 7; := 6 o 0; is in the
free homotopy class ;. Suppose (y1,¥2) is an essential crossing of 4; and 3, so
that 71 (y1) = Y2(y2), and let v € C*(X) be the path obtained by the join quasi-
smoothing procedure as in Definition 2.15. We can thus write o7 = 011 - 012 and

09 = 091 - 099 for some o0;;: [0,1] — V, where we write o’ - ¢” for concatenation of
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paths ¢’ and ¢” (under some reparametrisation), so that (# o o) - (0 0 099) - (60
091) - (6 0 012) is in the homotopy class 7.

Let z; := o;(y;) € V for i € {1,2}, so that 6(z1) = 0(x3). Then, as explained
above, there exists a path n: [0,1] — V from z; to x5 of length < Ae such that
the loop 6 o 7 is nullhomotopic in . It follows that 6 o (011 -1 - 092 - 91 - 7] - 012)
is a well-defined loop that is in the homotopy class ~, where 7j: [0, 1] — V can be
taken to be the “reverse” of 1. See Figure 4a.

By adding or removing initial and terminal subpaths of length at most one
to/from the paths o,;, n and 77, we may modify our construction so that each of
these paths start and end at the vertex of V. In particular, there exist paths
01, Olgy 0hy, 0h, ', 771 [0,1] — V, all starting and ending at the vertex of V', such
that oy = o}, - 0]y and oy = g}, - g}y, such that ' and 77 have length < Ae + 2,
and such that o, -7 - 0 - 0b, -7 - 05 is a well-defined loop that is mapped under
f to the homotopy class .

Let wqy, wi2, war, wee, v, € A* be the labels of the paths o1, 075, 05, e, 7', 77,
respectively. We then have wy = wjjwis € L, wy = wowee € L, and |v|, [7] <
Ae + 2; moreover, the G-conjugacy class of wiivweswsewiy corresponds to the
homotopy class . If, given v € A*, we write |u|, for |g|,, where g € G is the

element represented by u, then Lemma 4.1 implies that

VIl < [winvwewnvwia|, < lwiv], + |waal, + [wai¥|, + [wial, + 3§
< winlg + waalp + [warl, + |wiaf, + (34 2(Xe +2))€

< Jwnwia|p + Jwawel, + (3 +2(Xe +2) +2)6 < |l + |l + ¢

as required.

Let v € CT(X), and let w € L represent an element in the conjugacy class corre-
sponding to «y such that [w| = |v] ;; moreover, let o: S* — V be the (pointed) loop
on V labelled by w, so that the loop 4 := foo is in the free homotopy class . Sup-
pose (y1,y2) is an essential self-crossing of 7, and let 71,7, € C*(X) be the paths
obtained by the split quasi-smoothing procedure as in Definition 2.15. Similarly to
the previous case (see Figure 4b), we may find paths o}, 05, 0%, 7',77: [0,1] — V,
all starting and ending at the vertex of V, such that o = o} - ¢} - 0%, such that
oy -n - o and of - 7 are well-defined loops that are mapped (under 6) to the
free homotopy classes 7, and s, respectively, and such that 7' and 77 have length
< e+ 2.

Let wy, wy, w3, v,0 € A* be the labels of the paths o1, 0%, o4, 7,7, respectively.
It then follows that w = wywews € L, that |v|,[v] < Ae + 2, and that the G-
conjugacy classes of wyvws and wyv correspond to the homotopy classes v; and
v, respectively. Now let v € £ be a word such that v and wyws represent the

same element of G. Since u and wyw, are both (v, v)-quasi-geodesic words, we
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(a) Join quasi-smoothing, (i). (b) Split quasi-smoothing, (ii).

FIGURE 4. The proof of Proposition 4.2. The top pictures represent the
situation in V', the bottom ones in 3. The red point is the one at which the
quasi-smoothing procedure is done, and the blue paths have length < Ae.

can write u = ujus so that uys and w; represent the same element of G for some

s € A* with [s| < B; consequently, s 'uy and w, also represent the same element
of G. We then have
[7illz + el < lwivws|, + |wav], < fwivl, + fws|, + wav], + ¢
< Jwi|p + Jwsl, + |wal, + (14 2(Ae +2))E
= |uis|, + |ws|, + ‘s_luQ|L + (5 +2Xe)¢
< Jualp + ws|, + |ua|, 4+ (5 + 2Xe + 26)¢
< Jul, + Jwsl, + (54226 +28 + 1)¢
= |wyws|, + |ws|, + (6 + 2Xe +25)¢
< Jwywaws|, + (6 + 2Xe + 26 + 1)€ < ||v| . + ¢,

as required. O

5. INVARIANT MEASURES

In this section, we fix a closed orientable hyperbolic surface ¥ and let G = m(X). We
view G as a uniform lattice in PSLy(RR) = Isom™ (3), the group of orientation-preserving
isometries of the universal cover & =~ RH? of ¥.

Note that PSLy(R) acts smoothly, freely and transitively on T3, the unit tangent

bundle of 3. We thus have a diffeomorphism PSLy(R) =~ T'S. Under this diffeomorphism,
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the G-action on T corresponds to the G-action on PSLy(R) by left multiplication, and
the R-action on T3 by translations along lifts of geodesic lines on 5 corresponds to the
action of a subgroup R =~ R on PSLy(R) by right multiplication; see [Mar20, §1.8.3]. After

noticing that PSLy(R)/R = Z7(X), we can then identify G*(X) with a certain space of
measures on PSLy(R), as follows.

Proposition 5.1 (Y. Benoist and H. Oh [BO07, Proposition 8.1]). Let G'(3) be the space
of Radon measures on PSLy(R) that are G-invariant on the left and R-invariant on the

right, equipped with the weak™ topology. Then the map
g (x) - g (x),
=4
where p/(E) = §Ar(g ' E n R)du(gR) for a Borel subset E < PSLy(R) and Ag is a left

Haar measure on R, is a homeomorphism.

Throughout this section, we will thus identify G*(X) with the space G'(3) in Proposi-
tion 5.1. We will assume all the measures on PSLy(R) in this section to be R-invariant
on the right. We will also fix a left Haar measure A\s on PSLy(R). We may rescale Ay
so that (v, Ax) is equal to the length of the geodesic representative 7: S' — ¥ for any
v e CH(X): see [Mar20, §1.8.3].

Now let 11 be a Radon measure on PSLy(R) that is Go-invariant for some finite index
subgroup Gy of G. We then construct a current 1 € G (X) as follows. Let gq,...,9s be a
right transversal of Gy in G. Given a Borel subset E < PSLy(R), we then set

H(E) = 57 Y (o)

It is straightforward to check that fi is indeed G-invariant and does not depend on the
choice of the right transversal Gj.

We consider the following special case. Let p € G*(X), and let ¢ € PSLy(R) be such
that Gy := t"'Gt n G has finite index in G. Then the measure u(t—) is Go-invariant. We
define p® := //, where i/ = p(t—).

Given an element t € PSLy(R), we write ¢G, ¢ for the submonoid of PSLy(R) generated
by G u {t}, and (t-) for the submonoid generated by ¢.

Lemma 5.2. Let t € PSLy(R) be an elliptic isometry of RH?. If (G,t) is dense in
PSLy(R), then so is (G, t.

Proof. If t has finite order (m, say), then we have t ! = t™~! € (¢ and so (G, t) = (G, ).
Therefore, without loss of generality we may assume that ¢ has infinite order.

Since t is elliptic, it stabilises a point xo € RH?. As ¢ has infinite order, the submonoid
¢ty of Stabpsr,®)(zo) = S! is infinite, and so dense in Stabpgy,®)(2o) (by the Dirichlet’s
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Approximation Theorem, for instance). In particular, for any open neighbourhood U <
PSLy(R) of t71, there exists m € N such that t™ € U.

Now let V' < PSLy(R) be open. Since (G,t) is dense, there exists h € (G,t) such that
h e V. We can write h = hot hit=!---t7'h, for some hy,..., h, € ¢G,t). Consider the
map ¢: PSLy(R) — PSLy(R) defined by ¢(g) = hoghig - - ghy, and note that p(t™!) =
h € V. Since the multiplication in PSLy(R) is continuous, so is the map ¢, implying that
¢ 1(V) is an open neighbourhood of ¢~! in PSLy(R). But then t™ € ¢~ (V) for some
m € N, implying that p(t™) € V n (G, t), and in particular that V n (G, t) # &. As V
was an arbitrary open subset, it follows that ¢G,t:) is dense in PSLy(R), as required. [

Lemma 5.3. Let t € PSLy(R) be an element such that Gy := t 'Gt N G has finite index
in G, and such that the monoid ¢G,t;) is dense in PSLy(R). Let pe GH(X) be a non-zero
current such that u) = . Then = k- Ay for some k > 0.

Proof. We aim to show that u(h—) = u for all h € PSLy(R): this will imply the result by
the uniqueness of the Haar measure.

Let f: PSLy(R) — R be a continuous function with compact support K < PSLy(R),
and consider the map I;: PSLy(R) — R given by I;(g) = § f du(g—). Such a map I is
continuous: see |Gaa73, Lemma 15 on p. 278| and its proof.

Now since p is G-invariant, it follows that I;(gh) = I;(h) whenever g € G, implying
that I; factors through the map PSLy(R) — G\PSLy(R) =~ T'%. Since T'Y is compact,

so is the image of I, and so Iy attains its infimum: that is, the set
My := {x € PSLy(R) | If(z) < If(y) for all y € PSLy(R)}

is non-empty.

Now let g1,...,g9s be a right transversal of Gy in G with g1 = 1. We then have
pw(E) = p(E) = s> p(tg;E) for any Borel subset E. In particular, it follows that
for any x € PSLy(R),

Ii(e) = | fduta=) = 7Y [ Fnttgia) = 57 Y 1tgin).

Therefore, if x € My then I¢(tg;x) = If(x) for all 4. In particular, I¢(tx) = I;(z): that is,
tx € My.

Thus, if x € My, then tx € My and gx € M for all g € G, implying that ¢G,t) My < M.
As (G,t) is dense in PSLy(R) and M; # @, it follows that M; is also dense; as I is
continuous, this implies that /7 is actually constant on PSLy(R). But since f was arbitrary,
it follows from Theorem 2.14 that pu(h—) = p for all h € PSLy(R), as required. O

Lemma 5.4. Let t € PSLy(R) be an element such that Gy := t'Gt n G has finite index
in G, and let pe GT(X). Then o(u®, \s) = t(p, As).

Proof. Let g1,...,gs be a right transversal of Gy in G with ¢g; = 1. For 1 < s, let

<1
< G, and let

¥; — X be the finite covering map corresponding to the subgroup g; 'Gog;
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Yo — X be the finite covering map corresponding to the subgroup tGot~' < G. Then
the element tg; € PSLy(R) induces an isometry ¢;: ¥; — ¥o, and also a diffeomorphism
@i PSLy(R) — PSLy(R) such that p/ o @; = 1/ (tg;i—) € G (X;) for any p/ € GT(3). Note
that we have [G : tGot~1] = [G : g; ' Gog;] = s for all 4, since the surfaces ¥o, X1, ..., 3,
are pairwise isometric (and therefore have the same genus) and since [G : G| = s.

Now since Ay is a left Haar measure, we have Ay = Ag(tg;—) = Ag o @; for all 4. It then
follows by Lemma 2.22 that

LE(M? AE) = S_1LEO (:ua )‘E) = 5_2 Z L5, (N? )‘E) = 8_2 Z LEi(M © &ia )\E o 951)
=1 =1

= 5722021-(/1(7591—),)\2) = 5712(5 g7 Gogs - (A;])*lbi(,u(tgi—), As)

=1 =1
=[G G Mg (7 S0y mltgi—), As) =[G GT Mg (1, As) = es(n®), Ax),

where G = (oo, 9 1Gyg: and S — Y is the finite cover corresponding to G < G. Thus
t(1®) As) = 1(p, Ax), as required. O

Lemma 5.5. Let t € PSLy(R) be an element such that Gy := t"'Gt N G has finite index
in G. Let p e GH(X) be a non-zero current, and define (p,)w_, < GH(X) inductively by
fo = [ and p, = uff)_l forn = 1. Then the closure of {3 cip; | n = 0,¢; € [0,00)} in
G*(X) contains a non-zero current fi such that ") = .

Proof. Consider the sequence (7)., = G*(X), where 7i,, = n~* 3" " yi;. By Lemma 5.4,
we have t(pn—1,An) = L(/L,E?_l,)\z) = ((fin, Ax) for all n = 1, and therefore ¢(p,, \s) =
(i, As) by induction on n. It follows that «(f,, A\s) = t(u, As) for all n = 1. But by
Proposition 2.21, the subspace {' € GT(2) | v(i/, As) < t(u, As)} of GF(X) is compact,
implying that the sequence (7z,);—, has a convergent subsequence: 7, ~— Ji as m —
w0, say. Note that we have (77, \x) = limy, o t(7L,, , Ax) = t(p, As) since ¢(—, Ax) is
continuous (by Theorem 2.20), whereas ¢t(u, Ay) > 0 since p # 0 and Ay is filling (by
Proposition 2.21), so i # 0. We aim to show that 7" = 7.

Let ¢1,...,9s be a right transversal of Gy in G with ¢g; = 1, and for 1 < i < s, let
¥; — ¥ be the finite covering map corresponding to the subgroup g; 'Gog; < G. Note
that since 1, — @ as m — oo, we also have 71, (tg;—) — fi(tg;i—) in G*(3;), and
therefore ﬁ,(fgn — i) as m — c0. We aim to show that we also have ﬁsf,)n — 1L as m — o0;
this will imply that { f dz = { f du® for every continuous function f: PSLy(R) — R with
compact support, and the result will then follow by Theorem 2.14.

Let D be a (relatively compact) fundamental domain for the action of G on PSLy(R)
by left multiplication, and let K < PSLy(R) be compact. We claim that p,(K) < u(DK)
for all n > 0. Indeed, since we have p, = ,ug)_l = s 130 pnoi(tgi—) for all n > 1
and since pg = p, it follows by induction on n that u, = s Zfll p(h;—) for some
hi,..., hgn € PSLy(R). We can pick some ki, ..., ks € G such that k;h; € D for each i.
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Note that u(k;h;—) = p(h;—) since p is G-invariant; therefore,

s™ s

pn(K) = ZMth %EMLMf W(DK),

i=1 i=1
as claimed.

Now let f: PSLQ( ) — R be a continuous function with compact support K. Since

(| )

iy —m, =n" — ) for any n = 1, we have
uK)) <n”t|fl, (W(DK) + u(K))

’me% ff@%—— ‘ffm% ff@t
)+

0 f o (i (K

and therefore ‘Sfdu(t) Sfdﬁn‘ — 0 as n — 0. On the other hand, since g, — 1
we have !Sfd,unm — Sfdﬁ! — 0 as m — oo. Since n,, — o as m — o0, it follows that
‘S Faud) — §f dﬁ‘ — 0 asm — o0. But as f was arbitrary, it follows that indeed i), — 7

(in the weak™® topology) as m — o0, as required. O

Proposition 5.6. Let t € PSLy(R) be an elliptic isometry of RH? such that t'Gt n G
has finite index in G and such that {G,t) is dense in PSLy(R). Let F': G*(X) — [0,00) be
a continuous positively linear function such that F(y®) = F(v) for all v € C*(X). Then
F =k-u(—,\g) for some k = 0.

Proof. Let k = F(A\s)/t(As, Ag). We will aim to show that F(v) = k- (v, As) for all
veCH(X). As R,C*(Y) is dense in G"(X) [Bon88, Proposition 2| and as F' and ¢(—, A\y)
are positively linear and continuous, this will imply the result.

Let v € C*(X), and define (,)*_, inductively by vy = v and =, = ’V,(Ql forn > 1.
Since F is positively linear and F(y'®)) = F(4/) for any 7/ € C*(X), it follows that
F(v,) = F(v) for all n > 0; on the other hand, t(v,, As) = ¢(7,As) for all n = 0 by
Lemma 5.4 and induction on n. Since f and «(—, \y) are positively linear, it also follows
that F'(p)/u(p, As) = F(7)/u(7, As) whenever g = " Oci% for some cq, . . > 0. Since
F and «(—, Ay) are continuous, it follows from Lemma 5.5 that there exists a non-zero
current € G*(X) such that F(n)/c(f, A\s) = F(vy )/L(’}/,/\E) and i = ®.

Now by Lemma 5.2, the submonoid (G, ¢ is dense in PSLy(R). Therefore, it follows
from Lemma 5.3 that @ = k' - Ay for some £’ > 0. Thus

F(@) K- F()
U7, Ax) k1A, As)

as required. O

F(y) =

Uy, As) = Ly, As) = k- (v, An),

6. LATTICES IN THE HYPERBOLIC PLANE AND A TREE

In this section we will collect a number of results about irreducible cocompact lattices
in the product of PSLy(R) and the automorphism group 7" of a locally-finite unimodular

leafless tree 7. Will assume T is non-discrete. Throughout I' will be an irreducible
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cocompact lattice in PSLy(R) x 7. Note that by [Hug2lb, Corollary 3.6] I' is either
an irreducible S-arithmetic lattice and T is a (p + 1)-regular tree for some prime p, or
I' is non-residually finite. In either case, by Theorem 2.7 I' contains a commensurated
subgroup G isomorphic to the fundamental group of a closed compact surface which arises
as a finite index subgroup of a vertex stabiliser of the action of I' on T.

First, we will investigate the density of the projection of T' to PSLy(R).
Lemma 6.1. The projection P of I' to PSLy(R) is dense.

Proof. 1If T' is linear then P contains an S-arithmetic lattice and such a subgroup of
PSLy(R) is dense. Thus, we may assume I' is non-residually finite. By Theorem 2.7 T
splits as a graph of groups in which each vertex group is a finite extension of a uniform
lattice in PSLy(R). In particular, P contains a uniform PSLy(R)-lattice and hence is
Zariski-dense in PSLy(R). A Zariski-dense subgroup of SLy(R) is either dense or discrete.
Indeed the Lie algebra of its closure is an ideal, hence either 0 or sly(R). Now, since I' is

irreducible, P is non-discrete and so we conclude that P is dense in PSLy(R). O

Our next task is to show there is a commensurated surface subgroup of I' which is M-
quasiconvex with respect to any biautomatic structure (B, M). The key fact is that in a
biautomatic group the centraliser of a finite set is M-quasiconvex (see Theorem 2.11(i)).

Before this we will need a lemma.

Lemma 6.2. If I is non-residually finite, then we have a short exact sequence

TPSLy (R)
\

1 s F s T > > 1

where F' is fundamental group of a graph of finite groups and P is linear. In particular, if
I' us torsion-free, then F' is a free group. In both cases F' is infinite, not virtually abelian,

and every locally finite subgroup of F is finite.

Proof. Since I' is non-residually finite ' does not admit any faithful linear representation
and so F'is non-trivial. Now, I' splits as a graph of finite-by-Fuchsian groups and each
Fuchsian group is isomorphic to its image in P. It follows that the action of F on 7 has
finite stabilisers. In particular, F' is the fundamental group of a graph of finite groups. If
I' is torsion-free, then each vertex and edge stabiliser of the F-action on 7T is trivial. It
follows that F' admits a free action on a tree and so must be free. That P is linear follows
from the fact PSLy(R) is linear.

Since T' is CAT(0), it has only finitely many conjugacy classes of finite subgroups,
implying that any ascending sequence of finite subgroups of I' terminates. It follows that
I' (and so F') has no infinite locally finite subgroups. We claim that if F' was finite then
F must act trivially on 7. Indeed, if F' was finite then it acts on T elliptically with fixed
point set 7 a subtree of 7. By normality of F' in I, the subtree 7% is I'-invariant. But
I' is a uniform lattice and T is leafless, so I' acts minimally on 7. Thus, F' is infinite. It

remains to show that F'is not virtually abelian.
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Since F'is infinite and not locally finite, it contains a finitely generated infinite subgroup.
Such a subgroup cannot be torsion (otherwise it would fix a point in 7, contradicting the
fact that the action of F' on 7T has finite stabilisers); it follows that F' contains an infinite
order element g. Since the action of F' on T has finite stabilisers, ¢ must be hyperbolic
in this action; let £ < T be the axis of ¢g. Since T' is non-discrete it follows that T is
not a line; moreover, since the I-action on 7 is cocompact and since T is leafless and
locally-finite, there exists an element h € I' such that h¢ # ¢. Then g and hgh™! are two
hyperbolic elements of F' that have distinct axes, so g" does not commute with hg™h™?

for any n,m # 0. This implies that F'is not virtually abelian. U

Proposition 6.3. Suppose (B, M) is a finite-to-one biautomatic structure on T'. If T" is
non-residually finite and torsion-free, then any vertex stabiliser of the action on T is an

M-quasiconvex subgroup.

Proof. Let G’ be a commensurated surface subgroup of I'. Let F' = Ker(7pgr,®)) and
note by Lemma 6.2 that F' is a non-abelian free subgroup acting freely on 7. Let g, h be
contained in this free group and suppose that they do not commute.

We claim since G is commensurated and F' is normal, the elements g and h commute
with the subgroup S = G n GY9 n G which has finite index in G. Indeed, let s € S and
note s and s fix vertices of 7. It follows that the commutator [s,g] lies in GY9. The
commutator [s,g] maps trivially under the projection to PSLy(R), but the projection
restricted to GY is injective. Thus, [s, g] = 1 and the claim follows.

By the previous claim, C' := Cr({g, h}) contains S. Now, g and h have distinct axes so
C must fix a vertex on 7. In particular, C' is a finite-index subgroup of a vertex stabiliser
containing a finite index subgroup S of GG, implying that C' is commensurable with G in
I'. Finally, since C' is the centraliser of a finite set if follows from Theorem 2.11 that C' is

M-quasiconvex. By Lemma 2.12, it follows that G is M-quasiconvex as well. O

Finally, we record this proposition for later use. It is a special case of [Hug22b, Corol-
lary 3.3].

Proposition 6.4. I' is a hierarchically hyperbolic group.

7. AN EXPLICIT EXAMPLE

Throughout this section we will use quaternion algebras and arithmetic Fuchsian groups
derived from them, for the relevant background the reader should consult [Kat92, Chap-
ter 5|. The construction appeared in the first author’s PhD thesis, however, the example
there is different to the one given here [Hug2la, Section 4.5.2].

Let @ be the quaternion algebra (2,13)gq, this is a 4-dimensional algebra over Q with
basis {1,1, j, k} satisfying the relations i? = 2, j> = 13 and k = ij = —ji. The algebra Q
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has a representation ¢: Q — My(R) given by

1Hl 0 -~ V2 0 o1 L 0 V2
o 1" "o —vz|l” 77 |13 ol 132 0 |

Let t = z(1+ 3i + k) € @, and note that
1 1
ol = [FEZED V2
-By2 0 1(1-3v2)

it follows that the image of ¢(t) in PSLy(R) is an infinite order elliptic isometry of RH?.

1
3

A basis for a maximal order M of () is given by the following quaternions

3 3. 1. 1,3 3 1. 1 5 . 1.7 1
o (3.8 1. 1.3 3 1.1 5 1.7 . 1]
ta.b.c.dj {2+f 2 Tt Tt T T g ﬂ’2+2+2&’

this has image given by
362+ 52 |0V g
S EINCRY %—ﬂJ’ O] e svee

[levees - _ |2
! KRR P B s

N[

Conjugating M by ¢ we obtain another maximal order N. Let U'(M) and U'(N) denote
the groups of norm one quaternions under multiplication in M and N respectively. Note
that their image under ¢ is contained in SLy(R).

Denote the image of U (M) and U'(N) under ¢ after projecting to PSLy(R) by PM and
PN respectively. Both of these groups are isomorphic to the fundamental group of a genus
2 surface (this may be verified in Magma). It is easy to see (t) commensurates U (M)
and hence U'(M) and U'(N) share a common finite index subgroup. The intersection
K = PM n PN has index 12 in both PM and PN, in particular, K is the fundamental
group of a genus 13 surface. We compute, using Dehn’s algorithm a word in a, b, ¢, d for
t~1gt for each generator g of K. We will denote the subgroup generated by these words
H and note that H' = K.

We now build a HNN-extension I' = PM#yi_i. The group has 5 generators which
(abusing notation) we label a, b, ¢, d, t and admits a presentation with 27 relations,

displayed in Appendix A.
Lemma 7.1. T is an irreducible uniform lattice in PSLy(R) x Toy.

Proof. Since T" is a graph of groups equipped with a morphism to PSLy(R) such that the
vertex stabiliser I, is a uniform PSLy(R) lattice and the stable letter commensurates T',,
it follows I' is a graph of lattices in the sense of Definition 2.6. The two embeddings of
the edge group have index 12 in I';, so the Bass—Serre tree of I' is 24-regular. Thus, [ is a
uniform lattice in PSLy(R) x T4 by Theorem 2.7. The image of the subgroup generated
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by stable letter ¢ in PSLy(R) is clearly non-discrete because it is generated by an infinite

order elliptic isometry. The irreducibility now follows from [Hug21b, Proposition 3.4|. O
Lemma 7.2. T' is non-residually finite.

Proof. Because I is an HNN-extension the first Betti number of I" is at least 1 (in fact a
direct computation yields it is exactly 1). Since I' is an irreducible lattice it follows from
[Hug21b, Proposition 3.7| that I" is non-residually finite. O

Lemma 7.3. The translation lengths of a and c in their action on RH? are not rational

multiples of each other.

Proof. For a hyperbolic isometry g of PSLy(R) its translation length is

1
7(g) = 2cosh™ <§ tr(g))
where § is a choice of lift of g to SLy(R). It follows that we have

7(a) = 2log (g + ?) and 7(c) =2log (g + g) :

Suppose that gT(a) = 7(c) where p,q € Z, p,q = 1, then we have

3 5\ /5 Ver\’

3. VAN _ (5, V2T
2 2 2 2

The left hand side is always of the form m; + me+/5 and the right hand side is always of

the form mg + my+/21 for some rational numbers my, mo, mg, my > 0. This is clearly

impossible and we conclude that 7(a) is not a rational multiple of 7(c). O

8. PROOF OF THEOREM A

Theorem A. There exists a non-residually finite torsion-free irreducible uniform lattice

' < PSLy(R) x Tyy such that T is a hierarchically hyperbolic group but is not biautomatic.

Proof. Let T' be the HNN-extension constructed in Section 7. Then, I' is an irreducible
uniform lattice in PSLy(R) x Ty4 by Lemma 7.1, non-residually finite by Lemma 7.2,
torsion-free by construction, and a hierarchically hyperbolic group by Proposition 6.4. It
remains to show I' is not biautomatic.

Let G < T be a vertex stabiliser for the T-action on the Bass Serre tree T4 of T.
By construction, we have I' = (G, ?) for an element 7 € I' such that ¢ := TPSLa(R) (1) is
an infinite order elliptic isometry of RH?. Moreover, the group G := WPSLQ(R)(G) is a
torsion-free uniform lattice in PSLy(R), and the projection mpgp,mw)(I") = (G, t) is dense
in PSLy(R) by Lemma 6.1. As G is commensurated in T, it follows that ¢t 'Gt n G has
finite index in G. Let ¥ = G\RH?, so that ¥ is a closed orientable hyperbolic surface
and G = m(2).
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Now suppose for contradiction that (B, M) is a (uniformly finite-to-one) biautomatic
structure on I'. By Proposition 6.3, the subgroup G <Tis M-quasiconvex; let (A, L)
be the biautomatic structure on G associated to (B, M), as given by Theorem 2.11. As
TTPSLy(R) MAPS G isomorphically to G, we will identify (A, £) with a biautomatic structure
on G. Consider the function |—|, : G — R, as defined in Definition 3.2. By construction,
|—| ; is invariant under conjugacy in G, and therefore factors through a function C*(X) —
R which we also denote by |—|,. Similarly, it follows from Lemma 3.3 that the function
7z G — R (as defined in Definition 3.2) factors through a function 7.: C*(¥) — R.

By Proposition 4.2, the function |—|, : C*(X) — R satisfies the join and split quasi-
smoothing properties, and therefore, by Theorem 2.16, the function 7;: C*(¥) — R
defined by 77(y) = lim,_s |[7"|,/n is homogeneous and satisfies the join and split
quasi-smoothing properties. By Lemma 3.5, we have 7, = 7. Thus, by Theorem 2.17,
7z: CH(X) — R extends to a unique continuous homogeneous function 7.: G*(X) — R,
which is also positively linear by Lemma 2.18.

We now claim that 77(y) = 72(y®) for every v € C*(X) (in the notation of Section 5).
Indeed, let v € C*(X), let g € G be an element corresponding to v, let » = 1 be such that
t~lg"t € G, and let g1,...,¢gs be a right transversal of t7"'!Gt n G in G. Then, for each
i, the measure 7" (tg;—) is a curve on ¥ corresponding to the element (tg;) '¢"tg; € G.
Furthermore, it follows from Theorem 2.11 that the restriction of 7,: I' — R to G =~
“lg'tg) =
wm((tg)7rg"tg:) = T:m(g™) = 12(g"). As 702 GT(E) — R is positively linear, we then have

G coincides with 7.: G — R; in particular, by Lemma 3.3 we have 7.((tg;)

s

rore(y") =57y reme(v(tgi-)) = ch (tgi—) = s~ >, 7e((tg) g tg:)
=1 =1

= ch ) =7e(g") = me(y") = - 7e(7),

and thus 7,(7) = 7.(7®), as claimed.
We now apply Proposition 5.6 with F' = 7; therefore, there exists a constant k > 0

such that 7, = k- «(—,As). In particular, since ¢(vy,Ax) > 0 for all v € C*(X) by

2(nn) _ vAs)
Tz (72) t(y2,Ax)
is precisely the length of the geodesic representative S* — ¥ of ~, which is equal to the

Proposition 2.21, we have for any 71,72 € C*(X). But note that ¢(v, Ax)

translation length of a lift of v in its action on RH?. In particular, if v,,7v. € C*(X)

correspond to the elements a,c € G appearing in Lemma 7.3, we then have % ¢ Q.

This contradicts Proposition 3.1, which implies that 7, takes only rational values. 0
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APPENDIX A. A PRESENTATION OF THE GROUP

The group I' constructed in Section 7 is generated by a, b, ¢, d, and t subject to the

following 27 relations:
a tdebetabTrdT = 1,
tdtaleb et = 4,
td taca tdt™! = a7t
td ra’cbd tatdt ™! = ach !,
td radc  'dYadca™?dt ™' = baba™?,
td radc a7 dt ™! = Ve,
td " radbc tab e tdba tea  teb e T = bde b,
tb?’cta2dt ™! = ebd a7,
td2a®d ta 7 dt ™ = &,
td rab 'dtadt™ = cde™?,
tba teba rdba teateb e = a7 toe Y
td radcba™rd ta tdt™ = ateb,
td ta’ded tardt ™ = a7 tdb 7t
td tadch e ta M da2dt T = b tab e Y,
td radcb™2a2dt™! = b cbat,
td radcb e tba2dt ™! = b dba
td rad*ba " teb e d o At = ¢ ta?,
td tada %dba"'d a7 dt Tt = B2,
td ra’d tactabeta ta T dt T = abad e,
td ta’d teb2c a7 dt T = aba,
td *a’d tab 3¢t d e dt Tt = abea,
td *a’d tac b et d ta T dt ! = abda,
tdta*cb ta tdba ' dba  ea teb e It = adac 7Y,
td rach2ctdaPd T dt T = adbe,
td ra’c tdba"td ta 7 dt T = abtab,
td rade 'dtacbta " teb e = beab ™!,

td tade ' d Yad tadba " dt™ = beba e
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