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Abstract
We prove an analogue of the Lück Approximation Theorem in positive characteristic
for certain residually finite rationally soluble (RFRS) groups including right-angled
Artin groups andBestvina–Brady groups. Specifically,we prove that themod p homol-
ogy growth equals the dimension of the group homology with coefficients in a certain
universal division ring and this is independent of the choice of residual chain. For gen-
eral RFRS groups we obtain an inequality between the invariants. We also consider a
number of applications to fibring, amenable category, and minimal volume entropy.

Mathematics Subject Classification Primary 20J05 · Secondary 16K99 · 16S35 ·
20E26 · 20F36 · 20F65 · 57M07

1 Introduction

A celebrated theorem of Lück relates the rational homology growth in degree m
through finite covers to the mth �2-Betti number of a residually finite group. More
precisely:
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Theorem 1.1 (Lück [26]) Let G be a residually finite group of type Fm+1 and let
(Gn)n∈N be a residual chain of finite index normal subgroups. Then

lim
n→∞

bm(Gn; Q)

[G : Gn] = b(2)
m (G),

where b(2)
m (G) denotes the mth �2-Betti number of G.

An immediate consequence of Lück’s approximation theorem is that the left-hand
limit always exists and is independent of the chosen residual chain. We remind the
reader that a residual chain is a sequence G = G0 ≥ G1 ≥ · · · ≥ Gn ≥ · · · such
that each Gn is a finite index normal subgroup of G and

⋂
n∈N

Gn = {1}. A related
invariant is the mth Fp-homology gradient for a finite field Fp. It is defined by

b(2)
m (G, (Gn); Fp) := lim sup

n→∞
bm(Gn; Fp)

[G : Gn]
for any G of type Fm+1 and residual chain (Gn)n∈N. We will recall the definition of
various finiteness properties in Sect. 5.

In [27, Conjecture 3.4] Lück conjectured that b(2)
m (G; Fp) should equal b(2)

m (G)

(and hence be independent of the residual chain). This was disproved by Avramidi–
Okun–Schreve [1] (using a result of Davis–Leary [13]) where they showed that

b(2)
3 (ARP2) = 0 but b(2)

3 (ARP2; F2) = 1

independently of the choice of residual chain. Here, ARP2 is the right-angled Artin
group (RAAG) on (the 1-skeleton of) any flag triangulation of the real projective plane.

For torsion-free groups satisfying the Atiyah conjecture, the �2-Betti numbers may
be computed via the dimensions of group homology with coefficients in a certain skew
field DQG , known as the Linnell skew field of G. In [19], Jaikin-Zapirain introduces
analogues of the Linnell skew field with ground ring any skew field F, denoted DFG ,
and called theHughes-free division ring ofFG. He proves thatDFG exists and is unique
up toFG-isomorphism for large classes of groups, including residually finite rationally
soluble (RFRS) groups (in particular compact special groups) and conjectures they
should exist for all locally indicable groups.

One may compute group homology with coefficients in DFG and take DFG-
dimensions to obtainDFG-Betti numbers, denoted bDFG

m (G). We emphasise that when
G is RFRS and F = Q, the Linnell skew field and the Hughes free division ring coin-

cide [19, Appendix], and therefore that b
DQG
m (G) = b(2)

m (G). TheDFG-Betti numbers
share a number of propertieswith �2-Betti numbers (see for example [18, Theorem3.9]
and [15, Lemmas 6.3 and 6.4]). In light of this we raise the following conjecture:

Conjecture A Let F be a skew field. Let G be a torsion-free residually finite group of
type FPn+1(F) such that DFG exists. Let (Gi )i∈N be a residual chain of finite index
normal subgroups. Then,

b(2)
m (G, (Gi ); F) = bDFG

m (G)
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Homological growth of Artin kernels in positive... 821

for all m ≤ n. In particular, the limit supremum in the definition of b(2)
m is a genuine

limit and is independent of the choice of residual chain.

Our main result verifies this conjecture for various families of groups—notably for
RAAGs, which provided the counterexamples to Lück’s original conjecture.

Theorem B Let F be a skew field and G be a group commensurable with any of

(1) a residually finite Artin group satisfying the K (π, 1) Conjecture, such as a right-
angled Artin group or RAAG.

(2) an Artin kernel, i.e. the kernel of a homomorphism from aRAAG toZ (these include
Bestvina–Brady groups);

(3) a graph product of amenable RFRS groups.

If G is type FPn(F), then b(2)
m (G, (Gn); F) = bDFG

m (G) for m ≤ n. In particular, the
limit supremum in the definition of b(2)

m is a genuine limit independent of the choice of
residual chain (Gn)n∈N.

In the case when G is not torsion-free but contains a finite-index torsion-free sub-
group H , each of theBetti numbers bi (G) forG appearing in the statement is defined to
be bi (H)/[G : H ]. This extension to the definition is clearly consistent for b(2)

i (G; F)

and is consistent for bDFG
i (G) because of [15, Lemma 6.3].

In each case we are able to compute bDFG
m (G) explicitly; in cases (1) and (3) we

find that it is equal to the F-homology gradient previously computed in [1] and [30].
In case (2) we compute both the DFG-Betti numbers and the F-homology gradients
and show they are equal. We highlight the computation for (2), which we expect will
be of independent interest. Note that this generalises the computation of Davis and
Okun for the �2-Betti numbers of Bestvina–Brady groups [14].

Theorem C Let F be a skew field, let ϕ : AL → Z be an epimorphism and let BBϕ
L

denote kerϕ. If BBϕ
L is of type FPn(F) then

b
D

FBB
ϕ
L

m (BBϕ
L ) = b(2)

m (BBϕ
L ; F) =

∑

v∈L(0)

|ϕ(v)| · b̃m−1(lk(v); F).

for all m ≤ n.

Onemay extend Conjecture A toG-spaces with finite (n+1)-skeleton. In this more
general settingweare able to verify the conjecture for certain polyhedral product spaces
(Theorem 3.15) and certain hyperplane arrangements (Theorem 3.21). We remark that
[25] effectively proves the conjecture for torsion-free amenable groups.

For groups where DFG exists and is universal (see Sect. 4 for a definition), we
obtain that the agrarian Betti-numbers give a lower bound for the homology gradients
as an easy consequence of a result of Jaikin-Zapirain [19, Corollary 1.6]. Note that the
following theorem applies to all residually (amenable and locally indicable) groups
by [19, Corollary 1.3], and in particular to RFRS groups.
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Theorem D LetF be a skew-field and let G be a residually finite group of type FPn+1(F)

such that DFG exists and is the universal division ring of fractions of FG. Then

bDFG
m (G) ≤ b(2)

m (G, (Gi ); F)

for all m ≤ n, where (Gi )i∈N is any residual chain of finite-index subgroups of G.

We also mention the work of Bergeron–Linnell–Lück–Sauer [4], which we believe
provides some more evidence for Conjecture A. Let � be the fundamental group of a
finite CW complex X with a homomorphism ϕ : � → GLn(Zp). Let G be the closure
of ϕ(�) and let Gi = ker(G → GLn(Z/piZ)). Recall that the Iwasawa algebra of
G over Fp is Fp�G� = lim←− Fp[G/Gi ]. If G is torsion-free, then Fp�G� has no zero

divisors and is Ore with respect to its nonzero elements. Letting � = �/kerϕ, we have
ring homomorphisms

F� → FG → Fp�G� → D,

whereD is the Ore localisation of Fp�G�. If M is an Fp�G�-module and G is torsion-
free, then the dimension of M is

dimFp�G� M := dimD(D ⊗Fp�G� M).

If G is not torsion-free, then we can pass to a uniform finite-index subgroup G0 ≤ G
and then define dimFp�G� M = [G : G0]−1 dimFp�G� M . There is then a natural mod

p analogue of �2-Betti numbers given by

βk(X , �; Fp) = dimFp�G� Hk(Fp�G� ⊗
Fp�

C•(X; Fp))

where X is the cover of X corresponding to kerϕ. With this setup, Bergeron–Linnell–
Lück–Sauer prove the following mod-p Lück approximation style theorem.

Theorem 1.2 With the notation above, let �i = ϕ−1(Gi ) and let Xi be the corre-
sponding cover of X. Then

bk(Xi ; Fp) = [� : �i ] · βk(X , �; Fp) + O
(
[� : �i ]1− 1

dimG

)

for all k.

1.1 Outline of the paper

In Sect. 2 we give the relevant background on group rings and the computational tools
we will need. In fact in many computations we are able to work in the more general
setting of agrarian invariants as defined in [18] and so summarise the relevant theory.
The remaining three sections of the paper are described in the sequel.
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1.1.1 Computations

In Sect. 3we introduce the notion of a confident complex; roughly this is a CWcomplex
admitting a finite cover by subcomplexes with amenable fundamental group such that
the nerve of the cover has good properties. We then compute the DFG-Betti numbers
and Fp-homology gradients of these complexes showing they are related to Fp-Betti
numbers of the nerve. The computation of the first invariant a uses a spectral sequence
collapsing result of Davis–Okun [14] building on work of Davis–Leary [13]. The
computation of the second invariant is similar in spirit to the work of Avramidi–
Okun–Schreve [1] and Okun–Schreve [30] and again relies on a spectral sequence
argument.

The remainder of the section involves computations of the homological invariants
for various spaces and groups with the goal of showing they satisfy Conjecture A. The
computations are summarised as follows. In Theorem 3.12 we show that Artin kernels
of type FPn are fundamental groups of confident spaces with an n-acyclic covering
space, and use this to prove TheoremC. In Theorem 3.15we compute the invariants for
graph products of amenableRFRSgroups (includingRAAGs) and polyhedral products
of classifying spaces of amenable RFRS groups. In Theorem 3.19 we compute the
invariants for the Artin groups alluded to earlier. In fact the method applies to RFRS
groups admitting a strict fundamental domain with certain stabilisers (Remark 3.20).
Finally, inspired by [12], we compute the invariants for hyperplane arrangements
whenever the invariants are defined (Theorem 3.21).

1.1.2 A lower bound for homology gradients

In Sect. 4, we recall the notion of a universal division ring of fractions and prove
Theorem D as a consequence of work of Jaikin-Zapirain in [19].

1.1.3 Applications to fibring

In Theorem 5.1 we prove that if a RFRS group of type FPn+1(F) is not virtually
FPn(F)-fibred, then there is some m ≤ n such that b(2)

m (G, (Gn); F) > 0 for every
residual chain (Gn)n∈N.

In the remainder of Sect. 5 we apply the computations of the agrarian invariants of
RAAGs andArtin kernels to obtain some results about fibring in RAAGs. In particular,
we make progress towards the following question of Matthew Zaremsky, communi-
cated to us by Robert Kropholler: If a RAAG virtually algebraically fibres with kernel
of type Fn , then does it algebraically fibre with kernel of type Fn?We are able to answer
this question if one replaces Fn with FPn(R), where R is either a skew field, Z, or Z/m
for some integer m > 1 (Theorem 5.2). Since finitely presented groups of type FPn
are of type Fn , this leaves F2 as the main case of interest in Zaremsky’s question.

In [15], the first author showed that if G is RFRS and �2-acyclic in dimensions
≤ n, then G virtually FPn(Q)-fibres, but left unanswered whether �2-Betti numbers
control virtual FPn-fibring. We resolve that here by showing that there are RAAGs
that are �2-acyclic but do not virtually FP2-fibre (Proposition 5.5). Finally, we use the
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824 S. P. Fisher et al.

explicit computation of the agrarian invariants of Artin kernels to show that if AL is a
RAAG and F is a skew field, then either all of the FPn(F)-fibres of AL are themselves
virtually FPn(F)-fibred or none of them are (Theorem 5.6, Corollary 5.8).

1.1.4 Applications to amenable category andminimal volume entropy

In Sect. 6 we relate the Agrarian invariants to the amenable category of [9] and the
minimal volume entropy of Gromov [16]. The relevant background is described in the
section.

We show via an argument of Sauer [31] that having a small amenable category
implies vanishing ofDFG-Betti numbers for residually finite groups (Proposition 6.1).
We also show that for residually finite groups with uniformly uniform exponential
growth admitting a finite K (G, 1), having a non-zero DFG-Betti number implies the
minimal volume entropy of G is non-zero (Corollary 6.2). The analogous results for
Fp-homology gradients were established by Sauer [31] and Haulmark–Schreve [17]
respectively. In some sense this providesmore evidence towards ConjectureA. Finally,
we give a condition for the minimal volume entropy of an Artin kernel admitting a
finite K (G, 1) to be non-zero (Corollary 6.3) and conjecture a converse.

2 Preliminaries

Throughout all rings are assumed to be associative and unital.

2.1 Finiteness properties

Let R be a ring and G be a group. Then G is said to be of type FPn(R) if there is
a projective resolution P• → R of the trivial RG-module R such that Pi is finitely
generated for all i ≤ n. If G is of type FPn(R) and S is an R-algebra, then G is of
type FPn(S). Thus, if G is of type FPn(Z), then G is of type FPn(R) for any ring R;
because of this, we write FPn to mean FPn(Z). Note that finite generation is equivalent
to FP1(R) for any ring R, though FP2 is in general a stronger condition than FP2(R).

We also the mention the homotopical analogue of the FPn(R) condition: a group
G is of type Fn if G has a classifying space with finite n-skeleton. Note that F1 is
equivalent to FP1(R) for any ring R, but that Fn is in general strictly stronger than
FPn(R) for n ≥ 2.

2.2 Agrarian invariants

Let G be a group and let F be a skew field. The group ring FG is the set of formal
sums

∑
g∈G λgg, where λg ∈ F is zero for all but finitely many g ∈ G, equipped

with the obvious addition and multiplication operations. Let D be a skew field. Then
an agrarian embedding is a ring monomorphism α : FG ↪→ D. Agrarian embeddings
were first studied by [28, 29], who proved that group rings of bi-orderable groups have
agrarian embeddings. Note that the existence of an agrarian embedding implies that
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G is torsion-free and that the Kaplansky zero divisor and idempotent conjectures hold
for FG. There is no known example of a torsion-free group G and a skew field F such
that FG does not have an agrarian embedding.

Let X be a CW-complex with a cellular G action such that for every g ∈ G and
every open cell e of X , if g · e ∩ e 
= ∅ then g fixes e pointwise. The cellular chain
complex C•(X; F) is naturally an FG-module. In this situation, X is called a G-CW
complex. If α : FG → D is an agrarian map, then we can define theD-homology and
D-Betti numbers of X by

HD
p (X) := Hp(D ⊗FG C•(X)) and bDp (X) = dimD HD

p (X)

where dimD denotes the dimension as a D-module, which is well-defined since D is
a skew field. Taking X to be a classifying space of G, we obtain theD-homology and
D-Betti numbers of G.

The following theorem gives a central example of an agrarian embedding.

Theorem 2.1 (Linnell [24]) If G is a torsion-free group satisfying the strong Atiyah
conjecture, then there is a skew field DQG, known as the Linnell skew field of G, and

an agrarian embedding QG ↪→ DQG such that b(2)
p (G) = bDQG (G).

The strong Atiyah conjecture asserts that if X is a freeG-CW complex of finite type
andG has finite subgroups of bounded order, then lcm(G) ·b(2)

p (X) ∈ Z for all p ∈ N,
where lcm(G) is the least common multiple of the orders of finite subgroups of G.
The strong Atiyah conjecture is known for many groups, in particular for residually
(torsion-free solvable groups) [32], for cocompact special groups [33], and for locally
indicable groups [20]. Importantly for us, the Atiyah conjecture holds for all RFRS
groups, and in particular all subgroups of RAAGs. The following theorem of Jaikin-
Zapirain provides many examples of agrarian embeddings in positive characteristic.

Theorem 2.2 (Jaikin-Zapirain [19, Theorem 1.1]) Let F be a skew field and let G
be either locally indicable amenable, residually (torsion-free nilpotent), or free-by-
cyclic. Then there exists a division ring DFG, known as the Hughes-free division ring
of FG, and an agrarian embedding FG ↪→ DFG.

2.3 AMayer–Vietoris type spectral sequence

The following construction of aMayer–Vietoris type spectral sequence is due to Davis
and Okun [14]. We will state the homological version of the spectral sequence with
arbitrary coefficients. LetP be a poset.WedefineFlag(P) to be the simplicial realisation
of P, i.e. Flag(P) is the simplicial complex whose simplices are the totally ordered,
finite, nonempty subsets of P. Hence, every simplex σ ∈ Flag(P) has a well-defined
minimum vertex, denoted min(σ ).

If Y is a CW complex, then a poset of spaces in Y over P is a cover Y = {Ya}a∈P
of Y with each Ya a subcomplex such that

(1) a < b implies Ya ⊆ Yb;
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826 S. P. Fisher et al.

(2) Y is closed under finite, nonempty intersections.

Let R be a ring and letModR denote the category R-modules. A poset of coefficients
for P is a contravariant functor A : P → ModR . The functor A induces a system of
coefficients on Flag(P) via σ �→ Amin(σ ), which gives chain complex

C j (Flag(P);A) :=
⊕

σ∈Flag(P)( j)
Amin(σ ),

where Flag(P)( j) is the set of j-simplices in Flag(P).

Lemma 2.3 ([14, Lemmas 2.1 and 2.2]) Let M be an R-module and suppose Y =
{Ya}a∈P is a poset of spaces over P in a CW complex Y . There is a Mayer–Vietoris
type spectral sequence

E2
p,q = Hp(Flag(P);Hq(Y; M)) → Hp+q(Y ; M),

where H•(Y; M) is a system of coefficients given by

H•(Y; M)(σ ) = H•(Ymin(σ ); M).

Moreover, if the induced homomorphism H•(Ya; M) → H•(Yb; M) is zero whenever
a < b in P, then

E2
p,q =

⊕

a∈P
Hp(Flag(P≥a),Flag(P>a); Hq(Ya; M)).

3 Computations

3.1 Approximation for spaces with confident covers

Fix a skew field F and let X be a compact CW complex with a finite poset of spaces
X = {Xα}α∈P over P. We call X confident if it satisfies the following conditions: for
each α ∈ P

(i) each Xα has finitely many components;
(ii) either Xα ⊆ X (0) or each connected component of Xα is a classifying space with

torsion-free amenable fundamental group such that FG has no zero-divisors;
(iii) if C ⊆ Xα is a component, then the inclusion C ⊆ X induces an injection

π1(C) → π1(X);
(iv) if Xα is a collection of points, then α is minimal in P; equivalently, Xα ∩ Xβ = ∅

whenever Xα, Xβ ⊆ X (0).

Remark 3.1 If G is a torsion-free elementary amenable group, then FG has no zero-
divisors.
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We will show that spaces with confident covers satisfy Lück’s approximation the-
orem in arbitrary characteristic, following Avramidi, Okun, and Schreve who prove
the same result for the Salvetti complex of a RAAG. We will then show that the result
agrees with the agrarian Betti numbers of the space.

Before beginning, we fix some notation. For the rest of the section, X will be a
compact CW complex with a confident cover X = {Xα}α∈P and we assume that
G := π1(X) is residually finite with residual chain (Gn)n∈N. Let Xn be the covering
space of X corresponding to Gn � G. Fix some n ∈ N and let V = F[G/Gn]. Let
K be the nerve of X and let Xσ = Xmin(σ ) for any simplex σ ∈ K . By an abuse of
notation, we will use α to denote both an element of P and the corresponding vertex
of K .

Recall the Mayer–Vietoris type spectral sequence

E1
p,q = Cp(K ; Hq(Xσ ; V )) ⇒ Hp+q(X; V ) ∼= Hp+q(Xn; F)

(see, e.g., [7, VII.4]).

Lemma 3.2 We have that

lim
n→∞

dimF Hq(Xσ ; V )

[G : Gn] =
{
nσ if q = 0 and Xσ ⊆ X (0),

0 otherwise.

Proof The proof is similar to that of [1, Lemma 8]. The claim is clear when Xσ

consists of 0-cells. In the other case, since the homology growth of amenable groups
satisfying (ii) is sublinear [25, Theorem 0.2], the only way dimF Hq(Xσ ; V ) can grow
linearly is if the number of components of the preimage of Xσ in Xn grows linearly
with the index. But this does not occur since the sequence �n is residual and normal
and the inclusions Xσ ⊆ X induce π1-injections of infinite groups on each component
of Xα . ��

The spectral sequence is therefore concentrated on the E1
p,0 line, up to an error

sublinear in the index [G : Gn]. This implies that

lim sup
n∈N

dimF E2
p,0

[G : Gn] = lim sup
n∈N

dimF Hp(X; V )

[G : Gn] . (1)

Define a poset of coefficients on the vertices of K by

Aα =
{
V nσ if Xσ ⊆ X (0),

0 otherwise.

Let K (p) denote the set of p-simplices of K . There is a chain projection

E1
p,0 =

⊕

σ∈K (p)

V nσ → Cp(K ;Aα) =
⊕

σ∈K (p):Xmin(σ )⊆X (0)

V nσ .
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828 S. P. Fisher et al.

By Lemma 3.2, the kernel of this projection has dimension sublinear in the index
[G : Gn] and therefore

lim sup
n∈N

dimF E2
p,0

[G : Gn] = lim sup
n∈N

dimF Hp(X;Aα)

[G : Gn] . (2)

The proof of the following proposition is similar to that of [1, Lemma 9], except
that in their case the nerve is contractible. Though K is not necessarily contractible, it
does decompose nicely into contractible pieces centred at the vertices α ∈ K (0) such
that Xα ⊆ X (0).

Proposition 3.3 Let S = {α ∈ K (0) : Xα ⊆ X (0)}. Then

dimF Hp(K ;Aσ ) = [G : Gn] ·
∑

α∈S
nα b̃p−1(lk(α); F)

In particular, limn→∞
bp(Xn;F)

[G:Gn ] exists and is independent of the residual chain (Gn).

Proof By (iv), if α ∈ K (0) is a vertex such that Aα 
= 0, then every vertex β ∈ K (0)

adjacent to α has Aβ = 0. Therefore the chain complex C•(K ;Aσ ) decomposes as
a direct sum of chain complexes

⊕
α∈S C•(st(α);Aσ ), where the coefficient system

Aσ is restricted to each st(α) ⊆ K .
For each α ∈ S, there is a short exact sequence of chain complexes

0 → C•(lk(α); F) ⊗ V nα → C•(st(α); F) ⊗ V nα → C•(st(α);Aσ ) → 0.

Because st(α) is contractible, the middle term is acyclic and therefore

H•(st(α);Aσ ) ∼= H•−1(lk(α); F) ⊗ V nα .

The formula in the statement of the proposition follows, since V nα is a vector space
of dimension [G : Gn] · nα .

This formula together with (1) and (2) show that lim supn
bp(Xn;F)

[G:Gn ] is independent
of the residual chain (Gn). Moreover, this implies that the lim sup is a genuine limit.

��
Remark 3.4 In [1], the computation of Proposition 3.3 is carried out in the case that
XL is the Salvetti complex of the RAAG determined by L . If X is the cover of XL by
standard tori, then there is a single vertex v in the cover and the corresponding vertex
α in the nerve has link isomorphic to L . Thus, we recover the formula b(2)

p (AL ; F) =
b̃p−1(L; F).

Remark 3.5 Condition (ii) can be weakened as follows: One only requires that first,
π1X is residually finite; and second, that each Xσ is (homotopy equivalent to) a
compact CW complex with vanishing F-�2-Betti numbers independent of the chain,
or is a 0-cell. In this case the conclusion of Proposition 3.3 still holds.
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Corollary 3.6 Let X be a confident CW complex with π1(X) residually finite. If
π : X̂ → X is a degree d cover, then b(2)

p (H ; F) = d · b(2)
p (G; F).

Proof Let {Xα} be a confident cover of X . Then {π−1(Xα)} is a confident cover of X̂
and

∣
∣π−1(Xα)

∣
∣ = d · |Xα| whenever Xα ⊆ X (0). ��

3.2 Agrarian homology of spaces with confident covers

We continue with the same set-up as the previous subsection: X is a CW complex with
a confident cover X = {Xα}α∈P and let K be the covering. Notice that K ∼= Flag(P).
Additionally, we will assume that there exists a skew field D and a fixed agrarian
embedding FG → D, where G = π1(X).

Proposition 3.7 Let S = {α ∈ K (0) : Xα ⊆ X (0)}. Then

dimF HD
p (X) =

∑

α∈S
nα b̃p−1(lk(α); F).

In particular, if π1(X) is residually finite then bDp (X) = b(2)
p (X; F).

Proof Suppose Xα does not consist of 0-cells. Then, each component of Xα is a
classifying space for an infinite amenable group and therefore HD

p (Xα) = 0 by [18,

Theorem 3.9(6)]. Since the elements α such that Xα ⊆ X (0) are minimal in P, the
spectral sequence of Lemma 2.3 collapses on the E2

p,0 line. By Lemma 2.3,

HD
p (X) =

⊕

α∈S
Hp(Flag(P≥α),Flag(P>α);Dnα ),

whence the stated formula follows. ��
Corollary 3.8 If X is confident, G = π1(X) is residually finite, and G has a Hughes-
free division ringDFG, then b

DFH
p = b(2)

p (X̂; F) for every finite index subgroup H ≤ G
and corresponding finite covering space X̂ → X.

Proof This follows from Corollary 3.6 and the fact that Hughes-free Betti numbers
scale when passing to a finite index subgroup [15, Lemma 6.3]. ��
Remark 3.9 Condition (ii) can be weakened as follows: One only requires that first
π1X admits an agrarian map π1X → D; and second that each Xσ is (homotopy
equivalent to) a compact CW complex with with vanishing D-Betti numbers or is a
0-cell. In this case the conclusion of Proposition 3.7 still holds.

3.3 Artin kernels

AnArtin kernel is simply the kernel of a non-zero homomorphism ϕ : AL → Z, where
L is a flag complex and AL is the RAAG it determines. We now apply the results of
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the previous two subsections to Artin kernels and obtain an explicit formula for their
agrarian Betti numbers in terms of L and ϕ.

We fix a skew field F, a flag complex L , and a surjective homomorphism ϕ : AL →
Z, where AL is the RAAG on L . Moreover, we fix a standard generating set for AL ,
identified with the vertex set Vert(L). We denote the Artin kernel by BBϕ

L := kerϕ. If
ϕ is the map sending each of the generators to 1 ∈ Z, then BBϕ

L = BBL is the usual
Bestvina–Brady group.

Let TL be the Salvetti complex on L and let XL be its universal cover. There is an
affine map TL → S1 inducing ϕ constructed as follows. For each v ∈ Vert(L), let
S1v := R/Z be the corresponding circle in TL . Let σ = {v1, . . . , vk} ∈ L be a simplex
and let Tσ = S1v1 × · · · × S1vk be the associated subtorus of TL . There is a map

Tσ → S1 = R/Z, (x1, . . . , xk) �−→ ϕ(v1)x1 + · · · + ϕ(vk)xk + Z.

The maps on each of the subtori extend to a well-defined map f : TL → S1 inducing
ϕ on the level of fundamental groups. Moreover, f induces a cube-wise affine AL -
equivariant height function h : XL → R making the diagram

XL R

TL S1
f

h

commute—here the vertical arrows are the universal covering maps.
We borrow the following definition and terminology from [8].

Definition 3.10 A vertex v of L is living [resp., dead] if ϕ(v) 
= 0 [resp., ϕ(v) = 0].
Denote the full subcomplex of L spanned by the living [resp., dead] vertices by La

[resp., Ld].

Let Z = h−1({p}) for some p /∈ Z. The level set Z has a natural CW complex
structure and BBϕ

L acts cocompactly on Z ; we denote the quotient Z/BBϕ
L by Y . For

each n-simplex σ ∈ L , the subtorus Tσ ⊆ TL lifts to Xσ , a collection of pairwise
disjoint sheets in XL . Each sheet is an isometrically embedded copy of (n + 1)-
dimensional Euclidean space.

Let P be the poset of simplices of L that contain at least one vertex in La. Then Z is
covered by the collection {Xσ ∩ Z}σ∈P. Writing Yσ for the image of Xσ ∩ Z in Y , we
obtain a poset of spaces Y = {Yσ }σ∈P of Y where each subcomplex Yσ is a disjoint
union of tori or a set of vertices. Crucially, Y is a confident cover.

Lemma 3.11 If σ = {v} ∈ La is a vertex, then Yσ is a collection of |ϕ(v)| vertices.
Proof We will show that there are exactly |ϕ(v)| orbits of lines in Xσ under the BBϕ

L -
action on XL . For each vertex v in La, evenly subdivide each edge of Xv into |ϕ(v)|
segments. Note that the restriction X

(1)
L → R of h is cellular, where X

(1)
L is the

subdivided 1-skeleton of XL and R is given the cell structure with vertex set Z and
edge set {[n, n + 1] : n ∈ Z}.

123



Homological growth of Artin kernels in positive... 831

Fix a vertex σ = {v} ∈ La and let Xσ be the subdivision of Xσ . Let e be an edge of
Xσ and let e′ be the unique edge of Xσ such that e ⊆ e′. We say e is an edge of type i
if it is the i th highest edge (under the height function h) contained in e′; the integer i
can take values in {0, . . . , |ϕ(v)| − 1}.

Because the action of BBϕ
L on XL is height preserving, it preserves the set of type

i edges. Since ϕ is surjective, gcd((ϕ(v))v∈L(0) ) = 1. Therefore, the generic level set
Z intersects edges of type i for every i ∈ {0, . . . , |ϕ(v)| − 1}. Moreover, BBϕ

L acts
transitively on the set of edges of type i of the same height, which follows from the
fact that BBϕ

L acts transitively on the set of edges of Tσ of the same height. Thus, we
conclude that there are exactly |ϕ(v)| orbits of lines in Xσ under the BBϕ

L action. ��
Theorem 3.12 Let ϕ : AL → Z be an epimorphism and let Y be a generic level set of
the induced height function. If FBBϕ

L → D is an agrarian embedding, then

bDp (Y ) = b(2)
p (Y ; F) =

∑

v∈L(0)

|ϕ(v)| · b̃p−1(lk(v); F).

Moreover, if BBϕ
L is of type FPn(F) then

bDp (BBϕ
L ) = b(2)

p (BBϕ
L ; F) =

∑

v∈L(0)

|ϕ(v)| · b̃p−1(lk(v); F)

for all p ≤ n. We also have bDp (H) = b(2)
p (H ; F) whenever H is a finite index

subgroup of BBϕ
L and D is the Hughes-free division ring of FH.

Before beginning the proof, we remark that BBϕ
L is a RFRS group, being a subgroup

of a RAAG. Hence, by [19, Corollary 1.3], D
FBBϕ

L
exists. When F = Q, the Hughes

free division ring and the Linnell skew field coincide, so in this case Theorem 3.12
computes the �2-Betti numbers of BBϕ

L . This generalises the computation of Davis
and Okun in [14, Theorem 4.4]

Proof The first statement is an immediate consequence of Propositions 3.3 and 3.7,
Remark 3.9, Remark 3.5, Lemma 3.11, and the observation thatY is a confident cover.
The second follows from the fact that if BBϕ

L is of type FPn(F) if and only if Z is
n-acyclic with F coefficients [8] (Bux–Gonzalez consider only the case F = Z, but
their result remains true over arbitrary coefficients). ��
Remark 3.13 The condition that BBϕ

L is of type FPn(F) can be verified directly in the
flag complex L . Recall that a topological space is n-acyclic if its reduced homology
(with coefficients in F in our case) vanishes in degrees ≤ n. Note that we use the
convention that the reduced homology of the empty set is F in dimension −1, so if X
is n-acyclic for n ≥ −1, then X is nonempty.

Bux and Gonzalez show that BBϕ
L is of type FPn(F) if and only if La ∩ lk(σ ) is

(n−dim(σ )−1)-acyclic (with coefficients in F) for every simplex σ ∈ Ld, including
the empty simplex which has dimension −1 and link L [8, Theorem 14]. Their result
is stated in the case F = Z but remains true, with the same proof, when stated over a
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general coefficient ring. We will use this characterisation of the finiteness properties
of BBϕ

L is Sect. 5.

It is known by work of Okun–Schreve [30] that for RAAGs the homology torsion
growth t (2)p (AL) in degree p is equal to |Hp−1(L; Z)tors|. We conjecture an analogous
result for Artin kernels.

Conjecture 3.14 If BBϕ
L is of type FPn, then

t (2)p (BBϕ
L ) = lim sup

n→∞
log |Hp(Gn; Z)tors|

[BBϕ
L : Gn] =

∑

v∈L(0)

|ϕ(v)| · |Hp−1(lk(v); Z)tors|

for p ≤ n and any residual chain (Gn).

3.4 Graph products

Let K be a simplicial complex on the vertex set [m] := {1, . . . ,m}. Let (X,A) =
{(Xi , Ai ) : i ∈ [m]} be a collection of CW-pairs. The polyhedral product of (X,A)

and K is the space

(X,A)K :=
⋃

σ∈K

m∏

i=1

Y σ
i where Y σ

i =
{
Xi if i ∈ σ,

Ai if i /∈ σ.

If � = {�1, . . . , �m} is a finite set of groups, then the graph product of � and K ,
denoted�K , is the quotient of the free product∗i∈[m]�i by all the relations [γi , γ j ] = 1,
where γi ∈ �i , γ j ∈ � j and i and j are adjacent vertices of K . Note that �K is the
fundamental group of X = (B�, ∗)K , where B� = {B�1, . . . , B�m} and ∗ is a set
of one-point subcomplexes. Note that by [34, Theorem 1.1], if K is a flag complex
and each �i is a discrete group, then (B�, ∗)K is a model for a K (�K , 1).

Theorem 3.15 Let F andD be skew fields and let K be a finite simplicial flag complex.
Let G = �K be a graph product of discrete groups such that there is an agrarian map
FG → D. If H•(�;D) = 0 for each � ∈ �, then

HD
p (�) ∼= H̃p−1(K ;D).

In particular, bp(G;D) = bp−1(K ; F).

Proof Let X = (B�, ∗)K and let P be the poset whose elements are (possibly empty)
simplices of K . Note that P defines a poset of spaces {Xσ }σ∈P, where X∅ is a sin-
gle vertex. For each ∅ 
= σ ∈ P, the group � J is a direct product of groups with
vanishing D-homology, and therefore Hn(� J ;D) = Hn(X J ;D) = 0 by the Kün-
neth formula. Take the spectral sequence of Lemma 2.3 with the coefficient system
σ �→ Hq(Xmin(σ );D). All of these coefficient system cohomology groups vanish
except when σ = ∅ and q = 0 and therefore

H p(X;D) = H p(Flag(P),Flag(P > ∅);D) ∼= H̃ p−1(K ;D)
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by Lemma 2.3. The last isomorphism follows from the fact that P is isomorphic to
the cone on the barycentric subdivision of K , where the cone point corresponds to the
empty simplex ∅. ��
Remark 3.16 There are certain situations in which one can easily deduce the fact that
a graph product has an agrarian embedding. For example, if each group � ∈ �K

is ordered, then so is �K by a result of Chiswell [10]. Thus, F�K embeds into its
Mal’cev–Neumann completion [28, 29].

Similarly, if each � ∈ �K is RFRS, then it is possible to show that �K is also
RFRS and therefore has a Hughes-free division ring D

F�K . We provide a sketch of
an argument here, which proceeds by induction on the number of vertices in K . If
K has one vertex, then the claim is trivial. Suppose now that K has more than one
vertex. If the 1-skeleton of K is a complete graph, then the claim is again trivial since
�K is a direct product of RFRS groups and therefore RFRS. If K is not a complete
graph, then there is some vertex v ∈ K such that st(v) 
= K and we obtain a splitting
�K ∼= �st(v) ∗�lk(v) �K�v . By induction, both �st(v) and �K�v are RFRS and by
a result of Koberda and Suciu, the amalgam is also RFRS [22, Theorem 1.3]. Note
that the Koberda–Suciu result is a combination theorem for a related class of groups
called RFRp groups, but their proof is easily adapted to the RFRS case; we refer the
interested reader to their paper for more details.

Thanks to the work of Okun and Schreve [30], we have the following corollary
which holds, in particular, for RAAGs.

Corollary 3.17 Let F andD be skew fields and let K be a finite simplicial flag complex.
Let G = �K be a graph product with an agrarian map FG → D. If each � ∈ � is
residually finite, D-acyclic, and F-�2-acyclic, then

bDn (G) = lim
i→∞

bn(Gi ; Fp)

[G : Gi ]
for any residual chain � = �0 � G1 � G2 � · · · of finite index normal subgroups.
Proof Okun and Schreve [30, Theorem 5.1] showed that the right-hand side of the
above equation is independent of the choice of residual chain and equal to b̃p−1(K ; F),
which equals the left-hand side by Theorem 3.15. ��
Remark 3.18 Let K be a simplicial complex, X = (B�, ∗)K , and let X̃ denote the
universal cover. The above arguments apply equally well for computing bDp (X̃) and

b(2)
p (X; F). In both cases they are equal to b̃p−1(K ; F) whenever they are defined. In

the case when K is not a flag complex, X is not aspherical.

3.5 Artin groups

Let A be a residually finiteArtin group and suppose the K (A, 1) conjecture holds for A.
Then there is a contractible complex DA—theDeligne complex of A—with stabilisers
the maximal parabolic subgroups of A admitting a strict fundamental domain QA. In
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[30, Section 4 and Theorem 5.2] the authors compute b(2)
p (A; F) = b̃p−1(∂QA; F)

independently of a choice of residual chain. Here ∂Q is the subcomplex of Q with
non-trivial stabilisers.

Theorem 3.19 Let F be a field. Let A be a residually finite Artin group. Suppose the
K (A, 1) conjecture holds for A. If FA → D is an agrarian map, then

b(2)
p (A; F) = bDp (A; F) = b̃p−1(∂QA; F).

Proof In the action of A on DA, the non-trivial stabilisers have a central Z subgroup
and so they areD-acyclic and have vanishing F-homology growth. We take a poset of
spaces X over the (barycentric subdivision of the) strict fundamental domain Q of A,
where we assign a classifying space BAσ to each σ ∈ Q. Now, we apply Remark 3.9
and Remark 3.5. ��

Remark 3.20 The above argument applies to residually finite groupsG acting on a con-
tractible complexwith strict fundamental domain andD-acyclic stabilisers—whenever
G admits an agrarian embedding FG → D.

3.6 Complements of hyperplane arrangements

Let A be a collection of affine hyperplanes in Ck and let 
(A) denote their union.
Let M(A) := Ck � 
(A). The rank of M(A) is the maximum codimension n of
any nonempty intersection of hyperplanes inA. By [12, Proposition 2.1] the ordinary
Betti numbers satisfy b̃p(M(A); F) = 0 except possibly when p = n.

Theorem 3.21 Let F be a skew field,A be an affine hyperplane arrangement in Ck of
rank n, and let � := π1M(A).

(1) If � is residually finite, then b(2)
p (M(A); F) = b̃p(M(A); F) which equals zero

except possibly when p = n.
(2) Ifα : F� → D is an agrarianmap, then bDp (M(A)) = b̃p(M(A); F)which equals

zero except possibly when p = n.

We will need a lemma.

Lemma 3.22 Let F be a skew field, A be a non-empty central affine hyperplane
arrangement in Ck of rank n, and let � := π1M(A).

(1) If� is residually finite, then b(2)
p (M(A); F) = 0 for all n independently of a choice

of residual chain.
(2) If α : F� → D is an agrarian map, then bDp (M(A)) = 0 for all n.

Proof In this case we have M(A) = S1 × B where B = M(A)/S1 by [12, Proof of
Lemma 5.2]. Both results are easy applications of the Künneth formula and vanishing
of the relevant invariant for Z = π1S1. We spell out the details in the first case to
highlight the independence of the residual chain.
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Observe that every finite cover Mi of M(A) can be written as Bi × S1 such that
S1 has m one cells. We have the index of the cover |M : Mi | = m|B : Bi |. Now, we
compute via the Künneth formula that

b(2)
p (M, (Mi ); F) = lim

i→∞
bp(Mi ) + bp−1(Mi )

|M : Mi |
= lim

i,m→∞
bp(Mi ) + bp−1(Mi )

m|B : Bi |
= 0.

��
Proof of Theorem 3.21 By [12, Section 3] there is a cover U of M(A) by central
subarrangements Uσ such that π1Uσ → � is injective and the nerve N (U) is con-
tractible. There is also a cover of a deleted neighbourhood of
(A), denotedUsing, such
that Hp(N (U), N (Using)) is concentrated in degree n. It follows from Lemma 3.22
that either the homology gradients or the D-Betti numbers vanish. In particular, by
Remarks 3.5 and 3.9 the cover U is confident and the results follow. ��

4 A lower bound for homology gradients

Let R be a ring, let D be a skew-field, and let ϕ : R → D be a ring homomorphism.
There is a rank function rkD,ϕ : Mat(R) → R≥0 defined by rkD,ϕ A = rk ϕ∗A, where
ϕ∗A is the matrix obtained by applying the homomorphism ϕ to every entry of A and
rk ϕ∗A is the rank of ϕ∗A as a matrix over D. If ϕ : R ↪→ D is an epic embedding
(i.e. ϕ(R) generates D as a skew-field) and rkD,ϕ ≥ rkE,ψ for every skew-field E and
every ring homomorphism ψ : R → E , then D is said to be a universal division ring
of fractions for R. If D is a universal division ring of fractions for R, it is then unique
up to R-isomorphism [11, Theorem 4.4.1].

Theorem 4.1 (Jaikin-Zapirain [19, Corollary 1.3]) Let G be a residually (locally
indicable and amenable) group and letF be a skew-field. Then theHughes-free division
ring DFG exists and is the universal division ring of fractions of FG.

We note that Theorem 4.1 holds for RFRS groups, since they are residually poly-Z
(see, e.g., [19, Proposition 4.4]). The main theorem of this section will follow quickly
from the observation thatDFG -Betti numbers scale under taking finite index subgroups
and another result of Jaikin-Zapirain ( [19, Corollary 1.6]), which he states for �2-Betti
numbers of CW complexes but also holds for agrarian homology. For the convenience
of the reader, we reproduce a proof in the agrarian setting here.

Theorem 4.2 (Jaikin-Zapirain) Let F be a skew-field and suppose that G is a group
of type FPn+1(F) for some n ∈ N such that DFG exists and is the universal division
ring of fractions of FG. Then bDFG

m (G) ≤ bm(G; F) for all m ≤ n.
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Proof The embedding ι : FG ↪→ DFG and the augmentation map α : FG → F induce
rank functions on Mat(FG) which we denote by rkG and rkF, respectively. By uni-
versality, rkG ≥ rkF.

LetC• → F be a free-resolution of the trivial FG-module F such thatCm is finitely
generated for all m ≤ n + 1. For all m ≤ n + 1, let dm be an integer such that
Cm ∼= FGdm and view the boundary maps ∂m : Cm → Cm−1 as matrices over FG.
The homologies we are interested in are Hm(DFG ⊗FG C•) and Hm(k ⊗FG C•) and
note that the differentials DFG ⊗ ∂m and k ⊗ ∂m correspond to the matrices ι∗∂m and
α∗∂m under the identificationsDFG ⊗FG Cm ∼= Ddm

FG and F⊗FG Cm ∼= Fdm . Therefore

bDFG
m (G) = dm − rkG ∂m − rkG ∂m+1

≤ dm − rkF ∂m − rkF ∂m+1

= bm(G; F)

��
As a consequence,we obtain that agrarianBetti numbers bound homology gradients

from below.

Theorem 4.3 Let F be a skew-field and let G be a group of type FPn+1(F) such that
DFG exists and is the universal division ring of fractions of FG. If H ≤ G is any
subgroup of finite index, then

bDFG
m (G) ≤ bm(H ; F)

[G : H ]
for all m ≤ n. In particular, if G is residually finite and (Gi )i∈N is a residual chain of
finite-index subgroups, then bDFG

m (G) ≤ b(2)
m (G, (Gi ); F) for all m ≤ n.

Proof By [15, Lemma 6.3], [G : H ] · bDFG
m (G) = bDFH

m (H), and by Theorem 4.2.
The second claim is an immediate consequence of the first. ��

5 Applications to fibring

A group G is algebraically fibred (or, simply, fibred) if it admits a nontrivial homo-
morphism G → Z with finitely generated kernel. More generally, if P is a finiteness
property (e.g. type Fn or FPn(R) for some ring R, see Sect. 2.1 for definitions), we say
that G is P-fibred if there is a nontrivial homomorphism G → Z with kernel of type
P .

Theorem 5.1 Let F be a skew-field and let G be a RFRS group of type FPn+1(F). If G
is not virtually FPn(F)-fibred, then for every residual chain of finite-index subgroups
(Gi )i∈N, we have b

(2)
m (G, (Gi ); F) > 0 for some m ≤ n.

Proof By [15] a RFRS group G is virtually FPn(F)-fibred if and only if bDFG
i (G) = 0

for every i ≤ n. Since G is not virtually FPn(F)-fibred, we have bDFG
m (G) > 0 for

some m ≤ n. The result now follows from Theorem 4.3. ��
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The authors thank Robert Kropholler for communicating to us the following ques-
tion due to Matthew Zaremsky: If a RAAG AL is virtually Fn-fibred, is it Fn-fibred?
We are able to answer the analogous homological question over skew fields, Z, and
Z/m for m ∈ N>1.

Theorem 5.2 Let L be a finite flag complex and R be either a skew field F, Z, or Z/m
for some m ∈ N>1. Then the RAAG AL is virtually FPn(R)-fibred if and only if it is
FPn(R)-fibred.

Proof We begin with the case R = F. Let AL be virtually FPn(F)-fibred. By [15], a
RFRS group G is virtually FPn(F)-fibred if and only if bDFG

i (G) = 0 for every i ≤ n.

In particular this applies in the case G = AL . By Theorem 3.15, b
DFAL
i (AL) = 0 for

every i ≤ n implies that b̃i (L; F) = 0 for every i ≤ n − 1. By [5, Main Theorem],
the Bestvina–Brady group is of type FPn(F) and therefore AL is FPn(F)-fibred.

Now suppose R = Z/m for some m ∈ N>1 and suppose that AL is virtually
FPn(Z/m)-fibred. If p is a prime factor of m, then there is a ring homomorphism
Z/m → Z/p = Fp and thereforeFp is aZ/m-algebra. Thus, AL is virtually FPn(Fp)-

fibred. Therefore b
DFp AL
i (AL) = 0 for all i ≤ n and thus b̃i (L; Fp) = 0 for all

i ≤ n − 1 for all i ≤ n − 1 by Theorem 3.15. Then b̃i (L; Z/m) = 0 for all i ≤ n − 1,
so BBL is of type FPn(Z/m).

Finally, suppose AL is virtually FPn-fibred. In particular, AL is virtually FPn(F)-
fibred for every skew field F, which implies that L is (n − 1)-acyclic over every field
by Theorem 3.15. Therefore L is (n − 1)-acyclic over Z, which implies that BBL is
of type FPn . ��
Remark 5.3 In the case F = Q, Theorem 5.2 could have been deduced from previous
work since the �2-Betti numbers of RAAGs were computed by Davis and Leary in
[13] and it is well known that a virtual FPn(Q)-fibring implies the vanishing of �2-Betti
numbers in dimensions ≤ n.

Since a finitely presented group of type FPn is of type Fn we can reduce Zaremsky’s
question to one remaining case.

Question 5.4 (Zaremsky) Let L be a finite flag complex. If AL is virtually F2-fibred,
then is it F2-fibred?

We can also give examples of RAAGs that show that [15, Theorem A] does not
hold when Q is replaced by Z. In other words, the vanishing of �2-Betti numbers of
RFRS groups does not detect virtual FPn-fibrations.

Proposition 5.5 Let p be a prime. There are RAAGs that are �2-acyclic but that do
not virtually FP2(Fp)-fibre. In particular, these RAAGs do not virtually FP2-fibre.

Proof Let L be a Q-acyclic flag complex that has non-trivial Fp-homology in dimen-
sion 1, e.g. we may take L to be a flag triangulation of M(1, p) the Moore space
with homology H̃n(M(1, p); Z) = 0 unless n = 1, in which case it is isomorphic to
Z/p. Then AL is �2-acyclic by [13] (or Theorem 3.15) but it is not DFp AL -acyclic
by Theorem 3.15. By [15, Theorem 6.6], AL does not virtually FP2(Fp)-fibre and in
particular does not virtually FPn-fibre. ��
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In contrast to this result, Kielak showed that if G is RFRS, of cohomological
dimension at most 2, and �2-acyclic, then G is virtually FP2-fibred [21, Theorem 5.4].

The next application has to do with the following general question: If G fibres
in two different ways, so that G ∼= K1 � Z ∼= K2 � Z with K1 and K2 finitely
generated, then what properties do K1 and K2 share? For example if G is a free-by-
cyclic (resp. surface-by-cyclic) group and G ∼= K � Z, then K is necessarily a free
(resp. surface) group. We thank Ismael Morales for bringing the following question
to our attention: if G ∼= K1 � Z ∼= K2 � Z with K1 and K2 finitely generated, then is
b(2)
1 (K1) = 0 if and only if b(2)

1 (K2) = 0? We prove this is the case for RAAGs, and
obtain a similar result for higher �2-Betti numbers and other agrarian invariants.

Theorem 5.6 Let ϕ0, ϕ1 : AL → Z be epimorphisms such that BBϕ0
L and BBϕ1

L are
of type FPn(F). If FBBϕi

L ↪→ Di is an agrarian embedding for i = 0, 1, then BBϕ0
L is

D0-acyclic in dimensions ≤ n if and only if BBϕ1
L is D1-acyclic in dimensions ≤ n.

Before provingTheorem5.6,we need a technical lemma. Firstwefix somenotation.
If σ1 = [e1, . . . , em] and σ2 = [ f1, . . . , fm] are ordered simplices in a simplicial
complex L such that σ1 ∪ σ2 is a simplex (equivalently, if σ1 ∈ lk(σ2)), then σ1 ∪ σ2
always denotes theordered simplex [e1, . . . , em, f1, . . . , fn].Moreover, if τ = α1σ1+
· · ·+αnσn is a formal linear combination of simplices σi (with coefficients αi in some
fixed skew field) such that σ ∪σi ∈ L for every i , then σ ∪ τ denotes the formal linear
combination

α1σ ∪ σ1 + · · · + αnσ ∪ σn .

If ϕ : AL → Z is a homomorphism, recall that La is the subcomplex of L spanned by
the vertices v ∈ L such that ϕ(v) 
= 0. We will write lkL(σ ) (resp. lkLa(σ )) for the
link of a simplex σ in L (resp. La).

Lemma 5.7 Let BBϕ
L be of type FPn(F) and let v be a dead vertex of L. Then every

simplicial (n − 1)-cycle of lkL(v) is homologous to a cycle in lkLa(v).

Proof Let σ = α1σ1 + · · ·+αkσk be a simplicial (n− 1)-cycle in lkL(v), where each
σi is an ordered (n − 1)-simplex of lkL(v) and αi ∈ F for each i . By induction on
m ≥ 0, we will show that the simplices σi can be replaced with (n − 1)-simplices
having at least m living vertices such that the resulting chain is a cycle homologous
to σ . The lemma follows from the m = n case.

For the base case, suppose that σi is a simplex with no living vertices. Then {v}∪σi
is a dead n-simplex and therefore lkLa({v}∪σi ) is (−1)-connected (see Remark 3.13),
i.e. it is nonempty. Thus, there is a living vertex u such that {u} ∪ σi ⊆ lkL(v). Since

∂({u} ∪ σi ) = σi − {u} ∪ ∂σi ,

where {u} ∪ ∂σi is a linear combination of (n − 1)-simplices with one living vertex,
we can replace σi with {u} ∪ ∂σi in σ . Hence, we assume that the linear combination
α1σ1 + · · · + αkσk only involves simplices with at least one living vertex.

Assume that α1σ1 + · · · + αkσk only involves simplices with at least m ≥ 1 living
vertices for some m < n and let σi be a simplex with exactly m living vertices.
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Let λ ⊆ σi be the dead (n − m − 1)-face of σi and let σi = σi1 , . . . , σil be the
simplices among {σ1, . . . , σk} containing λ as a face. For each j ∈ {1, . . . , l}, write
σi j = ε jλ ∪ τ j , where τ j is a living (m − 1)-simplex of lkL(v) and ε j ∈ {±1}. Then

∂

⎛

⎝
l∑

j=1

αi j σi j

⎞

⎠ =
l∑

j=1

αi j ε j (∂λ ∪ τ j + (−1)n−mλ ∪ ∂τ j )

=
⎛

⎝
l∑

j=1

αi j ε j∂λ ∪ τ j

⎞

⎠ + (−1)n−mλ ∪ ∂

⎛

⎝
l∑

j=1

αi j ε jτ j

⎞

⎠

= 0,

since ∂σ = 0 and the simplices σi j are the only simplices among {σ1, . . . , σk} con-
taining λ as a face. Thus,

λ ∪ ∂

⎛

⎝
l∑

j=1

αi j ε jτ j

⎞

⎠ = 0,

whence we conclude that
∑l

j=1 αi j ε jτ j is an (m − 1)-cycle in lkLa({v} ∪ λ). But
{v} ∪ λ is a dead (n − m)-simplex and therefore lkLa({v} ∪ λ) is (m − 1)-connected.
Hence,

∑l
j=1 αi j ε jτ j = ∂ψ for some living m-chain ψ in lkLa({v} ∪ λ). Then

∂(λ ∪ ψ) = ∂λ ∪ ψ + (−1)n−mλ ∪
⎛

⎝
l∑

j=1

αi j ε jτ j

⎞

⎠

= ∂λ ∪ ψ + (−1)n−m
l∑

j=1

αi j σi j .

The chain ∂λ ∪ ψ is a linear combination of simplices with m + 1 living vertices.
We can therefore replace

∑l
j=1 αi j σi j with ±∂λ ∪ ψ and assume that σ is a linear

combination of simplices each with at least m + 1 living vertices. ��

Proof of Theorem 5.6 Suppose that bD0
p (BBϕ0

L ) > 0 for some p ≤ n. By Theo-
rem 3.12, there is a vertex v of L such that ϕ0(v) 
= 0 and

b̃p−1(lk(v); F) > 0.

Hence, there is a simplicial (p−1)-cycleσ in lk(v) that is not a boundary. Ifϕ1(v) = 0,
then, by Lemma 5.7, σ is homologous to a cycle in lkLa(v)where La denotes the living
link with respect to ϕ1. Thus H̃p−1(lkLa(v); F) 
= 0. But lkLa(v) is (n−1)-connected

over F, so we must have ϕ1(v) 
= 0, and therefore bD1
p (BBϕ1

L ) > 0 by Theorem 3.12.
��
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We highlight the following immediate corollary.

Corollary 5.8 Either all the FPn(F)-fibres of AL are virtually FPn(F)-fibred or none of
them are. In particular, either all of AL’s fibres virtually fibre or none of them do.

Proof This follows from Theorem 5.6 and the fact that beingD
FBBϕ

L
-acyclic in dimen-

sions ≤ n is equivalent to virtually fibring with kernel of type FPn(F) [15, Theorem
6.6]. ��

6 Amenable category andminimal volume entropy

In this section we will relateDFG-Betti numbers with amenable category and minimal
volume entropy.

Let X be a path-connected space with fundamental group G. A (not necessarily
path-connected) subset U of X is an amenable subspace if π1(U , x) → π(X , x) has
amenable image for all x ∈ U . The amenable category, denoted catAMN X , is the
minimal n ∈ N for which there exists an open cover of X by n+1 amenable subspaces.
If no such cover exists we set catAMN X = ∞. The definition of amenable category
has been extracted from [9] and [23]. Note that we normalise the invariant as in the
second paper. Also note that often in the literature the multiplicity of the cover is
considered instead, however, the two definitions turn out to be equivalent for CW
complexes [9, Remark 3.13]

Proposition 6.1 Let F be a skew field. Let G be residually finite of type F, and suppose
DFG exists. If catAMNG = k. Then, bDFG

p (G) = b(2)
p (G, (Gn); F) = 0 for p ≥ k−1

and every residual chain (Gn).

Proof Let X be a finitemodel for a K (G, 1). As explained in [17, Theorem3.2]wemay
adapt the proof of [31, Theorem 1.6] to apply to k-dimensional aspherical simplicial
complexes. In particular, for a residual chain (Gn)n∈N we obtain a sequence of covers
Xn → X , such that the number of p-cells in Xn grows sublinearly in [G : Gn]. Since

bDFG
p (Xn) = [G : Gn] · bDFG

p (G) ≤ |In(Xk)|

where Ip(Xk) is the set of p-cells of Xn . But now, as k tends to infinity, the left
hand side of the equation grows linearly, and the right hand side of the equation
grows sublinearly. This is only possible if bDFG

n (G) = 0. The statement concerning
b(2)
p (G, (Gn); F) is analogous. ��

Let X be afiniteCWcomplexwith a piecewiseRiemannianmetric g. Fix a basepoint
x0 in the universal cover X̃ and let g̃ be the pull-back metric. The volume entropy of
(X , g) is

ent(X , g) := lim
t→∞

1

t
Vol(Bx0(t), g̃).
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The minimal volume entropy of X is

ω(X) := inf
g
ent(X , g)Vol(X , g)1/ dim X

where g varies over all piecewise Riemannian metrics. The invariant was originally
defined for Riemannian manifolds in [16].

Suppose G is a group admitting a finite K (G, 1). The minimal volume entropy of
G is

ω(G) := inf(ω(X))

where X ranges over all finite models of a K (G, 1) such that dim X = gd(G).
There are few calculations of minimal volume entropy of groups which are not

fundamental groups of aspherical manifolds in literature. To date there is the work
of Babenko–Sabourau [2] on which computations for free-by-cyclic groups [6] and
RAAGs [17, 23] have been completed.

We say G has uniformly uniform exponential growth if each subgroup either has
uniform exponential growth bounded below by some constant ω0 > 1 or is virtu-
ally abelian. Note that this property is sometimes called uniform uniform exponential
growth or locally uniform exponential growth.

Corollary 6.2 Let F be a skew field. Let G be a residually finite group of type F, and
suppose DFG exists. If G has uniformly uniform exponential growth and is not DFG-
acyclic, then ω(G) > 0.

Proof This follows from [17, Paragraph after Theorem 3.3] swapping out their use of
[17, Theorem 3.3] for our Proposition 6.1. ��
Corollary 6.3 Let F be a skew field and let ϕ : AL → Z be an epimorphism. Suppose
BBϕ

L is of type F. If
⊕

v∈La H̃p−1(lk(v); Z) 
= 0, then ω(BBLϕ
L) > 0.

Proof This follows from Corollary 6.2 and the fact that a right-angled Artin group has
strongly uniform exponential growth by [3]. ��

We conjecture that the converse of the last corollary holds.

Conjecture 6.4 Let F be a skew field and let ϕ : AL → Z be an epimorphism. Suppose
BBϕ

L is of type F. If
⊕

v∈La H̃p−1(lk(v); Z) = 0, then ω(BBLϕ
L) = 0.
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