
IRREDUCIBLE LATTICES FIBRING OVER THE CIRCLE

Abstract. We investigate the Bieri–Neumann–Strebel–Renz (BNSR) invari-
ants of irreducible uniform lattices. In the case of a direct product of a tree
and a Euclidean space we show that vanishing of the BNSR invariants for all
finite-index subgroups of a given uniform lattice is equivalent to irreducibil-
ity. On the other hand we construct irreducible uniform lattices which admit
maps to the integers whose kernels’ finiteness properties are determined by the
finiteness properties of certain Bestvina–Brady groups.

1. Introduction

Let H be a locally compact group with Haar measure µ. A lattice Γ in H is a
discrete subgroup such that H{Γ has finite measure. We say Γ is uniform if H{Γ
is compact. Roughly speaking, a lattice Γ in a product G ˆ H is irreducible if the
projections of Γ to G and H are non-discrete and Γ does not virtually split as a
direct product of two infinite groups, otherwise we say Γ is reducible (we will give
the precise definition in Section 2.B). A celebrated application of Margulis’s normal
subgroup theorem [Mar78] connects, in the case of lattices in semsimple Lie groups,
irreducibility with vanishing of the first cohomology group.
Theorem 1.1 (Margulis). Let Γ be a lattice in semisimple Lie group with finite
centre and real rank at least 2. If H1pΓq ‰ 0, then Γ virtually splits as a direct
product of two infinite groups.

We will now broaden our scope to lattices in products of isometry groups of
irreducible minimal CATp0q spaces. Here a CATp0q space X is irreducible if X
does not split as a direct product of two subspaces and is minimal if there is no
IsompXq-invariant closed convex non-empty proper subspace X 1 Ă X. In this later
case we say that IsompXq acts minimally. The reader can consult [BH99] for a
comprehensive introduction to the theory of CATp0q spaces and [CM09b, CM09a,
CM19] for a structure theory of the spaces and their isometry groups.

In this more general setting the universal covering trick of Burger–Mozes shows
that a generalisation of Theorem 1.1 even to lattices in products of trees and sym-
metric spaces fails (see [BM00]). However, if the first cohomology group is non-zero
we are able to deploy secondary invariants introduced in [BNS87, BR88] called
BNSR or Σ-invariants ΣnpΓq and ΣnpΓ;Zq which measure how far a first coho-
mology class is from a fibration BΓ Ñ S1 of finite CW complexes. For an explicit
example of an irreducible lattice with H1pΓ;Rq ‰ 0, the reader is referred to Sec-
tion 2.D.

A first cohomology class φ and its inverse ´φ are in ΣnpΓq (resp. ΣnpΓ;Zq)
if and only if φ is Fn-fibred (resp. FPn-fibred). Here, φ is Fn-fibred (resp. FPn-
fibred) if kerpφq is type Fn, that is, there exists a model for Kpkerpφq, 1q with finite
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n-skeleton (resp. type FPn, that is, there exists a projective resolution P˚ Ñ Z over
Zrkerpφqs such that for each i ď n the module Pi is a finitely generated Zrkerpφqs-
module). If G is F1-fibred we may say G is algebraically fibred. Motivated by this
we ask the following question and answer it in several cases.

Question 1.2. Let Γ be a uniform lattice in a product X1 ˆX2 of proper minimal
unbounded CATp0q spaces. If ΣnpΓq or ΣnpΓ;Zq is non-empty for some n ě 1,
then is Γ necessarily reducible?

Note that Question 1.2 appears to be open even in the case of a product of
trees. There are plenty of irreducible CATp0q groups which virtually fibre - we will
explain how these either give positive answers to Question 1.2 or are not within
its remit. In the seminal work of Bestvina and Brady [BB97], the authors show
that there exist characters of right angled Artin groups (RAAGs) which FP2-fibre
but not F2-fibre. We mention here that every RAAG is either a direct product of
two infinite subgroups or is a lattice in a single irreducible CATp0q space. Gener-
alisations to obtain uncountably many (quasi-isometry classes of) groups of type
FP have been considered by Leary [Lea18] (Kropholler–Leary–Soroko [KLS20]) and
Brown–Leary [BL20]. For right angled Coxeter groups (RACGs) there is work of
Jankiewicz–Norin–Wise [JNW21] where the authors algebraically fibre certain fi-
nite index subgroups and work of Schesler–Zaremsky [SZ23] where the authors take
a probabilistic viewpoint. As in the case of RAAGs every RACG is either a direct
product of two infinite subgroups or is a lattice in a single irreducible CATp0q space.

A deep theorem of Agol states that hyperbolic 3-manifolds virtually fibre [Ago13].
We briefly mention that this result has been generalised to the setting of RFRS
groups by Kielak [Kie20] and improved further by Fisher [Fis24]. The relationship to
homology growth has been explored in [FHL24] and to profinite rigidity in [HK22].
In higher dimensions a number of hyperbolic n-manifolds have been algebraically
fibred in the work of Battista, Isenrich, Italiano, Martelli, Migliorini, and Py [BM22,
IMM24, IMP24]. We highlight the paper of Italiano–Martelli–Migliorini [IMM23]
where the authors fibre a hyperbolic 5-manifold over S1. Of course in every case
each group is a lattice in a single irreducible CATp0q space.

In the case of a uniform lattice in the product of a locally-finite tree and a Eu-
clidean space we give a positive answer to Question 1.2. For an explicit example
of an irreducible lattice in such a product with non-trivial first cohomology the
reader is referred to Section 2.D. The existence of irreducible lattices was demon-
strated by Leary and Minasyan - where they construct the first examples of CATp0q

but not biautomatic groups [LM21]; a rough classification of such lattices was ob-
tained by the author in [Hug21b]. Note that the following theorem is new even for
Leary–Minasyan groups.

Theorem A. Let T be a locally-finite leafless cocompact tree, not isometric to R,
and let T “ AutpT q. Let Γ be a uniform pIsompEnq ˆ T q-lattice, then Γ virtually
algebraically fibres if and only if Γ is reducible.

A group Γ virtually fibres (over the circle) if there exists a finite-index subgroup
Γ1 ď Γ and a character φ P H1pΓ1;Rq such that kerpφq is of type F, that is, there
exists a finite model for Kpkerpφq, 1q.

Corollary B. With notation as in Theorem A, suppose n “ 2. Then, Γ virtually
fibres if and only if Γ is reducible.
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The main obstruction to extending the previous corollary to higher dimensional
Euclidean spaces (i.e. n ě 3) is that we do not know if every pIsompEn´1q ˆ T q-
lattice is virtually torsion-free (see [Hug21b, Question 9.1]).

On the other hand we study lattices in products of symmetric spaces with the
universal cover of a Salvetti complex and find many examples of lattices which fibre
over the circle.

Theorem C. There exists an irreducible lattice fibring over the circle.

More precisely, we give a family of examples of irreducible uniform PSL2pRqˆSL

lattices which fibre over the circle. Here SL “ Autp rXLq where XL is the Salvetti
complex associated with the right-angled Artin group AL. Note the construction
is much more general. The reader is referred to Sections 4 and 5 for more details.

1.A. Conjectures and questions. One by product of the proof of Theorem A is
the following computation of the first cohomology for a large family of lattices.

Proposition 3.1. Let X be an irreducible locally finite CATp0q polyhedral complex,
let A “ AutpXq act cocompactly and minimally, and let Γ be a uniform pIsompEnqˆ

Aq-lattice. If Γ is irreducible, then H1pΓ;Zq – H1pX{Γ;Zq.

The author suspects that this phenomena is much more general and conjectures
the following.

Conjecture 1.3. Let X be an irreducible locally finite CATp0q polyhedral complex,
let A “ AutpXq act cocompactly and minimally, let Y be a symmetric space of non-
compact type with corresponding semi-simple Lie group G, and let Γ be a uniform
pGˆ IsompEnq ˆAq-lattice. If Γ is irreducible, then H1pΓ;Zq – H1pX{Γ;Zq.

Using Claim 3.2 one can discount the Euclidean factor. Moreover, one can easily
reduce to the case where no factor of G has Kazhdan’s property (T). This essentially
leaves the case where G is a product of SOpm, 1q and SUpn, 1q for various m and n.

Let L be a flag complex and suppose L is not connected. It is well known that
no character of the right-angled Artin group AL is algebraically fibred. We suspect
this behaviour holds for all irreducible uniform pIsompEnq ˆ SLq-lattices.

Question 1.4. Let L be a flag complex. Is it true that if L is not connected, then
no irreducible uniform pIsompEnq ˆ SLq-lattice is algebraically fibred?
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1.C. Bibliographical note. This is the second part of a longer paper contained
in the author’s PhD thesis which was split at the request of a referee (see [Hug21a,
Paper 4]). The first part of this longer paper can be found in [Hug21b]. Note
that some of the results here are not contained in the author’s PhD thesis. Also
note that a number of group presentations and results regarding residual finiteness
and autostackability will only exist in the thesis version. Finally, we remark the
existence of the companion papers [Hug22, Hug23, HV24, HV23] where similar
techniques are used to prove a number of other results.

Since writing this paper and fixing the error caught by one of the anonymous
referees, Jingyin Huang and Mahan Mj [HM23] (as well as Camille Horbez and
Jingyin Huang [HH23]) have considered related constructions in the context of
commensurators (and measure equivalence). Their construction fixes the major
oversight with the construction in an earlier version of this paper. It remains
unclear to the author when there exist irreducible uniform lattices in products of
Salvetti complexes and Euclidean spaces.

2. Preliminaries

2.A. Lattices. Let H be a locally compact topological group with right invariant
Haar measure µ. A discrete subgroup Γ ď H is a lattice if the covolume µpH{Γq is
finite. A lattice is uniform if H{Γ is compact and non-uniform otherwise. Let S
be a right H-set such that for all s P S, the stabilisers Hs are compact and open.
Then, if Γ ď H is discrete, the stabilisers of Γ acting on S are finite.

Let X be a locally finite, connected, simply connected simplicial complex. The
group H “ AutpXq of simplicial automorphisms of X naturally has the structure
of a locally compact topological group, where the topology is given by uniform
convergence on compacta.

Note that T , the automorphism group of a locally-finite tree T , admits lattices
if and only if the group T is unimodular (that is, the left and right Haar measures
coincide). In this case we say T is unimodular. We say a tree T is leafless if it has
no vertices of valence one.

2.B. Irreducibility. Two notions of irreducibility will feature in this paper; for
uniform CATp0q lattices they are equivalent due to a theorem of Caprace–Monod.
See [Hug21b, Section 2.3] for an extended discussion concerning these definitions.

Let X “ En ˆX1 ˆ ¨ ¨ ¨ ˆXm be a product of irreducible proper CATp0q spaces
with each Xi not quasi-isometric to E1 and let H “ H0 ˆ H1 ˆ ¨ ¨ ¨ ˆ Hm :“
IsompEnq ˆ IsompX1q ˆ ¨ ¨ ¨ ˆ IsompXmq, such that for each i ě 1 the group Hi is
non-discrete, cocompact, and acting minimally on Xi. Let Γ be a uniform lattice
in H. Note that by [CM09b, Addendum 1.8] and [CM09a, Corollary 3.12], since Γ
is finitely generated, the product decomposition of X above is unique.

We have projections πi : Γ Ñ Hi for each factor Hi. The Euclidean factor gives
us two further projections, firstly, πIsompEnq : Γ Ñ IsompEnq – Rn ¸ Opnq and
secondly, πOpnq which is defined as the composition Γ Ñ IsompEnq Ñ Opnq.

Suppose n “ 0, then we say Γ is weakly irreducible if the projection of Γ to
each proper subproduct HI :“

ś

iPI Hi for each proper subset I Ă t1, . . . ,mu is
non-discrete.

Suppose n “ 1, then Γ always virtually splits a direct product Γ1 ˆZ by [CM19].
In this case we always define Γ to be reducible.
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Suppose n ě 2. Let ℓ be the maximal integer such that En “
śℓ

j“1 Ekj with
each kj ě 1 such that the product decomposition is preserved by some finite index
subgroup Λ of Γ. Observe that Λ is contained in

śℓ
j“1 IsompEkj qˆ

śm
i“1Hi. Denote

each IsompEkj q by Ej and the corresponding orthogonal group by Oj . Then for Γ
to be weakly irreducible we require that each kj ě 2, and that the projection πI,J
of Λ to each proper subproduct, GI,J :“

ś

jPJ Ej ˆ
ś

iPI Hi for I Ď t1, . . . ,mu and
J Ď t1, . . . , ℓu, of H is non-discrete (here at least one of I or J is a proper subset).

We say Γ is algebraically irreducible if Γ has no finite index subgroup splitting
as the direct product of two infinite groups.

For uniform lattices the two definitions are equivalent by [CM09a, Theorem 4.2];
so we will simply refer to a lattice as irreducible or reducible.

2.C. Graphs and complexes of lattices. Let Γ be a group and K,L ď Γ be
subgroups. If L X K has finite index in L and K then we say L and K are com-
mensurable. The commensurator of L in Γ is the subgroup

CommΓpLq :“ tg P Γ | Lg X L has finite index in L and Lgu.

If CommΓpLq “ Γ then we say L is commensurated.
Rather than recall the definitions and machinery from [Hug21b] we will use it as

a black box. The key result for us is the following well known lemma.

Lemma 2.1. Let X “ X1 ˆX2 be a proper cocompact minimal CATp0q space and
H “ IsompX1q ˆ IsompX2q. Suppose X1 is a CATp0q polyhedral complex. Then,
for any uniform H-lattice Γ, the cell stabilisers of X1 in Γ are commensurated,
commensurable, and isomorphic to finite-by-tIsompX2q-latticesu.

In our situation we will take X1 to be a locally finite tree, or the universal cover
of a Salvetti complex for a right-angled Artin group, and X2 to be some proper
irreducible cocompact minimal CATp0q space. The quotient space X1{Γ is endowed
with a natural graph or complex of groups structure. In the language of [Hug21b]
we call this data a graph or complex of IsompEnq-lattices. For example, every
uniform H-lattice (where H “ AutpX1q ˆ IsompEnq) splits as a graph or complex
of commensurable finite-by-tn-crystallographicu groups.

2.D. Leary–Minasyan groups. The following groups were introduced in [LM21]
by Leary and Minasyan as a class of groups containing the first examples of CATp0q

but not biautomatic groups; they were classified up to isomorphism by Valiunas
[Val22]. In fact, they are not subgroups of any biautomatic group [Val23]. Let
n ě 0, let A P GLnpQq, and let L ď Zn XA´1pZnq be a finite index subgroup. The
group LMpA,Lq is defined by the presentation

xx1, . . . , xn, t | rxi, xjs “ 1 for 1 ď i ă j ď n, txvt´1 “ xAv for v P Ly,

where we write xw :“ xw1
1 ¨ ¨ ¨xwn

n for w “ pw1, . . . , wnq P Zn. If L is the largest
subgroup of Zn such that AL is also a subgroup of Zn, then we denote LMpA,Lq by
LMpAq. We refer to the groups LMpA,Lq and LMpAq as Leary–Minasyan groups.
The groups clearly split as HNN extensions Zn˚L. The groups are CATp0q if and
only if A is conjugate to an orthogonal matrix in GLnpRq [LM21, Theorem 7.2].

As a concrete example, take

A “

„

3{5 ´4{5
4{5 3{5

ȷ

and L “

B„

2
´1

ȷ

,

„

1
2

ȷF

so AL “

B„

2
1

ȷ

,

„

´1
2

ȷF

.
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Note that L is index 5 in Z2 and so must be a maximal subgroup. It follows that

(1) LMpA,Lq “ LMpAq “ xa, b, t | ra, bs, ta2b´1t´1 “ a2b, tab2t´1 “ a´1b2y.

We say a matrix A P GLnpRq is irreducible if no Ak for k ě 1 leaves invariant a
proper nontrivial subspace of Rn.

Theorem 2.2. [LM21, Theorem 7.5] Suppose that A has infinite order and is con-
jugate in GLnpRq to an orthogonal matrix. Then, LMpA,Lq is a uniform lattice in
IsompEnq ˆAutpT q whose projections to the factors are not discrete. In particular,
if A is an irreducible matrix, then LMpA,Lq is an irreducible lattice.

We will detail the action on E2 in the case of the Leary–Minasyan group (1).
The group LMpAq has a representation π to IsompEnq given by πpaq “ r1, 0sT,
πpbq “ r0, 1sT, and πptq “ A. Here T denotes transpose. The matrix A is a rotation
by the irrational number cos´1p3{5q and so has infinite order. In particular, LMpAq

is irreducible.

3. Fibring lattices in a product of a tree and a Euclidean space

In this section we characterise irreducible pIsompEnq ˆT q-lattices as those which
do not virtually F1-fibre (Theorem A). Note that this result is new even for Leary-
Minasyan groups. Before we prove the theorem, we will collect some propositions.
Note that we do not need the full power of Proposition 3.1 but only Claim 3.2.
Thus, the reader who is not interested in cohomology computations may skip the
spectral sequence argument.

Proposition 3.1. Let X be an irreducible locally finite CATp0q polyhedral complex,
let A “ AutpXq act cocompactly and minimally, and let Γ be a uniform pIsompEnqˆ

Aq-lattice. If Γ is algebraically irreducible, then H1pΓ;Zq – H1pX{Γ;Zq.

Proof of Proposition 3.1. Let φ P H1pΓ;Zq “ hompΓ,Zq, P :“ πOpnqpΓq, and N :“
kerpπOpnqq Ÿ Γ. For the remainder of the proof an omission of coefficients in a
(co)homology functor should be taken to mean coefficients with the trivial module
Z.

Claim 3.2. Let L be a cell stabiliser in the action of Γ on X. Then, φ|L “ 0.

Proof of claim: Suppose for contradiction φ is non-zero on some cell stabiliser L
of the Γ action on X. Then, after passing to a finite index subgroup of L, the
restriction of φ is non-zero on some subgroup isomorphic to Zn. In particular, φ
defines a codimension 1 subgroup K of Zn contained in kerpφq. Let F :“ R bK Ă

X ˆ En be the pn ´ 1q-dimensional flat given by the flat torus theorem. Now, for
any g P Γ the flats F and g ¨F are parallel. Indeed, g ¨F is setwise stabilised by Kg,
and Kg XK has finite index in both K and Kg. Thus, Γ fixes the one-dimensional
subspace FK. But now, it follows that Γ is a lattice in IsompE1q ˆ IsompEn´1q ˆA.
We have that the boundary BpE1 ˆEn´1 ˆXq is equal to the join S0 ∗Sn´2 ∗ BX.
Now, Γ has an index at most 2 subgroup which fixes the S0 factor. It follows that
Γ must be reducible by [CM19, Theorem 2(v)] (see also the paragraph immediately
following Theorem 2 in ibid.), contradicting our hypothesis. Thus, φ|L “ 0. ■

Let Σppq be a representative set of orbits of p-cells for the action of Γ on X.
The isomorphism will follow from a computation using the Γ-equivariant spectral
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sequence applied to the filtration of X by skeleta (see [Bro94, Chapter VII.7]). This
spectral sequence takes the form

Ep,q
1 :“

à

σPΣppq

HqpΓσq ñ Hp`qpΓq.

Since we are only interested in computing H1pΓq, the relevant part of the E1-page
is given by:

p

1
À

σPΣp0q H1pΓσq
À

σPΣp1q H1pΓσq

0
À

σPΣp0q H0pΓσq
À

σPΣp1q H0pΓσq
À

σPΣp2q H0pΓσq

0 1 2 q

d0,01 d1,01

d0,11

Using the description of d1 given in [Bro94, Chapter VII.8] it is easy to see that
Ep,0

2 – HppX{Γq. Now, the group E0,1
8 is the image of the sum of restrictions

à

σPΣp0q

resΓΓσ
: H1pΓq Ñ

à

σPΣp0q

H1pΓσq

and so must be 0 by Claim 3.2. Also note for dimensional reasons E0,0
2 “ E0,0

8 ,
E1,0

2 “ E1,0
8 , E0,1

3 “ E0,1
8 and E2,0

3 “ E2,0
8 . Thus, the relevant part of the E8-page

is given by:

p

1 0 E1,1
8

0 Z H1pX{Γq E2,0
8

0 1 2 q

and so the desired isomorphism H1pΓq – H1pX{Γq follows. □

We say a graph of groups G is reduced, if given an edge e with distinct end points
v1, v2, the inclusions Γe ↣ Γvi are proper. We say that a graph of groups G is not
an ascending HNN-extension if it is not an HNN-extension (it has more than one
edge or more than one vertex), or it is an HNN-extension but both Γe and Γē are
proper subgroups of Γv.

We will need the following proposition of Cashen–Levitt [CL16, Proposition 2.5].

Proposition 3.3 (Cashen–Levitt). Let Γ be the fundamental group of a finite
reduced graph of groups with Γ finitely generated. Assume that Γ is not an ascending
HNN-extension. If φ P Σ1pΓq, then φ is non-trivial on every edge group.

We are now ready to prove Theorem A from the introduction.

Theorem A. Let T be a locally-finite leafless cocompact tree, not isometric to R,
and let T “ AutpT q. Let Γ be a uniform pIsompEnq ˆ T q-lattice, then Γ virtually
algebraically fibres if and only if Γ is reducible.
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Proof. If Γ is reducible, then Γ virtually splits as Z ˆ Γ1, where Γ1 is a CATp0q

group. Hence, Γ1 is type F8. In particular, Γ virtually algebraically fibres.
We will now prove every irreducible uniform pIsompEnq ˆ T q-lattice does not

algebraically fibre, and this will prove the theorem since a finite index subgroup
of an irreducible lattice is an irreducible lattice. Now, suppose Γ is an irreducible
uniform pIsompEnq ˆ T q-lattice. By Lemma 2.1, the group Γ splits as a graph of
IsompEnq-lattices, and so is the fundamental group of a graph of groups with vertex
and edge stabilisers finite-by-tIsompEnq-latticesu.

Claim 3.4. Γ splits as a reduced graph of groups and is not an ascending HNN
extension.

Proof of Claim: We may assume the graph of groups is reduced by contracting any
edges with a trivial amalgam L ˚L K. Note that these contractions do not change
the vertex and edge stabilisers, but may change the Bass-Serre tree (the tree will
still not be quasi-isometric to R since there are necessarily other vertices of degree
at least 3). Since we only contract finitely many orbits of edges in a finite valence
tree, the resulting tree remains locally finite. To see the lattice remains irreducible
note: First, that the projection to IsompEnq remains unchanged. Second, that the
vertex stabilisers of Γ are non-discrete in both trees.

Now for Γ to be an ascending HNN-extension the graph T {Γ must consist of a
single vertex and edge. Let t be the stable letter of Γ, then t acts as an isometry on
T ˆ En and so for any vertex stabiliser Γv of Γ acting on T , the actions of Γv and
Γt
v on En have the same covolume. Now, covolume is multiplicative when passing

to covers. In particular, under the projection πIsompEnq, the two embeddings of the
projection of the edge group Γe into the projection of the vertex group Γv must have
the same index. Now, if πIsompEnqptq (virtually) centralised πIsompEnqpΓvq, then the
projection πIsompEnqpΓq would be virtually abelian. But, in this case Γ is reducible
by [CM19, Theorem 2(iii)]. Thus, the two embeddings of πIsompEnqpΓeq into the
vertex group πIsompEnqpΓvq must both have index at least 2, yielding the claim. ■

Now, by H1pΓ;Zq b R – H1pΓ;Rq and Claim 3.2, for every character ϕ P

H1pΓ;Rq we see that ϕ restricted to a vertex or edge group is zero. Since Γ is
the fundamental group of a reduced graph of groups, is not an ascending HNN
extension, and ϕ vanishes on every edge group, we may apply Proposition 3.3 to
deduce that ϕ R Σ1pΓq. Hence, Γ does not (virtually) F1-fibre. □

Lemma 3.5. A reducible uniform lattice in IsompE2q ˆ T is virtually Fm ˆ Z2 for
some m ě 2.

Proof. Since Γ is reducible, by definition (at least) one of three cases holds for Γ.
Case 1: The projection to IsompE2q is discrete. Hence, virtually abelian. By
[CM19, Theorem 2(iii)], the group Γ splits as Z2 ˆ Γ1 where Γ1 is a uniform T -
lattice. Whence, the claim.
Case 2: The projection to T is discrete. In this case Γ. IsompE2q is closed in
IsompE2q ˆ T and so ΓE “ Γ X IsompE2q is a lattice. But, now πIsompE2qpΓq nor-
malises ΓE and so must be a virtually abelian subgroup of IsompE2q. We now
conclude as in Case 1.
Case 3: The group Γ virtually preserves a product decomposition E1 ˆ E1. In this
case Γ is virtually a subgroup of IsompE1q ˆ IsompE1q ˆ T and so πIsompE2qpΓq is
virtually abelian. We now conclude as in Case 1. □
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Corollary B. With notation as in Theorem A suppose n “ 2. Then Γ virtually
fibres if and only if Γ is reducible.

Proof. This follows from Theorem A and Lemma 3.5. □

4. Lattices in symmetric spaces and Salvetti complexes

4.A. Right-angled Artin groups. Let L be a flag complex. We begin with a
wedge of circles (made of a single vertex and edge), one for each edge of L, attached
along a common vertex x. For each edge tv, wu in L we attach a 2-torus along the
word vwv´1w´1. Continuing inductively, for each n ě 2 cell tv1, . . . , vnu in L we
attach an n-torus such that the faces correspond to already attached pn ´ 1q-tori.
We denote the resulting space by XL and call it the Salvetti complex of L.

The fundamental group AL :“ π1pXLq is the right-angled Artin group (RAAG)
on L. The group has a generating set given by the vertices of L, the standard
generators, and the relations that two generators v and w commute if and only
if they are joined by an edge in L. The Salvetti complex XL has universal cover
rXL which is the quintessential example of a CATp0q cube complex. We endow the
edges of rXL with a labelling and orientation given by the labels of vertices of L
and call this the standard labelling and orientation. We will denote the isometry
group of rXL by SL and endow it with the topology given by uniform convergence
on compacta. Note that we do not require SL to preserve the standard labelling or
orientation. We say a RAAG is irreducible if it does not split as the direct product
of two infinite subgroups.

4.B. The plan. Let L be a flag complex on m ě 3 vertices such that L is not a
non-trivial join. Let Tn denote the n-regular tree and let Tn denote its isometry
group.

We start with an irreducible uniform lattice Γ inHˆT3 whereH is a non-discrete
isometry group of an irreducible CATp0q space admitting a uniform lattice. As an
example one could take an irreducible uniform lattice in PSL2pRqˆPSL2pQ2q. Here
PSL2pQ2q ă T3 because PSL2pQ2q acts faithfully by isometries on its Bruhat–Tits
tree, which in this case is the 3-regular tree. Such a lattice may be constructed as
the Zr 12 s points of some SOp2, 1;Qq, where Q is a quadratic form.

Our scheme is now as follows: First, using Γ, we will obtain an irreducible
uniform lattice rΓ ď H ˆ T4 which acts on T4 in way that preserves the standard
edge labelling when thought of as the Cayley graph of F2. Note that this is the
standard labelling of T4. Second, we will obtain an irreducible uniform lattice
ΓL ď H ˆ SL where SL “ Autp rXLq and rXL is the universal cover of the Salvetti
complex XL that preserves the standard labelling away from edges ‘coming from’
T4.

4.C. From a 3-valent to a 4-valent tree. The following proposition achieves
the first step of our scheme. It is essentially due to Jingyin Huang (see [Hua18,
Lemma 9.2]) although we have taken the liberty to express it in a more general
setting for our purposes.

Proposition 4.1. Let H be a non-discrete isometry group of a proper irreducible
cocompact minimal CATp0q space. Let Γ ď HˆT3 be an irreducible uniform lattice.
Then, there exists an irreducible uniform lattice rΓ in H ˆ T4 such that
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(1) Γ preserves the standard labelling of T4;
(2) there is a short exact sequence 1 Ñ F8 Ñ rΓ Ñ Γ Ñ 1.

Rather than reproduce the proof, we briefly sketch the construction. Given the
3-regular tree T3 we replace every edge with a pair of edges labelled a and orient
them in a compatible way. We replace every vertex with an oriented 3-cycle with
each edge labelled b (see Figure 1). The resulting graph G is 4-valent and any
group action on T3 gives an action on G that is label preserving and preserves the
orientation of a edges. The universal cover of G is the 4-regular tree T4 so we may
lift Γ to a new group rΓ which is an extension of Γ by π1G “ F8. Our new group rΓ

clearly preserves the labelling of T4 and the orientation of a-edges. To see that rΓ is
an irreducible lattice in H ˆ T4 note that the projection rΓ Ñ H is the composition
rΓ ↠ Γ Ñ H and that the set of elements acting non-trivially in a vertex stabiliser
of the action on T3 and T4 is infinite (so both projections are non-discrete).

ÝÑ

a

a

a

a

b

b

b

a

a

b

b

b

a

a

a

a

Figure 1. An illustration of Jingyin Huang’s trick to turn a 3-regular
tree into a 4-regular graph.

Lemma 4.2. If Γ is (virtually) torsion-free, then so is rΓ.

Proof. This follows from the short exact sequence in Proposition 4.1(2). □

4.D. From a 4-valent tree to a Salvetti complex. The following proposition
is step two of our scheme. It is a special case of a more general construction
(see [Hug21b, Theorem 7.4]). Note that this result was known to Jingyin Huang in
the case that H is the automorphism group of a 3-regular tree [Hua18, Theorem 9.5]
and a related construction has appeard in the work of Camille Horbez and Jingyin
Huang [HH22, Proposition 4.6].

Proposition 4.3. Let L be a flag complex on m ě 3 vertices such that there are 2
vertices labelled a and b not joined by an edge and such that L is not a non-trivial
join. Let H be a non-discrete isometry group of a proper irreducible cocompact
minimal CATp0q space admitting a uniform lattice. Let Γ ď HˆT4 be an irreducible
uniform lattice preserving the standard labelling ta, bu of T4. Then, there exists an
irreducible uniform lattice ΓL in H ˆ SL which preserves the standard labelling for
all edges of rXL and the standard orientation on rXL except for edges labelled a or
b.

We sketch the construction of the proposition for the benefit of the reader. Let
V “ ta, bu Ă V L be a proper subset. Consider π : AL ↠ AV “ F2 given by
a ÞÑ a, b ÞÑ b and v ÞÑ 1 for any v P V LzV . This has kernel kerpπq and covering
space rY Ñ XL. We may identify the vertex set of T4 with the vertex set of Y
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via the embedding of T4 ↣ Y given by ‘unwrapping’ the S1
Ž

S1 “ XV Ă XL

corresponding to the vertices a and b. The 1-skeleton Y p1q of Y is obtained from
T4 by attaching to each vertex of T4 a circle for each v P V L not equal to a or b.

Now, Γ acts by label-preserving isometries on T4. It follows Γ acts by label-
preserving isometries on Y and preserves the standard orientation of any edge with
label not equal to a or b (see [HH22, Proposition 4.6]). The group ΓL is then defined
to be the lifts of all elements of Γ to SL. That is, we have a short exact sequence

(2) 1 kerpπq ΓL Γ 1.

The hypothesis on L ensure that rXL is an irreducible CATp0q space. Thus, to
see ΓL is irreducible it is enough to notice that the projection to H is exactly the
composition ΓL ↠ Γ Ñ H and that the vertex stabilisers of Γ acting on T4 are also
vertex stabilisers for ΓL acting on rXL. In particular, since they were non-discrete
when projected to T4, they are non-discrete when projected to SL.

Remark 4.4. If the set-wise stabiliser of an edge e of T4 in Γ equals its point-wise
stabiliser, then the same holds true for a lift of e in rXL and its stabiliser in ΓL.

Lemma 4.5. If Γ is (virtually) torsion-free, then so is ΓL.

Proof. This follows immediately from the short exact sequence (2). □

5. Fibrations over the circle

5.A. Filtrations. Let Γ be a group and X be a Γ-CW complex. We say X is
n-good if

(1) X is n-acyclic, i.e. rHkpXq “ 0 for k ď n;
(2) for 0 ď p ď n, the stabiliser Γσ of any p-cell σ is of type FPn´p.

A filtration of X is a family tXαuαPI of Γ-invariant subcomplexes such that I is a
directed set, Xα Ď Xβ when α ď β, and X “

Ť

αXα. The filtration is of finite
n-type if the Xα{Γ have finite n-skeleton. We say that tXαu is rHk-essentially trivial
(resp. πk-essentially trivial) if for each α there is β ě α such that rHkpℓα,βq “ 0
(resp. πkpℓα,βq “ 0), where ℓα,β : Xα ↣ Xβ is the inclusion.

We will make use of the two criteria due to Brown.

Theorem 5.1. [Bro87] Let X be an n-good Γ-complex with a filtration tXαu of
finite n-type. Then Γ is of type FPn if and only if the directed system tXαu is
rHk-essentially trivial for all k ă n. □

Theorem 5.2. [Bro87] Let X be a simply connected Γ-complex such that the vertex
stabilisers are finitely presented and the edge stabilisers are finitely generated. Let
tXαu be a filtration of X of finite 2-type and let v P

Ş

Xα be a basepoint. If
Γ is finitely generated, then Γ is finitely presented if and only if tpXα, vqu is π1-
essentially trivial. □

5.B. Computations. Let L be a flag complex on m ě 3 vertices such that at least
2 vertices a, b are not joined by an edge and such that L is not a non-trivial join.

Let H be a non-discrete isometry group of a proper irreducible cocompact min-
imal CATp0q space admitting a uniform lattice. Let Γ ď H ˆ T3 be an irreducible
uniform lattice. Let ΓL denote the lattice in H ˆ SL obtained by sequentially ap-
plying Proposition 4.1 and Proposition 4.3. Note that ΓL preserves the standard
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labelling of rXL and by Remark 4.4 preserves the standard orientation of edges of
rXL except those labelled by a or b.

Recall AL is the RAAG on L. The standard generators of AL determine, on
rXL, an edge labelling Ep rXLq Ñ V :“ tv1, . . . , vm´2, a, bu. Here, a and b are the
vertices in the construction of ΓL. Each character ϕ : AL Ñ R determines a height
function on rXL which can be described by identifying the Cayley graph of AL with
the 1-skeleton of rXL and assigning real numbers to the edge labels V, thought of
as signed lengths (with respect to the standard orientation of rXL).

Claim 5.3. If ϕ vanishes on a and b, then ϕ determines an element ψ P hompΓL,Rq.
Moreover, if ϕ P hompAL;Zq, then ψ P hompΓL;Zq.

Proof of Claim. The action of ΓL on rXL preserves the labelling of edges and ori-
entation of edges that are not labelled by a or b, so it preserves the signed lengths
of edge paths in rXL. Hence, it preserves the level in rXL for the height function
induced by ϕ, and it preserves the signed distances between level sets. The action
of ΓL on the collection of level sets induces ψ P hompΓL;Rq. The moreover is
clear. ■

Suppose now that ϕ (and hence ψ) is an integral character. The characters
induce a height function h : rXL Ñ R with vertices taking integer values. The
explicit details of this are not needed so we defer the interested reader to [BG99],
specifically Remark 10. The important part for us is that both groups AL and ΓL

act on rXL cocompactly and either freely in the first case or with CATp0q stabilisers
in the second case (see Lemma 2.1). Both kerpϕq and kerpψq act cocompactly on
level sets of the induced height function h. Here a level set is the preimage of a
compact connected subset of R.

Now, the stabilisers of cells in the level set are exactly the stabilisers of ΓL that
fix a cell in the level set. Indeed, these subgroups of ΓL are elliptic on rXL, and
so by definition of ψ are contained in kerpψq. It follows that the stabilisers of the
action on the level sets are type F8 (in fact they are type F if ΓL is torsion-free).
Thus, the hypotheses of Brown’s criteria are satisfied for both kerpφq ă AL and
kerpψq ă ΓL when acting on level sets of the height function h. We have almost
proved the following theorem:

Theorem 5.4. Let L be a flag complex with vertices tv1, . . . , vn´2, a, bu and suppose
a and b do not span an edge. Let ϕ P H1pAL;Zq vanish on a and b and let ψ be the
corresponding character in H1pΓL;Zq. Then, kerpϕq is type FPn (resp. type Fn) if
and only if kerpψq is type FPn (resp. type Fn). Moreover, if ΓL is torsion-free then
kerpϕq is type FP (resp. F) if and only if kerpψq is type FP (resp. type F).

Proof. The case of FPn follows from Theorem 5.1, the case of Fn follows from
Theorem 5.2 and the classical fact that a finitely presented group being type FPn is
in fact type Fn [Bro94, VIII.7 Ex. 1]. We now prove the moreover. If ΓL is torsion-
free, then cdpΓLq is finite, hence so is cdpkerpψqq. Suppose kerpϕq is type FP. Then,
kerpψq is type FPn for all n, that is type FP8. Thus, by [Bro94, VIII(6.1)], kerpψq

is type FP. Finally, if kerpϕq is type F, then kerpψq is type FP, type Fn for all n, and
admits a finitely dominated Eilenberg–Maclane space [Bro94, VIII(6.1)]. It remains
to show that Wall’s finiteness obstruction in rK0pZ kerψq vanishes [Wal65, Wal66].
Now, since CATp0q groups satisfy the Farrell–Jones Conjecture (in dimension 0)
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[BL12] and the conjecture is closed under taking subgroups (loc. cit.), we see that
kerpψq satisfies the Farrell–Jones Conjecture (in dimension 0) . In particular, as
kerpψq is torsion-free, we have rK0pZ kerψq “ 0. Hence, kerpψq admits a finite
classifying space as required. In each case the converse follows by reversing the
argument. □

The previous theorem is easy to apply because the BNSR invariants of RAAGs
are known [BB97, MMV98, BG99]. We reproduce the result here for the convenience
of the reader.

Let L be a flag complex with RAAG AL. Each vertex of L corresponds to a
standard generator of AL. Given a character ϕ : AL Ñ R, let L: denote the full
subcomplex of L spanned by vertices v such that ϕpvq “ 0, and let L˚ denote the
full subcomplex of L spanned by vertices v such that ϕpvq ‰ 0.

Theorem 5.5 (Bestvina–Brady, Meier–Meinert–VanWyk, Bux–Gonzalez). Let L
be a flag complex and let ϕ P H1pAL;Rq. The following are equivalent:

(1) kerϕ is type FPn`1pZq, resp. kerϕ is type Fn`1;
(2) For every (possibly empty) dead simplex σ P L: the living link LkL˚ pσq :“

L˚ X LkLpσq is pn ´ dimpσq ´ 1q-acyclic, resp. L˚ is, additionally, n-
connected.

Applying this we obtain the result promised by the title.

Theorem C. There exists an irreducible lattice fibring over the circle.

Proof. Pick a torsion-free irreducible uniform lattice Γ in PSL2pRqˆPSL2pQ2q and
let L be the following flag complex (the triangles are filled in with 2-cells):

a

b

Let ϕ : AL ↠ Z be defined by mapping each standard generator to 1 except for a
and b which map to 0. Applying Proposition 4.1, Proposition 4.3, and Theorem 5.4
sequentially we obtain an irreducible uniform lattice ΓL ă PSL2pRq ˆ SL and a
character ψ : ΓL Ñ Z. It is easy to see that L˚ is the full subcomplex of L spanned
by unlabelled vertices and is clearly contractible. Moreover, both L˚ X LkLpaq

and L˚ X LkLpbq are both equal to an edge, hence, they are contractible as well.
By Theorem 5.5, kerpϕq is of type F (one needs to run the same argument as in
Theorem 5.4). Thus, as ΓL is torsion-free (Lemma 4.2 and Lemma 4.5), we have
by Theorem 5.4 that kerpψq is also of type F. □
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