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Abstract. We characterise hyperbolic groups in terms of quasigeodesics in the Cay-
ley graph forming regular languages. We also obtain a quantitative characterisation
of hyperbolicity of geodesic metric spaces by the non-existence of certain local p3, 0q–
quasigeodesic loops. As an application we make progress towards a question of Shapiro
regarding groups admitting a uniquely geodesic Cayley graph.

1. Introduction

Hyperbolic groups were introduced by Gromov [Gro87] and revolutionised the study of
finitely generated groups. Arguably, their most remarkable feature is that hyperbolicity
connects several, and at a first glance independent, areas of mathematics. Confirming
this, there are several different characterisations of hyperbolicity — such as the geometric
thin triangle condition [Gro87], the dynamical characterisation via convergence actions
[Bow98], surjectivity of the comparison map in bounded cohomology [Min01; Min02;
Fra18] and vanishing of `8-cohomology [Ger98], linear isoperimetric inequality [Gro87],
all asymptotic cones being R-trees [Gro87], and others [Gro87; Gro93; Pap95b; AG99;
Gil02; CN07; Wen08a].

Another significant feature of hyperbolic groups is that they present very strong algo-
rithmic properties. Most notably, they have solvable isomorphism problem [DG11; Sel95],
they are biautomatic [ECHLPT92] and so the word problem can be solved via finite state
automata, and sets of their rational quasigeodesics form a regular language [HR03].

This last property will be a central focus in the paper, and we call it rational regularity,
or for short QREG.

Definition 1.1. A finitely generated group G is QREG if the pλ, εq–quasigeodesics in
the Cayley graph of G with respect to any finite generating set form a regular language
for all rational numbers λ ě 1 and ε ě 0.
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As mentioned, in [HR03] Holt and Rees prove that every word hyperbolic group is
QREG. It is natural to ask if this provides a characterization of hyperbolic groups, as
was conjectured in [CRSZ20, Problem 1]. The main result of the paper is the following.

Theorem 1.2. A finitely generated group is hyperbolic if and only if it is QREG.

We remark that it is necessary to not consider only geodesics. In [Can84], Cannon
proved that for any finite generating set the geodesics in a hyperbolic group form a reg-
ular language. However, this does not characterise hyperbolicity: Neumann and Shapiro
[NS95, Propositions 4.1, 4.4] prove that for any finite generating set the geodesics in an
abelian group form a regular language.

The key ingredient in the proof of Theorem 1.2 is a strong quantitative characterisation
of hyperbolicity. It is known that a geodesic metric space is hyperbolic if and only if local
quasigeodesics are global quasigeodesics [Gro87, Proposition 7.2.E]. More precisely, the
contrapositive can be stated as follows: a space is non-hyperbolic if and only if there
exists a pair of constants pλ, εq, a sequence Ln Ñ 8 and a sequence of Ln-locally pλ, εq-
quasigeodesic paths which are not global pλ1, ε1q-quasigeodesics for any uniform choice
of constants pλ1, ε1q. Hence, a priori, to check for non-hyperbolicity one would want to
consider all choices of pλ, εq and all choices of locally pλ, εq-quasigeodesic paths. We
strengthen the above result, by proving that one needs only consider L-locally p3, 0q-
quasigeodesic loops whose length is comparable to L.

Theorem 1.3. A geodesic metric space X is not hyperbolic if and only if there exists a
sequence Ln Ñ 8 and a sequence of Ln-locally p3, 0q-quasigeodesic loops γn that satisfy
`pγnq ď KLn, where K is some constant that does not depend on n.

Although striking, the presence of a sharp gap in the behaviour of local-quasigeodesics
is not surprising. For instance, it is known that the Dehn function of a finitely presented
group has a gap. A deep theorem of S. Wenger [Wen08b], extending results of [Gro87; Ol
91; Bow95; Pap95a], shows that if the isoperimetric function satisfies Dpxq ď 1´ε

4π
x2, then

it is in fact linear.
Our strategy in proving Theorem 1.3 relies on the study of asymptotic cones of metric

spaces. If X is non-hyperbolic, then there is a cone that is not a tree [Gro93, 2.A], and
it contains a simple loop. By using a series of approximations, we exploit this loop to
produce a family of loops of controlled length that are locally p3, 0q–quasigeodesic. To
prove Theorem 1.2, we use such a sequence of loops to essentially contradict a version of the
pumping lemma, yielding that if a group is not hyperbolic the languages of quasigeodesics
cannot be all regular.

A question of Shapiro. A natural class of graphs to consider is the one of geodetic
graphs. A graph is called geodetic if for any pair of vertices there is exactly one geodesic
connecting them. In [Sha97], M. Shapiro asked when a group admits a (locally finite)
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geodetic Cayley graph. He conjectures that such a group needs to be plain, that is, a
free product where the factors are either free or finite. Surprisingly, the question is still
open, although there are some algorithmic characterizations of plain groups [EP20]. More
precisely, in [Pap93] Papasoglu proved that a geodetic hyperbolic group is virtually free. It
is still open whether all geodetic groups are hyperbolic, and whether all geodetic, virtually
free groups are plain.

We provide an answer to the first implication under an additional, language theoretic,
assumption.

Theorem 1.4. Let G be a finitely generated group with a generating set S such that
ΓpG,Sq is geodetic. If there exists λ ą 3 such that the language of pλ, 0q–quasigeodesics
is regular, then G is hyperbolic and hence virtually free.

Structure of the paper. In Section 2 we give the necessary background on Cayley
graphs, hyperbolic metric spaces, quasigeodesics, languages, automata, and asymptotic
cones. In Section 3 we prove our main technical propositions and deduce the theorems
from the introduction.

Acknowledgements. The first author was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(Grant agreement No. 850930). The second author would like to thank their supervisor
Cornelia Drut,u for useful discussions on these topics. We are also grateful to Panos
Papasoglu for a number of helpful conversations, and to Murray Elder and Adam Piggott
for helpful conversations regarding Shapiro’s question.

2. Background

2.1. Cayley graphs, hyperbolicity, and quasigeodesics. Throughout this paper, let
G be a finitely generated group with generating set S. We denote by ΓpG,Sq the Cayley
graph of G with respect to S, that is, the graph with vertices G and edges tg, gsu where
g P G and s P S. We denote by |g| the word-length of g with respect to S; equivalently,
this is equal to dΓpG,Sqpe, gq.

Let δ ě 1. A metric space X is δ-hyperbolic if every geodesic triangle in X is δ-thin.
Here a geodesic triangle is δ-thin if every edge is contained in the δ-neighbourhood of the
two other edges. We say a finitely generated group G is hyperbolic if the Cayley graph
ΓpG,Sq is a δ-hyperbolic metric space for some finite generating set S.

Let λ ě 1 and ε ě 0. Given metric spaces X and Y a pλ, εq-quasi-isometric embedding
f : X Ñ Y is a pλ, εq-coarsely Lipschitz function. If f is additionally ε-coarsely surjective,
then we say f is a pλ, εq-quasi-isometry. If there exists a quasi-isometry X Ñ Y , then we
say X and Y are quasi-isometric.
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A pλ, εq-quasigeodesic of length a ą 0 in X is a path c : r0, as Ñ X such that for any
two points x, y in c we have

dcpx, yq ď λdXpx, yq ` ε,

where dc is the usual metric on r0, as and dX is the metric on X. We say c : r0, as Ñ X

is an L-locally pλ, εq-quasigeodesic or an pL, λ, εq-local-quasigeodesic if c restricted to each
subset of r0, as of length L is a pλ, εq–quasigeodesic. We say c is a pL, λ, εq-quasigeodesic
loop if, in addition, cp0q “ cpaq.

2.2. Regular languages and automata. The following definitions are standard and
may be found in [ECHLPT92, Chapter 1]. Given a finite set A, let A‹ be the free monoid
generated by A, i.e. the set of finite words that can be written with letters in A. A
language over the alphabet A is a subset L Ď A‹. A finite state automaton (FSA) M
over the alphabet A consists a finite oriented graph ΓpMq, together with an edge label
function ` : EpΓpMqq Ñ A, a chosen vertex qI P V pΓpMqq called the initial state and
subset QF Ă V pΓpMqq of final states. The vertices of ΓpMq are often referred to as states.

Let M be an FSA over an alphabet A. We say a string w P L is accepted by A if and
only if there is an oriented path γ in ΓpMq starting from qI and ending in a vertex q P QF

such that γ is labelled by w. A language L is regular if and only if there exists an FSA
M such that L coincides with the strings of A‹ accepted by M.

Let G be a group generated by a finite set A. An element w P A˚ labels a path in
ΓpG,Aq which starts at 1G. We say w is a geodesic/pλ, εq–quasigeodesic/pL, λ, εq-local-
quasigeodesic word if it labels a path in ΓpG,Aq with the corresponding property. We say
that the set Lpλ,εq of pλ, εq–quasigeodesic words w over A form the pλ, εq–quasigeodesic
language of G over A.

2.3. Asymptotic cones. In this section we will give the necessary background on as-
ymptotic cones. The idea first appeared in the proof of Gromov’s Polynomial Growth
Theorem [Gro81], however, it was first formalised by Wilkie and van den Dries [WD84].

An ultrafilter ω on N is a set of nonempty subsets of N which is closed under finite
intersection, upwards-closed, and if given any subset X Ď N, contains either X or NzX.
We say ω is non-principal if ω contains no finite sets. We may equivalently view ω as a
finitely additive measure on the class 2N of subsets of N such that each subset has measure
equal to 0 or 1, and all finite sets have measure 0. If some statement P pnq holds for all
n P X where X P ω, then we say that P pnq holds ω-almost surely.

Let ω be a non-principal ultrafilter on N and let X be a metric space. If pxnqnPN is a
sequence of points in X, then a point x satisfying for every ε ą 0 that tn | dpxn, xq ď εu P

ω, is called an ω-limit of xn and denoted by limω xn. Given a bounded sequence xn P X,
there always exists a unique ultralimit limω xn.
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Let ω be a non-principal ultrafilter on N. Let pXn, dnqnPN be a sequence of metric
spaces with specified base-points pn P Xn. Say a sequence pynqnPN is admissible if the
sequence pdXnppn, ynqqnPN is bounded. Given admissible sequences x “ pxnq and y “ pynq,
the sequence pdXnpxn, ynqq is bounded and we define d̂8px, yq :“ limω dnpxn, ynq. Denote
the set of admissible sequences by X . For x, y P X define an equivalence relation by
x „ y if d̂8px, yq “ 0. The ultralimit of pXn, pnq with respect to ω is the metric space
pX8, d8q, where X8 “ X { „ and for rxs, rys P X8 we set d8prxs, rysq “ d̂8px, yq.
Given an admissible sequence of elements xn P Xn we define their ultralimit in X8 to be
limω xn :“ rpxnqs. Given a sequence of subsets An Ă Xn we can define their ultralimit
in X8 to be the set limωpAnq :“ trpxnqs | xn P Anu, where we only consider admissible
sequences pxnq.

Let ω be a non-principal ultrafilter on N and let pµnq be a diverging, non-decreasing
sequence. Let pX, dq be a metric space and consider the sequence of metric spaces
Xn “

´

X, 1
µn
d
¯

for n P N with basepoints ppnq. The ω-ultralimit of the sequence
pXn, pnq is called the asymptotic cone of X with respect to ω, pµnq, and ppnq and de-
noted ConeωpX, pµnq, ppnqq. If the sequence of basepoints is constant, then we denote the
asymptotic cone by ConeωpX, pµnqq. In the case of a finitely generated group, we assume
that the basepoint is always the identity.

The following is [DS05, Proposition 3.29(c)] which we will use in the proof of Theo-
rem 1.2.

Proposition 2.1. Consider a non-principal ultrafilter ω on N and a sequence of metric
spaces pXn, dnq with basepoints pn P Xn. Suppose there exists a simple geodesic triangle in
pX8, d8q. Then there exists a (possibly different) simple geodesic triangle ∆, a constant
k ě 2, and a sequence of simple geodesic k-gons Pn in Xn such that limωpPnq “ ∆.

3. Proofs of the results

Definition 3.1. Let X be a metric space and consider the following condition:

(‹)
There exists an increasing sequence of positive numbers Ln Ñ 8 and
a pair of constants K,λ ě 1 such that for every n there exists an Ln-
locally pλ, 0q–quasigeodesic loop γn in X with `pγnq ď KLn.

At times, it is convenient to specify the values of the constants K,λ. In that case we
say that a space satisfies (‹) with constants pK,λq. We say that a group satisfies (‹) if
there exists a finite generating set S such that the Cayley graph ΓpG,Sq satisfies (‹).

Proposition 3.2. Suppose G is a finitely generated group that satisfies (‹) with constants
K,λ. Then, for all λ1 ą p2K ´ 1qλ, the set of pλ1, 0q–quasigeodesics in G do not form a
regular language. In particular, G is not QREG.
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Proof. To prove the proposition we will show that any automata accepting the language
of pλ1, 0q–quasigeodesics must have infinitely many distinct states. In particular, the
language is not accepted by an FSA and so is not regular.

Fix a generating set such that the Cayley graph satisfies (‹) with constants K,λ. Let
λ1 ą p2K ´ 1qλ. Let κ be the positive constant

(1) κ :“
1

λ
´

2K ´ 1

λ1
.

Let m P N and let n be such that

(2) Ln ą
1

κ

ˆ

2KLm ` 1`
1

λ

˙

.

Parametrise the loops γm and γn by arclength. Evidently, we can assume that γmp0q “
γnp0q “ e. We fix the following notation:

‚ Let tm and tn be the maximal natural numbers such that γm
∣∣
r0,tms

and γn
∣∣
r0,tns

are
pλ, 0q–quasigeodesics;

‚ let Tn be the minimal natural number such that γn
∣∣
r0,Tns

is not a pλ1, 0q–quasigeodesic;
‚ let gm :“ γmptmq and gn :“ γnptnq;
‚ let hn :“ γnptnq

´1γnpTnq. So γnpTnq “ gnhn.

We want to show that the pλ1, 0q–quasigeodesics γm
∣∣
r0,tms

and γn
∣∣
r0,tns

are in different
states at time tm and tn respectively. This will follow from the fact that γn

∣∣
r0,tns

concate-
nated with the path γn

∣∣
rtn,Tns

is not a pλ1, 0q–quasigeodesic, but γm
∣∣
r0,tms

concatenated
with the same path is a pλ1, 0q–quasigeodesic. The former statement follows from the
definition of Tn. Looking for a contradiction, suppose that the latter statement is false.
That is,

(3) λ1|gmhn| ă tm ` Tn ´ tn

The following six inequalities are easily verified

Lm ď tm ď KLm;(4)

Ln ď tn;(5)

Tn ď KLn ď Ktn;(6)
tm
λ
ď |gm| ď

tm ` 1

λ
` 1;(7)

tn
λ
ď |gn| ď

tn ` 1

λ
` 1;(8)

Tn ´ 1

λ1
´ 1 ď |γnpTnq| ď

Tn
λ1
.(9)



REGULARITY OF QUASIGEODESICS CHARACTERISES HYPERBOLICITY 7

We have |hn| ě |gn| ´ |γnpTnq|, so by (8) and (9) we see that |hn| ě tn
λ
´ Tn

λ1 . It then
follows from (6) that

(10) |hn| ě
ˆ

1

λ
´
K

λ1

˙

tn.

Now, |gmhn| ě |hn|´ |gm|, so by (10) and (7) we obtain

(11) |gmhn| ě
ˆ

1

λ
´
K

λ1

˙

tn ´
tm ` 1

λ
´ 1.

Combining our assumption (3) with (6) we obtain

(12) λ1|gmhn| ď tm ` pK ´ 1qtn.

Next, combining (11) and (12) yields

tm ` pK ´ 1qtn
λ1

ě

ˆ

1

λ
´
K

λ1

˙

tn ´
tm ` 1

λ
´ 1.

This rearranges to

1`
1

λ
ě

ˆ

1

λ
´
p2K ´ 1q

λ1

˙

tn ´

ˆ

1

λ
`

1

λ1

˙

tm;

ě κtn ´ 2tm,

where κ is defined in (1). Now,

tn ď
1

κ

ˆ

2tm ` 1`
1

λ

˙

,

and so by (4) and (5) we have

Ln ď
1

κ

ˆ

2KLm ` 1`
1

λ

˙

which contradicts (2). Hence, the concatenation of γm|r0,tms and γn|rtn,Tns is a pλ1, 0q–
quasigeodesic. In particular γmptmq and γnptnq are in different states as pλ1, 0q–quasigeodesics.

Let ξ : NÑ N be the function

ξpmq “ min

"

n P N : Ln ą
1

κ

ˆ

2KLm ` 1`
1

λ

˙*

.

Let pniqiPN be the integer sequence defined inductively by n1 “ 1, ni`1 “ ξpniq. By the
above, we know that for every i P N and for every j ă i, γni

ptni
q is in a different state

to γnj
ptnj

q as a pλ1, 0q-quasigeodesic. It follows that there are infinitely many different
pλ1, 0q-states. Hence, the pλ1, 0q–quasigeodesics in G cannot form a regular language. �

Proposition 3.3. If a metric space X satisfies p‹q, then X is not hyperbolic.

Proof. If X is hyperbolic then it satisfies the local-to-global property for quasigeodesics:
for every choice of λ, ε there exist constants L “ Lpλ, εq, λ1 “ λ1pλ, εq and ε1 “ ε1pλ, εq

such that every L-locally pλ, εq–quasigeodesic is a global pλ1, ε1q–quasigeodesic.
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Suppose X satisfies the local-to-global property for quasigeodesics and X satisfies p‹q
with constants pK,λq. Let L “ Lpλ, 0q be the constant given by the local-to-global
property. Choose n P N such that Ln ě L. Then γn is an L-locally pλ, 0q–quasigeodesic.
However, γn is a loop and so cannot be a pλ1, ε1q–quasigeodesic for any choice of λ1, ε1. �

Theorem 3.4. If X is a non-hyperbolic geodesic metric space, then X satisfies p‹q with
constants p3, 0q.

Proof. Since X is not hyperbolic, there exists an ultrafilter ω and a non-decreasing scaling
sequence µn such that ConeωpX, pµnqq is not a real tree. In particular, there exists a simple
geodesic triangle ∆ Ď ConeωpX, pµnqq. Using Proposition 2.1, up to replacing ∆ with
another simple geodesic triangle, we obtain that ∆ “ limωpPnq, where Pn is a geodesic
k-gon in X for some k. Let z1

n, . . . z
k
n be the vertices of Pn, where the labels are taken

respecting the cyclic order on Pn. From now on, we always consider the indices mod k.
Denote by ein the geodesic segment connecting zin, zi`1

n , that is the appropriate restriction
of Pn.

Consider the points ziω “ pzinq P ∆, and let eiω “ limωpeiq. It is a standard argument
to show that eiω are geodesic segments whose endpoints are ziω, see for instance [DK18,
Lemma 10.48, Exercise 10.71]. Since limωpPnq “ ∆, we have eiω Ď ∆, and in particular
that the vertices of the triangle ∆ belong to tz1

ω, . . . , z
k
ωu. Since there are only k edges,

for any ρ ą 1, ω–almost surely we have

(13) `peinq ď ρµn`pe
i
ωq.

In particular, ω–almost surely we have `pPnq ď ρµn`p∆q, that is to say that the length
of the polygons Pn is bounded above by a linear function of µn. Our goal is to find
κ ě 1, c ą 0 and modify the polygons Pn to obtain paths that are pcµnq–locally pκ, 0q–
quasigeodesics, and whose lengths are comparable to those of the Pn.

To this end, we restrict our attention to only some edges of Pn. We say that an index
1 ď i ď k is active if eiω ‰ tziωu. Let i1 ď ¨ ¨ ¨ ď id be the active indices. From now on,
we will only consider edges with active indices, and thus we rename eijω as ajω and eijn as
ajn. Thus, a1

ω, . . . , a
d
ω is a subdivision of the triangle ∆ into a geodesic d-gon. Since ∆ is

simple and its edges are compact, we have that there exists a δ ą 0 such that for all edges
aiω and points x P aiω we have

maxtdpx, ai´1
ω q, dpx, ai`1

ω qu ě δ.

For any active edge ain and x P ain, ω–almost surely we have

(14) maxtdpx, ai´1
n q, dpx, ai`1

n qu ě δρ´1µn.

The intuitive idea is now as follows. For infinitely many n we have a collection of
geodesic segments (ajn) whose length keeps increasing (13) and such that we have some
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control on the distance between them (14). Using this, we can connect the segments to
obtain loops of controlled length which are locally quasigeodesics.

More formally, fix n such that both (13), (14) are satisfied and orient the ajn with the
orientation of Pn that agrees with the numbering. Let Ln “ 1

2
δρ´1µn. From now on, we

will drop the subscript n and denote, for instance Ln “ L. Let q1 be the first point of a1

such that dpq1, a2q ď L. By the continuity of the distance function and the choice of q1

we see that dpq1, a2q “ L.
Let p2 be a point in a2 such that dpq1, p2q “ L. Therefore, we see that dpp2, a3q ě

δρ´1µn ą L. Let q2 be the first point in a2 after p2 such that dpq2, a3q ď L. Again, we
have dpq2, a3q “ L, and let p3 P a3 be a point such that dpq2, p3q “ L. We iterate this
procedure until we obtain a point qd P ad and a point p1 P a1 such that dpqd, p1q “ L.

We claim that dppj, qjq ě L. Indeed, since dppj, aj´1q ď L, (14) implies dppj, aj`1q ě

δρ´1µn “ 2L, and the result follows from the triangle inequality.
From now on, we denote by rpj, qjs the restriction of aj between pj, qj, and we choose

once and for all geodesic segments rqj, pj`1s connecting qj, pj`1. Let γn “ γ be the
concatenation

γ “ rp1, q1
s ˚ rq1, p2

s ˚ ¨ ¨ ¨ ˚ rqd, p1
s,

where we consider γ to be parameterized by arc length. We will show that γ is a
pL; 3, 0q–local quasigeodesic.

Let x, y be two points of γ of parameterized distance less than L. We denote by dγpx, yq
the parameter distance. We will prove that dγpx, yq ď 3dpx, yq. If a and b are contained
in the same segment of γ, then the inequality clearly holds. Thus, we can assume that
x and y are on two consecutive segments of γ since the length of each segment of γ is at
least L.

Firstly, consider the case x P rpj, qjs, y P rqj, pj`1s. If x “ qj, then we would be in the
previous case, so x ‰ qj. We claim dpx, yq ą dpqj, yq. If not, this would contradict the
choice of qj as the first point at distance L from aj`1. Indeed, dpx, yq ď dpqj, yq, implies
dpx, pj`1q ď dpqj, pj`1q. Therefore, dpx, yq ą dpqj, yq. In particular:

dγpx, yq “ dpx, qjq ` dpqj, yq ď
`

dpx, yq ` dpy, qjq
˘

` dpqj, yq ď 3dpx, yq.

Consider now the case x P rqj´1, pjs and y P rpj, qjs. Since dpqj´1, ajq “ dpqj´1, pjq, we
have dpx, yq ě dpx, pjq. Hence

dγpx, yq “ dpx, pjq ` dppj, yq ď dpx, pjq `
`

dppj, xq ` dpx, yq
˘

ď 3dpx, yq.

Thus, γ is a pL; 3, 0q–local quasigeodesic, where L “ Ln “
1
2
δρ´1µn. To conclude the

proposition, we need to bound the length of γ linearly in terms of µn. However, observe
that dpqj, pj`1q “ L for all j, and dppj, qjq ď `pajnq ď ρµn`pa

j
8q. Setting M “ max `paj8q,



REFERENCES 10

we obtain
`pγq ď d

ˆ

1

2
δρ´1µn ` ρMµn

˙

“ d

ˆ

1

2
δρ´1

` ρM

˙

µn. �

Corollary 3.5. A a finitely generated group is not hyperbolic if and only if it satisfies
p‹q.

The proof of the three theorems in the introduction follow easily from the previous
results.

Proof of Theorem 1.3. One direction is given by Theorem 3.4 and the other by Proposi-
tion 3.3. �

Proof of Theorem 1.2. One direction is the main result of [HR03]. For the other, let G be
a finitely generated group in QREG. Now, Proposition 3.2 implies that G does not have
the property (‹). Proposition 3.3 and Corollary 3.5 show that for a finitely generated
group H the property (‹) is equivalent to H not being hyperbolic. In particular, G is
hyperbolic. �

Proof of Theorem 1.4. Let Γ be a graph. An isometrically embedded circuit (IEC) is a
simplicial loop of length 2n ` 1 such that the restriction of each subsegment of length
at most n is a geodesic. We claim that if Γ is geodetic and not hyperbolic then there
are IEC of arbitrarily large length. Indeed, by [Pap95b, Theorem 1.4], a Cayley graph
is hyperbolic if and only if all geodesic bigons are uniformly thin, i.e. any two geodesics
sharing endpoints have uniformly bounded Hausdoff distance.

Since Γ is geodetic, if the geodesic endpoints are vertices, the geodesics need to coincide.
It is straightforward to check that if the endpoints are both in an edge one can reduce
to a case where at least one endpoint is a vertex. So, the only case left is a bigon where
one endpoint is a vertex and the other is the midpoint of an edge. By [EP20, Lemma 4],
such a configuration produces an IEC. Since a bound on the Hausdorff distance of the
geodesics would imply hyperbolicity, we get arbitrarily large IECs.

Observe that an IEC of length 2n ` 1 is an n–local geodesic. By Proposition 3.2,
we conclude that if a group is non-hyperbolic and geodetic, then for any λ ą 3 the set
of pλ, 0q–quasigeodesics cannot form a regular language. Thus such a group must be
hyperbolic and geodetic and so, by [Pap93, Section 4], virtually free. �
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