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Abstract. We prove the fibred Farrell–Jones Conjecture (FJC) in A-,
K-, and L-theory for a large class of suspensions of relatively hyperbolic
groups, as well as for all suspensions of one-ended hyperbolic groups.
We deduce two applications:

(1) FJC for the automorphism group of a one-ended group hyperbolic
relative to virtually polycyclic subgroups;

(2) FJC is closed under extensions of FJC groups with kernel in a
large class of relatively hyperbolic groups.
Along the way we prove a number of results about JSJ decompositions
of relatively hyperbolic groups which may be of independent interest.

1. Introduction

Let G be a group. The Farrell–Jones Conjecture (FJC) is one of the most
prominent open conjectures in algebraic and differential topology. In its
simplest form the K-theoretic conjecture predicts that a certain assembly
map

HG
n pprq : HG

n pEG;KRq Ñ KnpRGq

is an isomorphism. Here EG is the classifying space for the family of virtually
cyclic subgroups, KR is the algebraic K-theory spectrum for the ring R,
and KnpRGq is the algebraic K-theory of the group ring RG. There are
variants of the conjecture for Waldhausen’s A-theory and for L-theory. The
conjecture for L-theory, as well as a detailed account of the Farrell–Jones
Conjecture, and the objects involved can be found in W. Lück’s book project
[Lüc]. For recent progress on A-theory the reader should consult [ELP`18].

Computing the algebraic K-theory of a group ring RG is a very diffi-
cult problem. In principle, knowing that FJC holds for G gives a method
of computing KnpRGq using equivariant algebraic topology. It also has a
number of other applications, for example, to the Borel Conjecture [BL12]
and to computing the Whitehead group WhpGq. Knowledge of WhpGq is
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a fundamental step in classifications of higher dimensional manifolds with
fundamental group G.

From this point onward, by the Farrell–Jones Conjecture for G, we mean
the most general setting, that is, the fibred Farrell–Jones Conjecture with re-
spect to the family of virtually cyclic subgroups VC. See for example [ELP`18]
and [Lüc] for a discussion of these terms. We will denote the classes of group
satisfying the FJC for X-theory by FJCX where X is A-, K-, or L-theory.

The class FJCK of groups known to satisfy FJC for algebraic K-theory
is large: containing hyperbolic groups [BLR08a], many relatively hyperbolic
groups [Bar17], CATp0q groups [Weg12] (see also [BL12] and [KR17]), soluble
groups [Weg15], GLnpZq [BLRR14] and more generally lattices in connected
Lie groups [BFL14] and S-arithmetic groups [Rüp16], as well as mapping
class groups [BB19], normally poly-free groups [BKW21a], and suspensions
of virtually torsion free hyperbolic groups [BFW23]. The class enjoys many
closure properties: it passes to arbitrary subgroups, finite index overgroups,
and directed colimits. For more information the reader is referred to the
surveys [BLR08b, LR05, Lüc10, Bar16].

One property that is not known is whether FJCX is closed under exten-
sions 1 Ñ N Ñ Γ Ñ Q Ñ 1. One direction of interest is to put conditions
on N so that Γ is in FJCX whenever Q is. By [BFL14, Theorem 2.7] and
[ELP`18, Theorem 1.1(ii)] this reduces to understanding cyclic extensions
of G; which is to say the suspensions NΦ “ N ¸Φ Z, where Φ is some auto-
morphism of N defining this suspension.

Intuitively, a group G is hyperbolic relative to P if its geometry is hyper-
bolic “away from the subgroups P P P.” One (of many: see [Hru10] for the
definitions as well as proofs of their equivalence) way to formalise this uses
the notion of coning off a Cayley graph: take a vertex for every coset gP
of each element of P , and add an edge from each element of gP to the new
vertex. The group G is hyperbolic relative to P if the resulting graph is
δ-hyperbolic in the sense of Gromov, and fine: every edge is contained in
finitely many cycles of a given finite length. An automorphism of G lies in the
subgroup AutpG,Pq if it preserves the conjugacy classes of every subgroup
P P P. For more information on AutpG,Pq see [MO12] and [GL15].

Recently, Bestvina, Fujiwara and Wigglesworth [BFW23] proved the sus-
pension of a virtually torsion free hyperbolic group satisfies the Farrell–Jones
conjecture. We extend this result to a large class of relatively hyperbolic
groups.

Theorem A. Let pG,Pq be a virtually torsion-free or one-ended relatively
hyperbolic group with P finite and let Φ P AutpG,Pq. If for every rP s P P
we have PΦ P FJCX, then GΦ P FJCX.

These hypotheses include, for instance, all suspensions of toral relatively
hyperbolic groups and more generally one-ended or virtually torsion-free
groups that are hyperbolic relative to virtually polycyclic or soluble sub-
groups. Note that this removes the assumption of virtual torsion-freeness
in [BFW23] for one-ended hyperbolic groups. This is pertinent since it is a
well known question of Gromov whether every hyperbolic group is residually
finite (and hence virtually torsion-free).
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With infinitely ended groups more care is needed, we discuss this further
in Section 1.B.

1.A. Applications. Our first application is a result on extensions with rel-
atively hyperbolic kernel. A group is non-relatively hyperbolic or NRH if it
is not hyperbolic relative to a collection of proper subgroups.

Corollary B. Let pN,Pq be a virtually torsion-free or one-ended relatively
hyperbolic group such that P consists of finitely many conjugacy classes of
groups which are NRH and whose suspensions P ¸Ψ Z are in FJCX for all
automorphisms Ψ of P . Let 1 Ñ N Ñ Γ Ñ Q Ñ 1 be a short exact sequence.
If Q is in FJCX, then Γ is in FJCX.

The assumption that peripheral subgroups are NRH is needed for Corol-
lary B, since it requires Theorem A to hold for arbitrary automorphisms.
The key point being that AutpN ;Pq has finite index in AutpNq under this
extra hypothesis.

It is a major open problem whether OutpFN q satisfies FJCX. Whilst
we do not solve this, using Theorem A we are able to show automorphism
groups of one-ended groups hyperbolic relative to virtually polycyclic groups
satisfy FJC. In particular, AutpGq and OutpGq for G a one-ended hyperbolic
group satisfy FJCX.

Theorem C. If G is a one ended group hyperbolic relative to finitely many
conjugacy classes of virtually polycyclic groups, then AutpGq and OutpGq are
in FJCX.

1.B. Remarks on the proofs. As is usual for (relatively) hyperbolic groups,
there are two main flavours to our arguments, depending on the number of
ends of G. In both cases we apply a result of Knopf [Kno19] allowing us to
deduce that a group acting acylindrically on a tree satisfies the Farrell–Jones
conjecture if and only if its vertex groups do, though the source of the trees
is different in each case.

For one-ended relatively hyperbolic groups, we have access to the powerful
machinery of JSJ decompositions developed (in this generality) by Guirardel
and Levitt [GL17]. We consider three related trees: the canonical JSJ de-
composition T can relative to the peripheral subgroups P, a refinement T ϕ of
T can which better suits the study of an outer automorphism ϕ and another
tree that we call TPer. This tree is the canonical JSJ tree relative to the
(non-elementary) periodic subgroups of the outer automorphism ϕ. That
is, we require that the periodic subgroups of every representative Φadg, are
elliptic. Our main structural result about this tree is Theorem 5.21: even
without assuming that the periodic subgroups are finitely generated, they
agree exactly with the rigid vertices of TPer. We prove that this ensures that
the induced action of G¸Φ Z is acylindrical, and then analyse vertex groups
that can appear in this new action.

We remark that the strong uniqueness properties of the JSJ decomposition
imply that for a one-ended, torsion free hyperbolic group, the rigid vertex
groups of the tree considered in [BFW23] agree with those in our TPer.

We consider the case when G is infinitely ended and has a finite index
subgroup which is a free product of one-ended groups. Being virtually torsion
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free is sufficient but not necessary for this to occur, and we provide necessary
and sufficient conditions in Proposition 8.1. Once we have a free product
splitting we have the following combination-type theorem.

Theorem D. Let G “ G1˚. . .˚Gk˚FN be a free product of finitely generated
groups, let F 1 “ trG1s, . . . , rGksu and let Φ P AutpG,F 1q. For every i P

t1, . . . , ku, denote by Φi an element of the outer class of Φ preserving Gi. If
for every i P t1, . . . , ku the group Gi ¸Φi Z is in FJCX, then G ¸Φ Z is in
FJCX.

Theorem D is proved by induction on the Grushko rank k`N . There are
two kinds of induction step, depending on whether the maximal periodic free
factor system is sporadic or not. A free factor system pG,Fq is sporadic if
G – G1 ˚G2 or G – G1 ˚ Z. This division might seem unusual to experts; a
more standard division (for instance, in [BFW23] as well as throughout the
OutpFnq literature) depends instead on if the automorphism is polynomially
or exponentially growing. Polynomially growing automorphisms are always
sporadic in this sense, but so are some exponentially growing automorphisms.
The non-sporadic case uses Dahmani and Li’s work on relative hyperbolicity
for suspensions of free factors [DL22], whereas in the sporadic case we use
the fact that these splittings are rigid.

These rigidity arguments hold equally well for sporadic Stallings–Dunwoody
decompositions, and so we are still able to obtain some results without first
passing to a finite index free product: see Proposition 8.3.

1.C. Fixed and Periodic Subgroups, the classes ACpVNilq versus
FJCX, and localising invariants. Some previous results of this flavour
have concluded the stronger property that the suspension is in the class
ACpVNilq. Every group in this class satisfies the Farrell–Jones conjecture
[BB19]. This class has similar closure properties to the class of groups satisfy-
ing the Farrell–Jones conjecture, except that FJCX is closed under directed
colimits while ACpVNilq is not known to be. However, for the majority of
the paper we work directly with the class FJCX.

The reason for this is that we have to understand the periodic subgroups
of certain automorphisms as an ascending union of fixed subgroups, and
consider the action of the automorphism on this subgroup. In general our
hypotheses do not guarantee that this union stabilises — we do not have a
virtual neatness property to rely on.

However, there are hypotheses that ensure virtual neatness, and if we
assume these then again the suspensions will be in ACpVNilq. One set of
sufficient conditions is,

Theorem 5.24. Let G be a hyperbolic group relative to a collection P of
slender groups and let Φ P AutpGq. There exists N P N˚ such that PerpΦq “

FixpΦN q and PerpΦq is finitely generated.

If we add these hypotheses to our main theorem, we can prove the sus-
pensions lie in ACpVNilq.

Theorem E. Suppose pG,Pq is one-ended or virtually torsion free, and
hyperbolic relative to finitely many conjugacy classes of slender subgroups.
Then for every automorphism Φ of G, Γ :“ G¸Φ Z is in ACpVNilq.
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Except for replacing each periodic subgroup with the fixed subgroup of a
power, the proof of this theorem is identical to the proof of Theorem A. We
discuss this in a little more detail after completing that proof.

Remark. Following work of Bunke, Kaprowski, and Winges [BKW21b] our
results apply equally well to the Farrell–Jones Conjecture for localising in-
variants, that is, with coefficients inH : CatLex8,˚ Ñ M a lax monoidal finitary
localising invariant with values in a stably monoidal and cocomplete stable
8-category which admits countable products. We refer the reader to the
introduction of loc. cit. for more information.

1.D. Structure of the paper. Section 2 introduces the relevant back-
ground results on the Farrell–Jones conjecture.

Section 3 contains definitions and results on free products and their auto-
morphisms, needed for Section 6.

Section 4 collects results on JSJ decompositions of one ended relatively
hyperbolic groups, and provides a lemma on acylindricity when passing to
the action of a suspension.

The one-ended case of Theorem A is proved in Section 5 by careful analysis
of a certain JSJ tree. From this analysis, we also deduce Theorem 5.24.

In Section 6 we prove Theorem D and the infinitely-ended case of Theo-
rem A. Using these results we prove Theorem A and Theorem E.

In Section 7, we deduce Theorem C from Theorem A.
Finally, in Section 8 we extend Theorem A as far as possible with our

current techniques to groups which are infinitely ended but do not split as free
products. The arguments of the last three sections are almost independent
of Sections 4 and 5, apart from requiring the background information on
trees of cylinders from Section 4.A.

Acknowledgements. This work has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant agreement No. 850930). The second
author was supported by the LABEX MILYON of Université de Lyon. The
authors would like to thank Damien Gaboriau, Dominik Kirstein, Gilbert
Levitt, and Ric Wade for helpful conversations.

2. Background on the Farrell–Jones conjecture

For full context and background on the Farrell–Jones conjecture, see for
instance Lück’s book project [Lüc]. In this section, we recall some properties
of the class FJCX of groups which satisfy the Farrell–Jones conjecture for
X-theory where X is A, K, or L.

Theorem 2.1. The class FJCX is closed under the following operations:
(1) taking subgroups;
(2) taking finite index overgroups;
(3) finite direct products;
(4) finite free products;
(5) directed colimits.

Proof. The cases of K- and L-theory are given in [GMR15, Theorem 2.1].
The case of A-theory is [ELP`18, Theorem 1.1(ii)]. □
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While FJCX is not known to be closed under extensions, there is a partial
result which we make use of.

Theorem 2.2. Let 1 Ñ N Ñ Γ Ñ Q Ñ 1 be a short exact sequence with
N P FJCX. If for every infinite cyclic subgroup C of Q, the preimage of C
in Γ belongs to FJCX, then Γ belongs to FJCX.

Proof. The cases of K- and L-theory are given in [BFL14, Theorem 1.7].
The case of A-theory is given in [ELP`18, Theorem 1.1(ii)]. □

Here is an easy, mild strengthening of commensurability towards virtual
isomorphism.

Lemma 2.3. Let 1 Ñ N Ñ Γ Ñ Q Ñ 1 be a short exact sequence with N
finite. Then if Q is in FJCX then so is Γ, and if Γ is residually finite and
in FJCX then so is Q.

Proof. For the first statement apply Theorem 2.2 to the short exact sequence,
noting that both finite groups and virtually cyclic groups are in FJCX. For
the second, observe that if Γ is residually finite then there is a finite index
subgroup Γ0 of Γ whose intersection with N is trivial, and then Γ0 – Q0 for
some finite index subgroup Q0 of Q. The result follows from commensura-
bility. □

We refer for instance to the work of Bowditch [Bow12] for the definition
of a relatively hyperbolic group.

Theorem 2.4 (Bartels). Let G be a group hyperbolic relative to a collection
trP1s, . . . , rPnsu of conjugacy classes of subgroups. If, for every i P t1, . . . , nu,
we have Pi P FJCX, then G P FJCX.

Proof. This result is due to Bartels. The cases ofK- and L-theory are [Bar17,
Corollary 4.6]. The case of A-theory is also ostensibly due to Bartels com-
bined with some recent developments on the A-theoretic FJC. We sketch the
relevant details. The key here is that Bartels’ space ∆ for a relatively hyper-
bolic group pair pG,Pq is finitely P-amenable (see [Bar17, Theorem 3.1]).
By [Kno19, Proof of Theorem 1.8(a)] this implies that G is strongly transfer
reducible over F . The result now follows from [ELP`18, Theorem 6.19]. □

Let G be a group acting by isometries on a tree T . Recall that the action
is acylindrical if there exists K ě 0 such that the stabiliser of any geodesic
path of length at least K is finite.

Theorem 2.5 (Knopf). Let G be a group acting acylindrically by isometries
on a tree T . If every vertex stabiliser belongs to FJCX, then G belongs to
FJCX.

Proof. The result is due to S. Knopf. For K-theory we refer to [Kno19,
Corollary 4.2]. The result for L-theory is [Kno19, Corollary 4.3], note that
here one has the additional hypothesis that index 2 overgroups of the sta-
bilisers in G must satisfy FJCL. But this follows from Theorem 2.1. For
A-theory, as in Bartels’ result, one combines finite F-amenability [Kno19,
Proposition 4.1] with the recent developments for A-theory [Kno19, Proof of
Theorem 1.8(a)] and [ELP`18, Theorem 6.19]. □
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Let G be a group and let Φ P AutpGq. Let PerpΦq “ xFixpΦnqynPN be the
periodic subgroup of Φ. At several points in our arguments we will need the
following lemma.

Lemma 2.6. Let G be a group belonging to FJCX and let Φ P AutpGq. The
group PerpΦq ¸Φ Z belongs to FJCX.

Proof. Note that

PerpΦq ¸Φ Z “ xFixpΦnqynPN ¸Φ Z “
ď

nPN

´

FixpΦn!q ¸Φ Z
¯

,

which is an increasing union of subgroups. Therefore, by Theorem 2.1 p5q,
it suffices to prove that, for every n P N, the group FixpΦn!q ¸Φ Z belongs to
FJCX.

Let n P N. Note that FixpΦn!q ¸Φn! Z is a finite index subgroup of
FixpΦn!q ¸Φ Z. By Theorem 2.1 p2q, the group FixpΦn!q ¸Φ Z belongs to
FJCX if and only if the group FixpΦn!q ¸Φn! Z belongs to FJCX.

The group FixpΦn!q ¸Φn! Z is isomorphic to FixpΦn!q ˆ Z. By Theo-
rem 2.1, the group Z belongs to FJCX. Since G P FJCX and since FJCX

is closed under taking subgroups by Theorem 2.1 p1q, the group FixpΦn!q

belongs to FJCX. Since FJCX is closed under taking direct products by
Theorem 2.1 p3q, the group FixpΦn!q ˆ Z and hence the group PerpΦq ¸Φ Z
belongs to FJCX. □

3. Free Products of Groups and their Automorphisms

3.A. Free products of groups. Let N P N, let G1, . . . , Gk be countable
groups and let G “ G1 ˚ . . . ˚Gk ˚ FN . Let F “ trG1s, . . . , rGksu be the set
consisting of the conjugacy classes of the Gi. We refer to pG,Fq as a free
product.

An element g P G is peripheral if there exists rAs P F with g P A. Oth-
erwise, g is nonperipheral. A subgroup P of G is peripheral if every element
of P is peripheral, and is nonperipheral otherwise.

A free factor system of pG,Fq is a set F 1 “ trA1s, . . . , rAℓsu of conjugacy
classes of proper subgroups of G such that:

(1) for every i P t1, . . . , ku, there exists rAs P F 1 such that Gi Ď A;
(2) there exists a subgroup B of G such that G “ A1 ˚ . . . ˚Aℓ ˚B.

The set of free factor systems of G is equipped with a partial order where
F1 ď F2 if, for every rA1s P F1, there exists rA2s P F2 with A1 Ď A2. A
free factor system F 1 is sporadic if either F 1 “ trA1s, rA2su and G “ A1 ˚A2

or F 1 “ trA1su and G “ A1 ˚ Z. Otherwise, the free factor system F 1 is
nonsporadic. The free product pG,Fq is sporadic (resp. nonsporadic) if F
is.

We denote by AutpG,Fq the subgroup of automorphisms of G preserving
F and by OutpG,Fq the subgroup of outer automorphisms of G preserving
F . An automorphism Φ P AutpG,Fq is fully irreducible if no power of Φ
fixes a free factor system of pG,Fq.

A pG,Fq-tree is a tree equipped with an action of G without inversion
such that, for every rAs P F , the group A is elliptic in T . A Grushko pG,Fq-
tree is a pG,Fq-tree T with trivial edge stabilisers and such that, for every
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v P V T , the conjugacy class of the stabiliser Gv of v is trivial or contained
in F .

Let F 1 be a sporadic free factor system of pG,Fq. There is a unique, up to
unique G-equivariant homeomorphism, reduced pG,F 1q-tree TF 1 , which we
call the Bass-Serre tree of pG,F 1q. The tree TF 1 has a unique orbit of edges.
The tree TF 1 is canonical in the sense that every element Φ P AutpG,F 1q

induces a G-equivariant homeomorphism of TF 1 . Therefore, for every Φ P

AutpG,F 1q, the group G¸Φ Z acts by homeomorphisms on TF 1 .

3.B. Growth under an automorphism of a free product. Let pG,Fq

be a free product and let T be a Grushko pG,Fq-tree. We turn T into a
metric graph by assigning length 1 to every edge of T .

Let g P G. The translation length of g in T is ∥g∥T “ infxPT dpx, gxq. The
translation length of g only depends on the conjugacy class of g.

Let Φ P AutpG,Fq. An element g P G has ∥.∥T -polynomial growth under
iteration of Φ if there exists P P ZrXs such that, for every n P N:

∥Φnpgq∥T ď P pnq.

Note that any elliptic element of G in T has ∥.∥T -polynomial growth under
iteration of Φ.

A subgroup P of G is a ∥.∥T -polynomial subgroup of Φ if there exists an
automorphism Ψ P AutpG,Fq contained in the outer class of some power of
Φ such that ΨpP q “ P and every element of P has ∥.∥T -polynomial growth
under iteration of Ψ.

Let PT pΦq be the set of conjugacy classes of maximal ∥.∥T -polynomial
subgroups of Φ. When Φ is fully irreducible, the set PT pΦq satisfies some
additional properties. Recall that a subgroup A of G is malnormal if, for
every g P G´A, we have AX gAg´1 “ teu.

Proposition 3.1. [DL22, Proposition 1.13] Let pG,Fq be a nonsporadic
free product and let Φ P AutpG,Fq be fully irreducible. Let T be a Grushko
pG,Fq-tree.

(1) The set PT pΦq is finite.
(2) For every rAs P PT pΦq, the subgroup A is malnormal in G.

Let P “ trP1s, . . . , rPℓsu be a finite set of conjugacy classes of malnormal
subgroups of G. Let Φ P AutpGq be an automorphism such that, for every
i P t1, . . . , ℓu, there exists gi P G such that adgi ˝ΦpPiq “ Pi. The suspension
of P is the set trPi ¸adgi˝Φ Zsu considered as a set of conjugacy classes of
subgroups of G¸Φ Z.

The following result is due to Dahmani–Li [DL22].

Theorem 3.2. [DL22, Corollary 2.3] Let pG,Fq be a nonsporadic free prod-
uct and let Φ P AutpG,Fq be fully irreducible. Let T be a Grushko pG,Fq-
tree and let PT pΦq be the set of conjugacy classes of maximal ∥.∥T -polynomial
subgroups of Φ. There exists n P N such that the group G¸Φn Z is hyperbolic
relative to the suspension of PT pΦq.

Note that Theorem 3.2 implies that the set PT pΦq does not depend on
T when Φ is fully irreducible. In the rest of the section, we give a precise
description of the set PT pΦq for a fully irreducible automorphism.
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We first need a result, which can be found for instance in the work of
Francaviglia–Martino–Syrigos [FMS21] concerning the existence of a limiting
tree of a fully irreducible automorphism.

Lemma 3.3. [FMS21, Lemma 2.14.1] Let pG,Fq be a nonsporadic free prod-
uct and let Φ P AutpG,Fq be a fully irreducible automorphism. There exist
a Grushko pG,Fq-tree S, an R-tree T equipped with an isometric action of
G and a constant λ ą 1 such that, for every g P G, we have

(1) lim
nÑ8

1

λn
∥Φng∥S “ ∥g∥T .

Let pG,Fq be a free product. Note that, for any subgroup A of G, the
free factor system F induces a free factor system F |A of A. Following the
terminology of for instance Guirardel-Horbez [GH22, Definition 3.2], an R-
tree equipped with an isometric action of G is an arational pG,Fq-tree if the
following holds:

(1) the tree T is not a Grushko pG,Fq-tree;
(2) for every rAs P F , the group A is elliptic in T ;
(3) for every free factor system F ă F 1 and every rAs P F 1 such that A is

nonperipheral, the action of A on its minimal tree in T is a Grushko
pA,F |Aq-tree.

Proposition 3.4. Let pG,Fq be a nonsporadic free product, let Φ P AutpG,Fq

be a fully irreducible automorphism and let S be a Grushko pG,Fq-tree given
by Lemma 3.3. For every rP s P PSpΦq, either rP s P F or P is nonperipheral
and infinite cyclic.

Proof. Let T be the R-tree associated with S given by Lemma 3.3. Note
that, by Equation (1), for every ∥.∥S-polynomially growing element g P G,
we have ∥g∥T “ 0.

By [GH22, Theorems 3.4,4.1] the R-tree T is an arational pG,Fq-tree. It
has trivial arc stabilisers (because it is mixing [Hor14, Lemma 4.9]). Thus,
for every rP s P PSpΦq, the group P fixes a point in T .

By [Hor14, Lemma 4.6], using the fact that T is arational, for every point
x P T , the stabiliser Gx of x is either peripheral or nonperipheral and infi-
nite cyclic. Thus, for every rP s P PSpΦq, the elliptic subgroup P is either
peripheral or nonperipheral and infinite cyclic. By maximality of P , either
rP s P F or P is nonperipheral and infinite cyclic. □

4. Actions on trees and JSJ decompositions

4.A. Tree of cylinders. Let G be a group acting on a tree T . In order
to construct an acylindrical action of G on a tree, we will modify the tree
T using the technology of tree of cylinders introduced by Guirardel and
Levitt [GL11].

Let E be a class of subgroups of G, stable under conjugation. An E-tree is
a tree T equipped with an action of G without edge inversion and such that
the stabiliser of any edge is contained in E . An equivalence relation „ on E
is admissible if, for any A,B P E , the following holds:

(1) for any g P G, if A „ B, then gAg´1 „ gBg´1;
(2) if A Ď B, then A „ B;



AUTOMORPHISMS AND THE FARRELL–JONES CONJECTURE 10

(3) for every E-tree T , if A „ B and A and B are elliptic in T , then
xA,By is elliptic in T .

Inclusion is an admissible relation for every class of groups E . If E is the
class of virtually infinite cyclic groups, then commensurability is an admis-
sible equivalence relation, where two groups A,B P E are commensurable if
AXB has finite index in both A and B.

Let T be an E-tree and let „ be an admissible equivalence relation on
E . If e is an edge of T , we denote by Ge its stabiliser in T . We define an
equivalence relation „T on the set of edges of T by setting, for all edges
e, e1 P ET , e „T e1 if and only if Ge „ Ge1 . A cylinder Y of T is a „T -
equivalence class, seen as a subforest of T . A cylinder is in fact a subtree of
T (see [GL11, Lemma 4.2]).

Definition 4.1. Let T be an E-tree. The tree of cylinders of T is the
bipartite tree Tc whose vertex set V Tc “ V0Tc

š

V1Tc is defined as follows:
(1) V0Tc is the set of vertices ot T belonging to at least two distinct

cylinders;
(2) V1Tc is the set of cylinders ot T ;
(3) there is an edge between v0 P V0T and v1 P V1T if the vertex in T

corresponding to v0 belongs to the cylinder corresponding to v1.

The tree of cylinders of T is a tree equipped with an action of G without
edge inversion.

4.B. JSJ decompositions of one-ended relatively hyperbolic groups.
We now let G be a one-ended hyperbolic group relative to a family P “

trP1s, . . . , rPnsu of conjugacy classes of groups and let Φ P AutpG,Pq. Let
GΦ be the suspension G¸Φ Z. In time, we will also assume the suspensions
of the Pi belong to FJCX, and want to apply Theorem 2.5 to GΦ in order
to prove that GΦ P FJCX. That is, we will construct a simplicial tree T on
which GΦ acts acylindrically. The construction of the tree T uses the theory
of JSJ decomposition of groups, which we now discuss, following the work of
Guirardel-Levitt [GL11, GL15, GL17].

A subgroup of G is elementary if it is virtually cyclic or conjugate into
some Pi with i P t1, . . . , nu. Let A be the family of all elementary subgroups
of G.

Let „A be the equivalence relation on A given by A „A B if xA,By is
elementary. The equivalence relation „A defines an admissible equivalence
relation called coelementarity.

Let H be any set of conjugacy classes of subgroups of G. Recall that
an pA,P Y Hq-tree is an A-tree T such that, for every rAs P P Y H, the
group A is elliptic in T . We denote by OutpG,P Y Hptqq the subgroup of
OutpG,P Y Hq consisting of every ψ P OutpG,P Y Hq such that, for every
rAs P H, there exists Ψ P ψ with ΨpAq “ A and Ψ|A “ idA.

Let T be a tree equipped with an action of G by isometries with a finite
number of orbits of edges. If H is a subgroup of OutpG,P Y Hq preserving
the G-equivariant homeomorphism class of a tree T , we denote by H0 the
finite index subgroup of H acting trivially on GzT . Note that, for every
v P V T , we have a homomorphism H0 Ñ OutpGvq.
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Using [GL17, Theorem 9.18], [GL15, Theorem 3.9] and [GL11, Proposi-
tion 6.1], we have the following theorem.

Theorem 4.2. [GL11, GL15, GL17] Let G be a one-ended hyperbolic group
relative to a family P of non virtually cyclic groups. Let H be any family of
conjugacy classes of subgroups of G. There exists a tree of cylinders TH for
coelementarity equipped with an isometric action of G such that:

(1) the group AutpG,PYHq preserves the G-equivariant homeomorphism
class of TH;

(2) the action of G on TH is 2-acylindrical;
(3) the number of orbits of edges is finite;
(4) edge stabilisers are infinite elementary;
(5) the tree TH is an pA,P Y Hq-tree;
(6) vertex stabilisers corresponding to cylinders are elementary subgroups;
(7) vertex stabilisers Gv corresponding to a vertex v of the original tree

satisfy one of the following:
‚ Gv is nonelementary and Quadratically Hanging (QH) with fi-

nite fibre; (see [GL17, Definition 5.13]);
‚ the vertex v is nonelementary and rigid: the stabiliser of v is

elliptic in every pA,P Y Hq-tree (see [GL17, Definition 2.14]).
(8) if e1, e2 are two distinct edges adjacent to the same nonelementary

vertex, then Ge1 XGe2 is finite and xGe1 , Ge2y is not elementary;
(9) if rHs P H is not elementary, then H stabilises a unique rigid ver-

tex. (This follows from [GL17, Definition 5.13(3)], and the fact that
QH vertices with finite fibre have virtually cyclic extended boundary
subgroups).

Moreover, if H “ trH1s, . . . , rHksu with every Hi finitely generated:
(10) [GL15, Theorem 3.9] for every rigid vertex v P V TH, the homomor-

phism Out0pG,P Y Hptqq Ñ OutpGvq is finite;
(11) for every edge e P ETH, the homomorphism Out0pG,P Y Hptqq Ñ

OutpGeq is finite.

When the family H is trivial, we will refer to TH as T can. (Our superscript
convention here is certainly not standard: we use it because we will shortly
need to discuss minimal invariant trees for subgroups coming from multiple
underlying actions. This choice lets us write T can

H , for instance, keeping both
the tree and the subgroup conveniently in the notation.)

We now prove a general lemma in order to deduce acylindrical actions of
GΦ with Φ P AutpGq on trees out of acylindrical actions of G. If GΦ acts on
a tree T , we denote by FΦ the G-equivariant isometry of T induced by Φ.

Lemma 4.3. Let K ě 1, and let ϕ “ rΦs P OutpGq. Suppose that GΦ acts
on a tree T with finitely many orbits of edges and that the action of G on
T is K-acylindrical. Suppose that for every geodesic path γ of length 3 and
every automorphism Ψ P ϕ such that FΨ preserves γ, there exist a vertex v
of γ and g P Gv of infinite order fixed by a power of Ψ.

(1) Let n P N˚ and let Ψ P ϕn. Suppose that FΨ fixes pointwise a geodesic
edge path of length at least equal to 2K`7. There exists N P N˚ such
that ΨN fixes elementwise a nonabelian free group L Ď G consisting
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of loxodromic elements of T . Moreover, for every g P L, the isometry
FΨN fixes elementwise the axis of g.

(2) Let n P N˚ and let Ψ P ϕn. Suppose that there exists g P FixpΨq

which acts loxodromically on T . There exist m P Z, n P Z˚ such that
gmFΨn fixes pointwise the axis of g.

(3) The action of GΦ on T is acylindrical if and only if for every n P N
and every Ψ in the outer class of Φn, the group FixpΨq is elliptic in
T .

Proof. p1q Suppose that FΨ fixes pointwise a geodesic edge path γ of length
2K`7. Thus, the path γ is not reduced to an edge and the isometry FΨ fixes
the initial and the terminal paths γ1, γ2 of γ length 3. Since the action of G
on T is K-acylindrical, for all vertices v1 of γ1 and v2 of γ2, the intersection
Gv1 XGv2 is finite.

Let i P t1, 2u. Note that FΨ preserves γi. By hypothesis, there exist
Ni P N˚, a vertex vi P γi and an infinite order element gi P Gvi which is fixed
by ΨNi .

Let N “ N1N2 and let L “ xg1, g2y Ď FixpΨN q. Since Gv1 X Gv2 is
finite, we have Fixpg1q X Fixpg2q “ ∅. By standard ping-pong arguments,
the group L is a non-abelian free group which contains a (non-abelian) sub-
group consisting of loxodromic elements of T . This proves the first part of
Assertion p1q.

Let g P L be loxodromic. Since ΨN pgq “ g, the isometry FΨN commutes
with g. In particular, the axis of g is contained in the characteristic set of
FΨN . Since FΨN is elliptic, this implies that FΨN fixes pointwise the axis of
g. This concludes the proof of Assertion p1q.

p2q Let g P FixpΨq be a loxodromic element. As in the proof of Assertion p1q,
the axis of g is preserved by FΨ and is contained in the characteristic set of
FΨ. Thus, we have a homomorphism Λ: xg, FΨy Ñ R given by the transla-
tion length on the axis of g. Since T is a simplicial tree, the image of Λ is
a discrete subset of R. Thus, the image of Λ is cyclic. Therefore, the kernel
of Λ is nontrivial: there exist m P Z and n P Z˚ such that gmFΨn fixes
pointwise the axis of g. This proves Assertion p2q.

p3q Suppose that there exist n P N˚, Ψ P ϕn and g P FixpΨq such that the
action of g on T is loxodromic. By Assertion p2q, there exist m P Z and
n P Z˚ such that gmTΨn fixes pointwise the axis of g. Hence the action of
GΦ is not acylindrical.

Conversely, suppose that the action ofGΦ “ xG, ty on T is not acylindrical.
Since the action of G on T is K-acylindrical, there exist g P G and k P N˚

such that the element gtk fixes an edge path of length 2K ` 7. Let Ψ P ϕk

be the automorphism corresponding to gtk. By Assertion p1q, some power of
Ψ fixes a loxodromic element of G. This proves Assertion p3q and concludes
the proof. □

5. The periodic JSJ decomposition

We now specialise to the tree we will use to prove that suspensions of
one-ended relatively hyperbolic groups (under reasonable assumptions on
the parabolic subgroups) satisfy the Farrell–Jones conjecture. Let G be a



AUTOMORPHISMS AND THE FARRELL–JONES CONJECTURE 13

one-ended relatively hyperbolic group and let Φ P AutpGq. We explain in the
following section the construction of G-trees which are naturally associated
with Φ.

5.A. Trees associated with an automorphism of a one-ended rela-
tively hyperbolic group. Recall that, if Φ P AutpGq, we denote by PerpΦq

the subgroup of G consisting of all g P G such that there exists n P N˚ with
Φnpgq “ g. Let ϕ “ rΦs P OutpGq. We denote by NPpϕq the set of all
representatives Φ P ϕ such that PerpΦq is not an elementary subgroup. If
ϕ P OutpGq, we set PerNPpϕq “ trPerpΦqsuΦPNPpϕq.

We work with three ϕ-invariant trees for G. The first is the canonical JSJ
tree T can, the second is the tree TPer obtained by applying Theorem 4.2 with
H “

Ť

nPN˚ PerNPpϕnq. The third one is obtained from T can by blowing-up
JSJ trees at QH with fibre vertices. The following lemmas motivate the
construction.

Lemma 5.1. Let G be a hyperbolic group relative to P and let ϕ “ rΦs P

OutpG,Pq. Let n P N˚ and let Ψ,Θ P ϕn be such that Ψ and Θ fix element-
wise the same nonelementary subgroup H of G.

There exists N P N˚ such that, ΨN “ ΘN .

Proof. Since Ψ and Θ fix H elementwise, Ψ and Θ differ by an inner auto-
morphism in the centraliser of H. Since H is nonelementary, its centraliser is
finite (see for instance [Osi06, Theorem 4.19]). Thus, up to taking powers of
Ψ and Θ fixing elementwise the centraliser of H, we have Ψ “ adg ˝Θ where
g P CGpHq and g P FixpΘq. Thus, for everym ě 1, we have Ψm “ adgm˝Θm.
As g is finite order, there exists N P N˚ such that ΨN “ ΘN . □

Lemma 5.2. Suppose G is the vertex group of a QH with fibre vertex of T can

and let ϕ “ rΦs P OutpGq.
(1) The group PerpΦq is finitely generated, and there is some k P N so

that PerpΦq “ FixpΦkq.
(2) There exists k P N˚ so that if rgs is a periodic conjugacy class of ϕ

then rgs is fixed by ϕk.
(3) As Φ varies over the outer classes ϕn with n P N˚, there are only

finitely many conjugacy classes of periodic subgroups PerpΦq.
(4) There exists k P N˚ so that if rKs is a conjugacy class of periodic

subgroups of ϕ, then rKs is fixed by ϕk.

This result does not seem surprising, and in fact the same statement is
true for all hyperbolic groups (see Theorem 5.24 and [GL16a] for the torsion
free case). However, this special case is necessary to begin the arguments on
JSJ decompositions we use throughout this section, including to prove the
general statement.

Proof. We first prove Lemma 5.2 when G is a hyperbolic 2-orbifold. Recall
that hyperbolic 2-orbifolds are good, and let H be a characteristic finite
index subgroup of G corresponding to an orientable surface cover of the
orbifold. (This can be obtained by taking the characteristic core of the
subgroup corresponding to any such cover, since G is finitely generated.)
In particular, Φ preserves H. We now consider two periodic subgroups:
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PerGpΦq ď G and its subgroup PerHpΦ|Hq ď H. If g1 and g2 are elements of
PerGpΦq representing the same coset of H in G, then in fact they represent
the same coset of PerHpΦ|Hq in PerGpΦq, so this is a finite index subgroup.
The restriction Φ|H can be represented by an element of the mapping class
group of the surface, and it follows from [Iva92] that periodic subgroups here
are finitely generated. Finite generation is a commensurability invariant, so
the same is true of PerGpΦq. Then taking a sufficiently high power to fix
every element of a finite generating set shows that PerpΦq “ FixpΦkq.

Let rgs be a ϕ-periodic conjugacy class. If g has finite order, then, as
there exists finitely many conjugacy classes of finite order elements in G,
some power of ϕ fixes rgs. Suppose now that g has infinite order, and let
t P N˚ be such that gt P H. Since G is hyperbolic, gt has finitely many t-th
roots in G, the number of such roots depending only on the finite numbers
of orders of the finite subgroups of G. Thus, if ℓ P N˚ is such that ϕℓ P

OutpHq fixes the conjugacy class of gt, then a power of ϕℓ fixes the conjugacy
class of g and this power does not depend on g. If H is a free group,
then the existence (and uniformity) of ℓ follows from the work of Handel–
Mosher [HM20, Theorem II.4.1]. If H is the fundamental group of a closed
orientable surface, this follows from the work of Ivanov [Iva92].

Since the third statement is true for free and surface groups (by Ivanov [Iva92]
for the surface case, Bestvina–Handel [BH92] for the free case with noncyclic
periodic subgroups, and for instance Guirardel–Levitt [GL16a] for the general
case), it will suffice to bound the number of subgroups PerGpΦq containing
(with finite index) a given restriction PerHpΦ|Hq. If this is non-elementary,
then it follows from Lemma 5.1 that any two automorphisms in ϕ fixing it
have a common power, and hence the same periodic subgroups. (First re-
place Φk adpg1q and Φℓ adpg2q with their ℓ-th and k-th powers respectively,
so they represent the same outer automorphism, then another power so as to
fix the common non-elementary subgroup PerHpΦ|Hq, then apply the lemma
as written.)

Now assume PerHpΦ|Hq is elementary, and we want to control the periodic
subgroups of Φ in G restricting to it. Recall that in a hyperbolic group, every
virtually cyclic subgroup is contained in a unique maximal one, and let M
be the maximal virtually cyclic subgroup containing PerHpΦ|Hq. Since Φ
preserves PerHpΦ|Hq, it must also preserve M , and we consider the induced
automorphism of M . By for instance [MO10, Lemma 6.6], OutpMq is finite,
and so passing to a power Φk the induced automorphism is inner. Composing
with an inner automorphism coming from M , some representative Ψ of Φk

fixes M ; in particular M is itself a periodic subgroup.
Note that this inclusion between the original periodic subgroup and the

one for Ψ can stay proper at all powers: the infinite order inner automor-
phism of D8 gives an example.

Finally, as there exist only finitely many conjugacy classes of finite sub-
groups in G, there exist only finitely many conjugacy classes of finite periodic
subgroups for any power of ϕ.

The final property follows from taking a high enough power to fix (up to
composing with appropriate inner automorphisms) the generating sets of a
representative of each conjugacy class.
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LetG be the vertex group of a QH with finite fibre vertex. Let F be a finite
normal subgroup of Gv such that Gv{F is isomorphic to the fundamental
group π1pΣvq of a 2-orbifold Σv. Since Gv is a hyperbolic group, it contains
finitely many conjugacy classes of finite subgroups. Thus, for every ϕ P

OutpGvq, there exists M ě 1 such that ϕM induces an element ϕM |Σv P

Outpπ1pΣvqq.
Let Φ P AutpGq. Up to taking a power of Φ, we may suppose that Φ

induces an element of Autpπ1pΣvqq. Let ℓ P N˚ be the integer associated
with Φ|π1pΣvq which satisfies both Assertions p1q and p2q. Let g P PerpΦq.
Then the image of g in π1pΣvq is fixed by Φℓ|π1pΣvq. Thus, Φℓ preserves the
left coset gF . As F is finite, the automorphism Φℓ|AutpF q| acts trivially on F .
Thus, we see that Φℓ|F ||AutpF q| fixes g. This proves Assertion p1q. Similarly,
suppose that rgs is a periodic conjugacy class. Then Φℓ|π1pΣvq preserves the
conjugacy class in π1pΣvq induced by g. Thus, Φℓ sends g to hk1gk2h´1 with
h P G and k1, k2 P F . Let Ψℓ “ adh´1 ˝ Φℓ. Then Ψℓ sends g to k1gk2.
Note that Ψℓ|AutpF q| acts trivially on F and sends g to k1

1gk
1
2 with k1

1, k
1
2 P F .

Thus, Ψℓ|AutpF q||F | fixes g and Φℓ|AutpF q||F | fixes the conjugacy class of g.
This proves Assertion p2q.

For the third assertion, notice that the periodic subgroups of the induced
action on π1pΣvq contain (by passing to a finite index surface subgroup,
and if necessary then an infinite index one) a preserved (and periodic) free
group. This splits back to Gv, and since the arguments given earlier used
only Lemma 5.1 and properties of virtually cyclic subgroups of hyperbolic
groups, they apply equally well here (note that it is enough to take any
non-elementary periodic subgroup to apply Lemma 5.1). Again, the final
assertion follows by taking a high enough power to fix (up to composing with
appropriate inner automorphisms) the generating sets of a representative of
each conjugacy class. □

Let v be a QH with fibre vertex of T can, let e1, . . . , ek be representatives
of the Gv-orbits of edges in T can adjacent to v and let Tv be the JSJ tree
of Gv relative to

Ť

nPN˚ PerNPprϕn|Gv sq Y trGe1s, . . . , rGeksu. The idea is to
blow up, at every such vertex v the tree Tv. But, we want the resulting tree
to be compatible with TPer, so that we need to be careful when attaching
the edges of T can to vertices in Tv.

Two pA,Pq-trees T and T 1 are compatible if there exists an pA,Pq-tree U
such that both T and T 1 are obtained from U by collapsing some orbits of
edges. By [GL17, Proposition A.26], there exists a unique such minimal tree
U which refines T and T 1. The tree U satisfies the following properties: a
subgroup H of G stabilises a point in U if and only if H stabilises a point
in both T and T 1. Moreover, for every edge e P EU , the image of e in either
T or T 1 is not reduced to a point.

By universality of T can (see [GL17, Corollary 9.18(3)]), the trees T can

and TPer are compatible. We denote by T ref
0 their minimal refinement. By

minimality, since ϕ preserves both T can and TPer, the tree T ref
0 is preserved

by ϕ. The tree T ref
0 is obtained from T can by blowing up, for every vertex

v P T can, a tree Sv. The tree Sv is the minimal Gv-tree in T ref
0 .
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Suppose that v is a QH vertex of T can with finite fibre. Let H be a
subgroup of G such that rHs P

Ť

nPN˚ PerNPprϕn|Gv sq Y trGe1s, . . . , rGeksu.
Then H is elliptic in both T can and TPer, so that H is elliptic in T ref

0 .
Since Sv is the minimal Gv-tree in T ref

0 , the group H is also elliptic in Sv.
Thus, by universality of Tv, the trees Tv and Sv are compatible. Let Uv be
their common minimal refinement. The tree Uv is invariant by the outer
automorphism of Gv induced by ϕ. Moreover, since both Sv and Tv are
2-acylindrical, the minimality of Uv implies that Uv is 4-acylindrical.

Let T ref
1 be the tree obtained from T ref

0 by blowing up the trees Uv at every
tree Sv of T ref

0 and attaching an edge e of T ref
0 to the centre of the fixed point

set of Stabpeq in Uv. The centre exists since for every i P t1, . . . , ku, the group
Gei is elliptic in Uv and Uv is 4-acylindrical. It is the (necessarily common)
midpoint of the longest paths in the fixed point set of Stabpeq. The centre is
not necessarily a vertex of Uv, so this construction might require to subdivide
some edges of Uv.

Note that the tree T ref
1 is preserved by ϕ as it is obtained from T ref

0 by
blowing-up in a canonical way trees preserved by ϕ.

Let T ϕ
0 be the tree obtained from T ref

1 by the following operations. We
have a natural collapse map q : T ref

1 Ñ T can. Let v P V T can. If v is not
QH with fibre, then collapse q´1pvq to a point. If v is QH with fibre, then
q´1pvq “ Uv and we collapse Uv to the tree Tv. The resulting tree is our
desired T ϕ

0 . Note that, since T ϕ
0 is obtained from T can by blowing up at each

vertex v P V T can, trees which are invariant by ϕ (namely, the trees Tv), the
tree T ϕ

0 is also invariant by ϕ.
Notice that T ref

1 is a common refinement of T ϕ
0 and TPer, so that T ϕ

0 and
TPer are compatible. Since T can and all the trees Tv are acylindrical, so is
T ϕ
0 .
Finally, let T ϕ be the tree obtained from T ϕ

0 by collapsing all the edges
whose endpoints are both elementary. Note that the resulting new vertices
are elementary since every infinite elementary subgroup is contained in a
unique maximal elementary one (see [GL15, Lemma 3.1]).

The tree T ϕ is preserved by ϕ, it is compatible with TPer and the action
of G on T ϕ is acylindrical. Additionally, the tree T ϕ is a bipartite tree:
every edge has an endpoint which is elementary and an endpoint which
is either rigid or QH with fibre. (Here, rigid vertices could correspond to
rigid vertices either in T can or in some Tv, while QH vertices are QH in a
Tv, though Tv could be a point.) Note that, unlike T can, the tree T ϕ is not
necessarily preserved by every element of OutpG,Pq. However, it is preserved
by ϕ, which is sufficient for our considerations. Moreover, the tree T ϕ is not
necessarily compatible with every pA,Pq-tree, but we will only need the fact
that it is compatible with TPer. The fact that we replace T can by T ϕ is due
to the following lemmas.

Lemma 5.3. Let v P V T ϕ be either rigid or QH with fibre and let e1, e2 P

ET ϕ be two distinct edges adjacent to v. Then Ge1 X Ge2 is finite and
xGe1 , Ge2y is not elementary. In particular, the tree T ϕ is 2-acylindrical.
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Proof. Note that, since v is rigid or QH with fibre, the preimages of e1 and
e2 in T ϕ

0 are unique edges since T ϕ is obtained from T ϕ
0 by collapsing edges

with elementary endpoints. Thus, it suffices to prove the result for T ϕ
0 .

Let v P V T ϕ
0 be either rigid or QH with fibre and let e1, e2 P ET ϕ

0 be two
distinct edges adjacent to v. Suppose first that both e1 and e2 are edges
in either T can or Tw for some w P V T can which is QH with fibre. Then
Ge1 XGe2 is finite and xGe1 , Ge2y is not elementary by Theorem 4.2 p8q.

Thus, we may suppose, up to reordering, that e1 is an edge coming from
T can and e2 is an edge coming from some Tw with w P V T can QH with fibre.
In particular, since w is QH with fibre, the group Ge1 is virtually cyclic.

Note that e1 is attached to the centre of the fixed point set of Ge1 in Tw.
Moreover, by Theorem 4.2 p8q, this centre is not elementary if and only if
the fixed point set is reduced to a point. Thus, the fixed point set of Ge1 in
Tw is reduced to v (seen as a point in Tw).

Suppose towards a contradiction that Ge1 X Ge2 is infinite and let v1 be
the endpoint of e2 distinct from v. As explained above, the point v1 is not
fixed by Ge1 . Let g P Ge1 be such that gv1 ‰ v1. Then one of the endpoints
of ge2 is v since Ge1 fixes v. Moreover, since Ge1 is virtually cyclic, the
intersection Ge2 X gGe2g

´1 is infinite (it contains the normal core in Ge1 of
the intersection Ge1 X Ge2). Therefore, e2 and ge2 are two distinct edges
of Tw adjacent to the nonelementary vertex v such that Ge2 X gGe2g

´1 is
infinite. This contradicts Theorem 4.2 p8q. Thus, the intersection Ge1 XGe2

is finite.
We now prove that xGe1 , Ge2y is not elementary. Since w is a QH with

fibre vertex of T can, the group Gw is Gromov hyperbolic. Therefore, the
only elementary subgroups of G contained in Gw are virtually cyclic. Since
Ge1 X Ge2 is finite, the group xGe1 , Ge2y is not virtually cyclic, hence is not
elementary.

The fact that T ϕ is 2-acylindrical follows from the fact that any edge of
T ϕ has an endpoint which is nonelementary. □

Lemma 5.4. Let v P T ϕ be rigid. The map xϕy0 Ñ OutpGvq has finite
image.

Proof. Since v is rigid, the group Gv is the stabiliser of a rigid vertex of
either T can or some Tw where w P V T can is QH with finite fibre.

If Gv is the stabiliser of a rigid vertex of T can, then, by Theorem 4.2 p10q,
then map xϕy0 Ñ OutpGvq has finite image.

Suppose now that Gv is the stabiliser of a rigid vertex of some Tw where
w P V T can is QH with finite fibre. By Lemma 5.2, the set PerNPprϕ|Gw sq Y

trGe1s, . . . , rGeksu is a finite set of conjugacy classes of finitely generated
subgroups of Tw. Thus, Theorem 4.2 p10q applies (to Tw) and the image of
xϕy0 Ñ OutpGvq is finite. □

Lemma 5.5. Let v P T ϕ and let rHs P PerNPpϕq.
(1) Suppose that v is QH with fibre. Then H XGv is elementary.
(2) Suppose that v is rigid. If H XGv is nonelementary, then Gv Ď H.

Proof. Suppose first that v is QH with fibre. By construction of T ϕ, the
group Gv is the stabiliser of a QH with fibre vertex of some JSJ tree Tw,
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where w is a QH with fibre vertex of T can. But the intersection of Gv with
every subgroup H 1 such that rH 1s P PerNPprϕ|Gv sq Y trGe1s, . . . , rGeksu is
elementary by the definition of QH with fibre vertices. Thus, the intersection
of H with Gv is elementary. This proves Assertion p1q.

Suppose now that v is rigid.
Let Ψ P ϕ be such that PerpΨq “ H. Suppose that the intersection HXGv

is nonelementary. Then Ψ preserves Gv since v is the unique vertex in T ϕ

fixed by H X Gv. By Lemma 5.4, there exists k P N˚ such that Ψk acts
as a global conjugation on Gv by an element g P Gv. Taking a larger k if
necessary, we may also assume that Ψk also act trivially on a nonelementary
subgroup H 1 Ď H XGv.

Note that Θ “ adg´1 ˝ Ψk acts trivially on Gv. Thus, Ψk and Θ acts
trivially on the same nonelementary subgroup H 1 Ď Gv. By Lemma 5.1,
there exists N P N such that ΨkN “ ΘN . In particular, Ψ has a power which
fixes Gv elementwise. Thus, we have Gv Ď H. □

Remark 5.6. Note that, for every Φ P NPpϕq, the isometry FΦ of T ϕ is
elliptic. Indeed, if FΦ is loxodromic, then Φ can only fix an element g P G
which is loxodromic and whose axis is the same as the one of FΦ. Since the
action of G on T ϕ is acylindrical, the element g is contained in a unique
maximal virtually cyclic subgroup. In particular, PerpΦq is a virtually cyclic
group and Φ R NPpϕq.

Let G be a one-ended hyperbolic group relative to P and let ϕ “ rΦs P

OutpG,Pq. The rest of the section is dedicated to the proof of some proper-
ties of the set PerNPpϕq and of the action of GΦ on T ϕ. To this end we prove
that PerNPpϕq is finite (see Lemma 5.11). We need the following lemmas
regarding the intersection of characteristic sets of isometries in T ϕ.

Lemma 5.7. Let G be a one-ended hyperbolic group relative to P, let v P

V T ϕ be non-elementary and let e1 and e2 be distinct edges adjacent to v. Let
ϕ P OutpG,Pq. If there is a representative Φ P ϕ such that ΦpGeiq “ Gei for
each i “ 1, 2, then v is rigid and Gv is fixed elementwise by some power of
Φ.

Proof. We first prove that v is rigid. Indeed, suppose towards a contradiction
that v is QH with finite fibre. Then Ge1 and Ge2 are virtually cyclic. Thus,
for every i P t1, 2u, the automorphism Φ has a power Φk fixing an infinite
order element gi P Gei . By Lemma 5.3 and as the groups Ge1 and Ge2

are virtually cyclic, the group xg1, g2y is a non-elementary subgroup. As
xg1, g2y Ď PerpΦq X Gv, this contradicts Lemma 5.5. Thus, the vertex v is
rigid.

By Lemma 5.4, after taking a power Φℓ, it acts on Gv as global conjugation
by an element g P Gv.

We claim that, after taking a further power of Φ, the element g is trivial.
Indeed, note that, by Lemma 5.3 the stabiliser of an edge adjacent to v is
almost malnormal in Gv: for every edge e1 of T ϕ adjacent to v and every
g1 P Gv, if g1Geg

1´1 X Ge is infinite then g1 P Ge. Moreover, if e and e1 are
two distinct edges adjacent to v, then Ge X Ge1 is finite. Since Φ preserves
Ge1 and Ge2 , the power Φℓ must act by conjugating by an element of the
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finite intersection Ge1 XGe2 . This becomes trivial on taking a further power
of Φ, which concludes the proof of the claim.

Thus we have shown that Φ has a power fixing Gv elementwise, which
concludes the proof. □

Corollary 5.8. Let G be a one-ended hyperbolic group relative to P and let
ϕ “ rΦs P OutpG,Pq. Let rHs “ rPerpΦqs P PerNPpϕq and let T ϕ

H be the
minimal H-invariant subtree of T ϕ.

If T ϕ
H contains an edge e, then the endpoints of e are respectively elemen-

tary and rigid. If v is the rigid endpoint of e, then Ge Ď Gv Ď H and Gv is
fixed elementwise by some power of Φ.

Proof. Note that, since T ϕ is bipartite, the endpoints of e are respectively
elementary and rigid or QH with fibre. It suffices to prove that an endpoint
v of e cannot be QH with fibre.

Since T ϕ
H contains an edge, it follows that H is not elliptic in T ϕ. Thus,

T ϕ
H is the union of the axes of elements of H. Then, e is contained in the axis

of an element g of H. Recalling the bipartite structure of T ϕ, let v be the
rigid or QH vertex adjacent to e. Then there exists an edge e1 ‰ e adjacent
to v and contained in the axis of g. Let Φ P ϕ be such that PerpΦq “ H
and let N P N˚ be such that ΦN pgq “ g. Since ΦN is elliptic in T ϕ by
Remark 5.6, it fixes pointwise the axis of g. In particular, it fixes e and e1.
By Lemma 5.7, we see that v is rigid and that Gv is fixed elementwise by a
power of Φ. □

Corollary 5.9. Let G be a one-ended hyperbolic group relative to P and
let ϕ “ rΦs P OutpG,Pq. Let rHs P PerNPpϕq and let T ϕ

H be the minimal
H-invariant subtree of T ϕ.

The tree T ϕ
H does not contain a QH with fibre vertex.

Proof. Suppose first that T ϕ
H is reduced to a point v. Then H Ď Gv and v is

not QH with fibre by Lemma 5.5. Suppose now that T ϕ
H is not reduced to a

point. Then any vertex v of T ϕ
H is adjacent to an edge and the result follows

from Corollary 5.8. □

Lemma 5.10. Let G be a one-ended hyperbolic group relative to P and let
ϕ “ rΦs P OutpG,Pq. Let n P N˚ and let Ψ,Θ P ϕn be such that FΨ and FΘ

are elliptic isometries of T ϕ. Suppose that there exist g, h P G loxodromic in
T ϕ, such that Ψpgq “ g, Θphq “ h and Axpgq X Axphq contains an edge e.

There exists N P N˚ such that ΨN “ ΘN .

Proof. First note that FΨ (resp. FΘ) fixes pointwise the axis of g (resp. h).
Therefore, both Ψ and Θ preserves the stabilisers of the endpoints of e. By
construction of T ϕ, one of the endpoints v of e is either a rigid or a QH with
fibre vertex. Moreover, both Ψ and Θ preserve the subgroup associated with
an edge adjacent to v distinct from e.

Therefore, we can apply Lemma 5.7: there exists N P N˚ such that both
ΨN and ΘN act as the identity on the nonelementary subgroup Gv. By
Lemma 5.1, up to taking powers of Ψ and Θ, we have ΨN “ ΘN . □
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Lemma 5.11. Let G be a one-ended relatively hyperbolic group and let ϕ “

rΦs P OutpGq. The set
Ť

nPN PerNPpϕnq is finite. Consequently, there exists
N P N˚ such that any subgroup whose conjugacy class is in

Ť

nPN˚ PerNPpϕnq

belongs to a subgroup whose conjugacy class is in PerNPpϕN q.

Proof. Note that, for every N P N˚ and every Ψ P ϕ, we have PerpΨN q “

PerpΨq. Thus, we will generally take a power of the considered automor-
phisms if needed.

Let T ϕ be the above described tree associated with ϕ. Up to taking a power
of ϕ, we may suppose that ϕ acts trivially on GzT ϕ, that the homomorphism
xϕy Ñ OutpGeq is trivial for every e P ET ϕ and that the homomorphism
xϕy Ñ OutpGvq is trivial for every rigid vertex v.

Counting elliptic subgroups: Let rHs P
Ť

nPN˚ PerNPpϕnq. Suppose
first that every element of H is elliptic in T ϕ. We claim that H is elliptic in
T ϕ. Indeed, otherwise, by acylindricity of the action, there would exist two
distinct g, h P H with Fixpgq X Fixphq “ ∅. Therefore, the element gh P H
would be loxodromic by [CM87, Proposition 1.5], a contradiction. Therefore
the group H is elliptic in T ϕ.

Since rHs P
Ť

nPN˚ PerNPpϕnq, the group H is not contained in the sta-
biliser of a vertex which is elementary. By Corollary 5.8, it is also not con-
tained in the stabiliser of a QH with finite fibre vertex. Therefore, the group
H is contained in the stabiliser of a vertex v which is rigid. By Lemma 5.5,
we have in fact H “ Gv.

In particular, the stabiliser of any vertex of T ϕ contains at most one
conjugacy class of elliptic subgroups in

Ť

nPN˚ PerNPpϕnq. Since the action
of G on T ϕ has finitely many orbits of vertices, the set

Ť

nPN PerNPpϕnq

contains only finitely many conjugacy classes of elliptic subgroups of T ϕ.
Counting subgroups containing loxodromic elements: Suppose

now that H contains a loxodromic element h. Let n P N˚, let Ψ P ϕn

be such that PerpΨq “ H and let N P N˚ be such that ΨN phq “ h. By
Remark 5.6, the isometry FΨN is elliptic. Let D be a finite fundamental
domain for the action of G on T ϕ. Up to taking a conjugate of H, we may
suppose that D contains an edge e of the axis of h.

Let Θ P ϕn with rPerpΘqs P PerNPpϕnq and let h1 P G loxodromic be such
that ΘN ph1q “ h1 and that Axph1q contains e. As above the isometry FΘN

is elliptic in T ϕ. By Lemma 5.10, there exists m P N˚ such that Ψm “ Θm.
Therefore, we see that PerpΨq “ PerpΘq. Hence the conjugacy class of H in
PerNPpϕnq is entirely determined by the edges of the fundamental domain
D contained in translates of axes of elements of H. Since D is finite, and
since the natural map PerNPpϕnq Ñ PerNPpϕpn`1q!q is injective, there exist
only finitely many rHs P

Ť

nPN˚ PerNPpϕnq containing the conjugacy class
of a loxodromic element. (In fact, their number is bounded above by the
number of edges in the fundamental domain.)

As we have ruled out every case, we see that the set
Ť

nPN˚ PerNPpϕnq is
finite.

The second assertion follows from the first since the set
Ť

nPN˚ PerNPpϕn!q
is a nondecreasing sequence of sets exhausting

Ť

nPN˚ PerNPpϕnq. □
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Definition 5.12. Let ϕ P OutpG,Pq and let N P N˚ be the integer given
by Lemma 5.11. If N “ 1, we say that ϕ is almost rotationless.

Note that Lemma 5.11 implies that every element of OutpG,Pq has an
almost rotationless power.

Lemma 5.11 has also the following corollary regarding isogredience classes
of automorphisms. Recall that two automorphisms Φ,Ψ of a group G are in
the same isogredience class if there exists g P G such that Φ “ adgΨad´1

g .
The isogredience class of Φ is contained in its outer class. Lemma 5.11
immediately implies the following.

Corollary 5.13. Let G be one-ended hyperbolic group relative to P and
let ϕ P OutpG,Pq. There exist only finitely many isogredience classes of
automorphisms in ϕ with a nonelementary periodic subgroup.

Notice that Lemma 5.11 implies that there exist only finitely many iso-
morphism classes of nonelementary periodic subgroups for automorphisms
contained in a given outer class. We ask for the following generalisation
when the peripherals are virtually polycyclic.

Question 5.14. Let G be a hyperbolic group relative to virtually polycyclic
groups. Do there exist only finitely many isomorphism classes of nonelemen-
tary periodic subgroups for automorphisms of G?

The case where the peripherals are abelian and G is torsion free follows
from the work of Guirardel–Levitt [GL16a, GL16b].

5.B. The Periodic JSJ tree. We now need to understand vertex stabilisers
of a JSJ tree given by Theorem 4.2 and its acylindricity in order to apply
Theorem 2.5. We set H “

Ť

nPN˚ PerNPpϕnq, and refer to the JSJ tree
relative to P Y H as TPer. (Again, while this notation is neither standard
nor entirely unambiguous, we use it consistently through our proofs.)

We highlight the fact that, if the subgroups in H are finitely generated,
then the acylindricity and the understanding of the vertex stabilisers of TPer

mostly follow from Theorem 4.2 p10q (using our Lemma 5.11 for the other
assumption). The main technical difficulty is thus to show that, when the
periodic subgroups are not finitely generated, we still have a complete un-
derstanding of the stabilisers of rigid vertices.

Remark 5.15. Note that, by Lemma 5.11, there exists an almost rotation-
less power ϕN of ϕ such that every subgroup of G whose conjugacy class
is in H is contained in a subgroup whose conjugacy class is in PerNPpΦN q.
Thus, every pA,P Y Hq-tree is an pA,P Y PerNPpΦN qq-tree, and conversely.
Thus the JSJ tree of G relative to P Y H is also the JSJ tree relative to
P Y PerNPpΦN q (see [GL17, Definition 2.12]). Thus, we only need to work
with almost rotationless automorphisms and we will still get results regarding
the periodic JSJ tree associated with an arbitrary automorphism.

Let ϕN be an almost rotationless power of ϕ. Let PerNPpϕN q “ trH1s, . . . , rHksu

where, for every i P t1, . . . , ku, the group Hi is not elementary and there ex-
ist Φi P ϕN such that Hi “ PerpΦiq. Note that, for every i P t1, . . . , ku,
Theorem 4.2(9) gives that the group Hi fixes a unique rigid vertex vi in TPer

since Hi is nonelementary.
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Recall the construction of T ϕ at the beginning of Section 5.A. Note that
the trees T ϕ and TPer are compatible. Let T ref be the unique minimal tree
which refines T ϕ and TPer. We denote by pϕ : T ref Ñ T ϕ and pPer : T

ref Ñ

TPer the associated G-equivariant projections. The tree T ref satisfies the
following properties: a subgroup H of G stabilises a point in T ref if and
only if H stabilises a point in both T ϕ and TPer. Moreover, for every edge
e P ET ref , at least one of the images pϕpeq or pPerpeq is not reduced to a
point.

Note that, since the actions of G on T ϕ and TPer are acylindrical, by min-
imality of T ref , the action of G on T ref is also acylindrical. (Any sufficiently
long path in T ref will project to a path of length at least 3 in at least one
of T ϕ and T ref ; edge stabilisers are not changed by the projection map, and
so the stabiliser of the path must have been finite to begin with.) Moreover,
by uniqueness of T ref , and since the outer automorphism ϕ preserves T ϕ and
TPer, we see that ϕ also preserves T ref .

For i P t1, . . . , ku, let FΦi be the isometry of T ref induced by Φi. As in
Remark 5.6, one can show that FΦi is elliptic in T ref (this uses the acylin-
dricity of the action of G on T ref). For every i P t1, . . . , ku, let T ref

Hi
be the

minimal tree of Hi in T ref . It might be that every element of some Hi is
elliptic in T ref : in this case the acylindricity of T ref implies that the whole
subgroup Hi is also elliptic. Then Hi stabilises a vertex in both TPer and
T ϕ; since Hi is non-elementary these vertices are unique. But since every
edge of T ref survives in the projection to at least one of T ϕ and TPer, there
cannot be an edge of T ref stabilised by Hi, and we may take the unique fixed
vertex as the minimal invariant tree in this case.
Lemma 5.16. Suppose that ϕ is almost rotationless. Let H “ PerpΦq, v a
vertex in its minimal invariant tree T ref

H , and FΦ the isometry of T ref induced
by Φ. There exists n P N such that FΦn fixes v.
Proof. If T ref

H consists of a single vertex v, then this is the unique vertex
stabilised by H. Since Φ preserves H, FΦ must also fix v. Otherwise, the
vertex v is contained in the axis of some g P H. In particular, since g is
periodic, there exists n P N˚ with Φnpgq “ g, and hence FΦn preserves this
axis. Since FΦ is elliptic in T ref , the isometry FΦn fixes elementwise the axis
of g. In particular, FΦn fixes the vertex v. □

Proposition 5.17. Let G be a one-ended hyperbolic group relative to P and
let Φ and Ψ be two representatives of an almost rotationless ϕ P OutpG,Pq.
Let H “ PerpΦq and K “ PerpΨq be two non-elementary periodic subgroups
of ϕ, perhaps conjugate. Then their minimal invariant trees T ref

H and T ref
K

have non-empty intersection if and only if H “ K.
Proof. If H “ K then the minimal invariant trees T ref

H and T ref
K are equal,

so only one direction needs proof. Consider the minimal invariant trees of H
and K in T ϕ. If T ϕ

H and T ϕ
K do not intersect, then neither do T ref

H and T ref
K ,

so for the remainder of the proof we assume there is an intersection here. If
the intersection contains an edge, Lemma 5.10 implies that H “ K, so from
now on assume the intersection is a single vertex v “ T ϕ

H X T ϕ
K .

Each of H and K stabilise a unique rigid vertex in TPer, and whenever
H ‰ K we will construct an pA,PYPerNPpϕqq-tree where H and K stabilise
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different vertices. This prevents xH,Ky being contained in a rigid vertex
group, by Theorem 4.2(9). But then the rigid vertices stabilised by H and
K are distinct, and the trees in T ref (containing T ref

H and T ref
K as subtrees)

collapsing to them must be disjoint.
We distinguish two cases, according to the nature of v. Note that v is not

QH with fibre by Corollary 5.9.
Case 1: v is a rigid vertex. By Lemma 5.5 if H or K is elliptic

and Corollary 5.8 otherwise, there exists N P N˚ such that Stabpvq Ď

FixpΦN q and Stabpvq Ď FixpΨN q. Hence both ΨN and ΦN fix elementwise
the same nonelementary subgroup. By Lemma 5.1, we see that H “ K.

Case 2: v is elementary. Let Tv be the set of minimal trees T ϕ
K with

rKs P PerNPpϕq which contain v. Since, for every rKs P PerNPpϕq, the group
K is nonelementary, no tree S P Tv is reduced to a point. By Lemma 5.10,
for all distinct S, S1 P Tv, the intersection S X S1 is reduced to v. Let Epvq

be the set of edges in S adjacent to v. We have a partition

Epvq “ E
ž

pESqSPTv

where for every e P E, the edge e is not contained in any S P Tv and, for
every S P Tv and every e P ES , the edge e is contained in S.

Let Sv be the tree with one central vertex v0 adjacent to all the other
vertices and that the leaves vS are indexed by the trees S P Tv. We suppose
that the stabiliser of v0 is equal to Stabpvq and, for every S P Tv, that the
stabiliser of vS is equal to StabpESq. Let T 1 be the tree obtained from T by
blowing up Sv at v and attaching for every e P E, the edge e to v0 and for
every S P Tv and every e P ES , by attaching the edge e to vS .

Note that the tree T 1 obtained is an pA,Pq-tree. Moreover, for any
rK1s, rK2s P PerNPpϕq with T ϕ

K1
‰ T ϕ

K2
P Tv the minimal trees of T 1

K1
and

T 1
K2

of K1 and K2 in T 1 are disjoint.
Let U be the pA,P YHq-tree obtained from T 1 by collapsing the minimal

tree of every H with rHs P PerNPpϕq. Then K and H fix distinct points
in U . Thus, U is an pA,P Y Hq-tree where H and K fix distinct points.
By Theorem 4.2 p7q, the groups H and K fix distinct rigid vertices in TPer.
Therefore, the minimal trees T ϕ

H and T ϕ
K of H and K in T ref are disjoint. □

Lemma 5.18. Suppose ϕ is almost rotationless. For every H P PerNPpϕq,
the stabiliser of the vertex vH of TPer is equal to the global stabiliser GT ref

H

of the minimal tree T ref
H of H in T ref .

Proof. First note that, since the projection pPer : T ref Ñ TPer is equivariant,
the tree T ref

H collapses onto vH . Thus, we have GT ref
H

Ď StabpvHq.
Conversely, let U be the pA,P YHq-tree obtained from T ref by collapsing,

for everyH P PerNPpϕq, the tree T ref
H . For everyH P PerNPpϕq, let wH be the

vertex of U fixed by H. Note that, by Lemma 5.17, for any H,K P PerNPpϕq

and every g P G such that gHg´1 ‰ K, the trees gT ref
H and T ref

K are disjoint.
Thus, the stabiliser of wH is equal to GT ref

H
. Since the vertex vH of TPer is

rigid in every pA,P Y Hq-tree (see Theorem 4.2 p7q), the group StabpvHq is
elliptic in U and contains H. As H fixes a unique point in U , which is wH ,
we see that StabpvHq Ď GT ref

H
. □
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Lemma 5.19. Suppose that ϕ is almost rotationless. Let H P PerNPpϕq

and let v P V T ref
H . Then Stabpvq Ď H or the intersection Stabpvq X H is

elementary. In this case Stabpvq admits a (non-reduced) splitting Stabpvq “

Stabpvq ˚HXStabpvq pH X Stabpvqq with elementary edge stabilisers.

Proof. By Lemma 5.16, up to taking a power of ΦH , we may suppose that
FΦH

fixes v. Let pϕpvq be the projection of v in T ϕ. We distinguish between
several cases, according to the nature of pϕpvq. Note that, by Corollary 5.9,
the vertex pϕpvq is not QH with fibre.

Suppose that pϕpvq is elementary. Then Stabpvq is elementary. Thus,
Stabpvq splits naturally as Stabpvq “ Stabpvq ˚HXStabpvq pH X Stabpvqq and
H X Stabpvq is elementary.

Suppose now that pϕpvq is rigid. By Lemma 5.4 applied to pϕpvq, up to
taking a power of ΦH , we may suppose that ΦH acts on Stabppϕpvqq as a
global conjugation by an element g P Stabppϕpvqq.

If g is finite, up to taking a power of ΦH , we see that ΦH acts as the
identity on Stabpp0pvqq, so that Stabpvq Ď Stabpp0pvqq Ď H.

So we may suppose that g is infinite. Then H X Stabppϕpvqq consists
of all elements h P Stabppϕpvqq which commute with a power of g. But
the commensurator of xgy in G is elementary (because maximal elementary
subgroups are almost malnormal, see [GL15, Corollary 3.2]). Thus, the group
H X Stabppϕpvqq is elementary. Hence the group H X Stabpvq is elementary
and the splitting Stabpvq “ Stabpvq ˚HjXStabpvq pHj X Stabpvqq is over an
elementary subgroup.

As we have ruled out every case, this concludes the proof. □

Lemma 5.20. Suppose that ϕ is almost rotationless. For every H P PerNPpϕq,
and the unique vertex vH P TPer it stabilises, we have StabpvHq “ H.

Proof. Let H P PerNPpϕq. By Lemma 5.18, it suffices to show that the
stabiliser GT ref

H
of T ref

H is equal to H.

Claim 1. The stabiliser of any edge of T ref
H is contained in H.

Proof. Let e P ET ref
H . Note that e is contained in the axis of an element

g P H. Since H is elliptic in TPer, the image pPerpeq of e in TPer is collapsed
to a point.

By minimality of T ref , the image pϕpeq is an edge, and Ge “ Gpϕpeq. By
Corollary 5.8, any edge contained in T ϕ

H is adjacent to a rigid vertex v, and
Gpϕpeq ď Gv ď H. ■

Claim 2. Let v P V T ref
H . The stabiliser Stabpvq of v in G is contained in

H.

Proof. Suppose towards a contradiction that Stabpvq is not contained in H.
By Lemma 5.19, there exists of splitting Sv of Stabpvq with elementary edge
stabilisers such that H X Stabpvq fixes a point w in Sv distinct from any
point fixed by Stabpvq. This splitting induces a refinement T 1 of T ref by
blowing up Sv at the vertex v and attaching the adjacent edges accordingly.
We make the additional assumption that if e is an edge in T ref adjacent to
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v such that Stabpeq Ď Stabpwq, then we attach e to w. The tree T 1 is an
pA,Pq-tree since any edge of T ref or Sv is elementary and since Stabpvq fixes
a point in Sv if v is elementary by Lemma 5.19.

By Claim 1, every edge of T ref is attached to w when blowing up the
splitting Sv. Therefore, the minimal tree T 1

H of H in T 1 does not contain
any vertex stabilised by Stabpvq. Collasping, for every K P PerNPpϕq, the
tree T 1

K gives an pA,P Y PerNPpϕqq-tree U such that StabpvHq does not fix
a point in it. This contradicts the fact that StabpvHq is elliptic in every
pA,P Y PerNPpϕqq-tree (see Theorem 4.2 p7q). Hence, we have Stabpvq Ď

H. ■

Claim 3. Suppose that g P GT ref
H

. Then g P H.

Proof. If g is elliptic, then since g preserves T ref
H , one of its fixed point is

contained in T ref
H . By Claim 2, we see that g P H.

So we may suppose that g is loxodromic in T ref . We claim that there
exists v P V T ref

H with infinite nonelementary stabiliser. Indeed, first note
that T ref

H is not reduced to a point as g is loxodromic. In particular, H does
not fix a point of T ref . Thus, by minimality of T ref , the projection pϕpT ref

H q

is nontrivial. By Corollary 5.9, the tree pϕpT ref
H q contains a rigid vertex and

the preimage in T ref of such a rigid vertex contains a vertex v with infinite
nonelementary stabiliser.

Let h P Stabpvq be of infinite order. Since the action of G on T is acylin-
drical, up to taking a vertex v far enough from the axis of g, we may suppose
that h and ghg´1 do not have a common fixed point in T . In particular, they
generate a nonabelian free group by standard ping pong arguments. More-
over, this nonabelian free group contains a finitely generated nonabelian free
subgroup L consisting of loxodromic elements, hence consisting of nonpe-
ripheral elements.

Note that h, ghg´1, g2hg´2 P H since g preserves T ref
H and since any vertex

stabiliser of T ref
H is contained in H by Claim 2. Thus, up to taking a power

of Φ, we may suppose that xL, gLg´1y ď xh, ghg´1, g2hg´2y ď FixpΦq. Let
K “ trxL, gLg´1ysu and let TK be the canonical JSJ tree associated with K
given by Theorem 4.2.

Since xL, gLg´1y is nonelementary, it fixes a unique rigid point w P V TK
by Theorem 4.2 p9q. We claim that g fixes w. Indeed, otherwise the path
between w and gw would be fixed by gLg´1 which is a nonelementary sub-
group. This would contradict Theorem 4.2 p2q.

Hence we have g P Stabpwq. Since w is rigid and since xL, gLg´1y is
finitely generated, by Theorem 4.2 p10q, the automorphism Φ acts as a global
conjugation on Stabpwq. Since Φ fixes L which is nonelementary, it must act
as a periodic automorphism of Stabpwq. In particular, we have g P H, which
concludes the proof of the claim. ■

Combining Lemma 5.18 and by Claim 3, we see that the stabiliser of vH
is equal to H, which concludes the proof. □

Theorem 5.21. Let G be a one-ended hyperbolic group relative to P and
let ϕ “ rΦs P OutpG,Pq. Let ϕN be an almost rotationless power of ϕ.
For every rigid vertex v P V TPer, there exists rHs P PerNPpϕN q such that
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Stabpvq “ H. Conversely, for every rHs P PerNPpϕN q, there exists a rigid
vertex v P V TPer with Stabpvq “ H.

Proof. Up to taking a power of ϕ, we may assume that ϕ is almost rotationless
(see Remark 5.15). Let v P V TPer be rigid. We claim that there exists
rHs P PerNPpϕq with H ď Stabpvq. Consider the pre-image of v in T ref . If
it is a vertex, then Stabpvq also stabilises a non-elementary vertex w of T ϕ.
If w is rigid, then xϕy0 Ñ OutpGvq has finite image, so Stabpvq is periodic
for some ϕk, and so for ϕ (since we assume it is almost rotationless).

Otherwise w is a QH with fibre vertex. Note that all elementary subgroups
of Stabpwq are virtually cyclic. In particular, the edges adjacent to v P V TPer

are all virtually cyclic, hence finitely generated. Thus, Stabpvq is a finitely
generated subgroup of Stabpwq. Since w is a QH with fibre vertex, it is
locally quasi-convex. Thus, Stabpvq is hyperbolic.

Note that, since Stabpvq is hyperbolic and a subgroup of Stabpwq, the
restriction P YPerNPpϕq|Stabpvq of P YPerNPpϕq to Stabpvq is a finite family
of virtually cyclic subgroups of Stabpvq by Lemma 5.2. Thus, we can ap-
ply [GL15, Theorem 3.9] to show that OutpStabpvq,P Y PerNPpϕq|Stabpvq Y

Incvq (which has OutpStabpvq,P Y pPerNPpϕq|Stabpvq Y Incvqptqq as a finite in-
dex subgroup) is infinite if and only if Stabpvq has an pA,PYPerNPpϕq|StabpvqY

Incvq-splitting. Since v is rigid, no such splitting of Stabpvq exists. There-
fore, OutpStabpvq,P|Stabpvq YPerNPpϕq|Stabpvq Y Incvq is finite. In particular,
the group Stabpvq is a nonelementary periodic subgroup of some power of ϕ.

Now suppose that the pre-image of v contains an edge. Since v is non-
elementary, in fact this pre-image must be the minimal invariant tree T ref

Stabpvq
.

If this is contained in T ref
H for some H P PerNPpϕq, then v is the unique vertex

of TPer stabilised by H, and by Lemma 5.20 Stabpvq (as the stabiliser of this
vertex) is equal to H.

So suppose T ref
Stabpvq

is not contained in any T ref
H . Since the T ref

H are disjoint
by Proposition 5.17, there is some edge of T ref

Stabpvq
contained in no T ref

H , and
hence collapsing all the T ref

H will give an pA,PYPerNPpϕqq tree where Stabpvq

is not elliptic, contradicting Theorem 4.2(7).
Conversely, let rHs P PerNPpϕq. By construction of TPer, the group H

fixes a vertex v of TPer. Since H is nonelementary, such a vertex is unique
and is rigid by Theorem 4.2 p10q. By Lemma 5.20, we have Stabpvq “ H. □

Corollary 5.22. Let G be a one-ended hyperbolic group relative to P and
let Φ P AutpG,Pq. Let H “

Ť

nPN˚ PerNPpϕnq.

(1) For every geodesic edge path γ of TPer of length 3 and every auto-
morphism Ψ P ϕ preserving γ, there exist a vertex v of γ and g P Gv

of infinite order fixed by a power of Ψ.
(2) The group GΦ acts acylindrically on TPer.

Proof. Let γ be a geodesic edge path of length 3 in TPer preserved by an
automorphism Ψ P ϕ. Suppose that there exists an edge e of γ whose
stabiliser is virtually cyclic (this applies in particular when one of the vertices
of γ is QH with fibre). Hence OutpGeq is finite. Thus, Ψ has a power acting
as the identity on the infinite cyclic subgroup of Ge.
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Thus, we may suppose that γ only contains elementary and rigid vertices.
Since γ has length 3 and since TPer is bipartite, it contains an interior vertex
v which is rigid. Let e1, e2 be the two edges of γ adjacent to v. Then
Ge1 XGe2 is finite by Theorem 4.2 p8q and for every i P t1, 2u the group Gei

is its own normaliser in Gv.
Let ϕN be an almost rotationless power of ϕ. By Theorem 5.21, there

exists rHs P PerNPpϕN q such that Stabpvq “ H. Let ΦH P ϕN be such that
PerpΦHq “ H. Since Ψ preserves H, and since H is its own normaliser by
Lemma 5.20, there exists h P H such that ΨN “ adhΦH . As ΨN preserves
both Ge1 and Ge2 , we see that h P NpGe1q X NpGe2q, which is finite as
explained above. Up to taking a power of ΦH and ΨN , we may assume that
both ΦH and ΨN act trivially on NpGe1q X NpGe2q. Taking further powers
of ΨN and ΦH shows that there exists M P N such that ΨM “ ΦM

H .
Let g P H be infinite order, which exists since H is nonelementary. Then

Ψ has a power which fixes g. This proves Assertion p1q.
We now prove that the action of GΦ on TPer is acylindrical. Note that, if

a finite index subgroup of GΦ acts acylindrically on TPer, so does GΦ. Thus,
we may assume that ϕ is almost rotationless.

By Theorem 4.2 p2q, the action of G on TPer is acylindrical. Thus, by
Lemma 4.3 p3q (which we can apply by Assertion p1q), it suffices to prove
that, for every n P N˚, every Ψ P ϕn and every g P FixpΨnq, the element g
is elliptic in T .

Since ϕ is almost rotationless, in order to prove Assertion p2q, it suffices
to prove that, for every n P N˚, every Ψ P ϕ and every g P FixpΨnq, the
element g is elliptic in T .

Let g be as above. If g is peripheral, then g fixes a point by construction
of TPer.

Suppose now that g is nonperipheral. Suppose towards a contradiction
that g is loxodromic in TPer. Since Ψnpgq “ g, the characteristic set of
the isometry FΨn contains the axis of g. By Lemma 4.3 p2q, up to taking
a power of ϕ and changing the representative Ψ, the isometry FΨn fixes
pointwise the axis of g. By Lemma 4.3 p1q, up to taking a power of Ψ, the
automorphism Ψ fixes elementwise a nonabelian free group of loxodromic
elements. In particular, since every peripheral element fixes a point in TPer,
we see that Ψ fixes a nonabelian free group of nonperipheral elements. Since
ϕ is almost rotationless, for every n ě 1, we have PerNPpϕq “ PerNPpϕnq,
we see that rPerpΨqs P PerNPpϕq. Thus, there exists rHs P PerNPpϕq such
that g P FixpΨq Ď H. In that case, the element g is elliptic in TPer by
construction of TPer, a contradiction.

Therefore, the element g is elliptic in TPer and we can apply Lemma 4.3 p3q

to prove that the action of GΦ on TPer is acylindrical. □

Let G be a finitely generated group and let Φ P AutpGq. Suppose that Φ
has a power which preserves the conjugacy class of a malnormal subgroup
F of G. We then denote by FΦ the group F ¸adg˝ΦnF Z, where nF is the
minimal positive integer such that ΦnF preserves the conjugacy class of F
and g P G is such that adg ˝ ΦnF pF q “ F . Since F is malnormal, the group
FΦ does not depend on g. Note that the group FΦ only depends on the outer
class of Φ.
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Corollary 5.23. Let G be a one-ended hyperbolic group relative to P and
let Φ P AutpG,Pq. If for every rP s P P the group PΦ is in FJCX, then GΦ

is in FJCX.

Proof. Consider the action of GΦ on TPer. By Corollary 5.22, the action
of GΦ on TPer is acylindrical. Up to taking a power of Φ (which does not
change the conclusion by Theorem 2.1), we may assume that ϕ “ rΦs is
almost rotationless.

By Theorem 2.5, it suffices to show that, for every v P V TPer, the stabiliser
pGΦqv of v in GΦ belongs to FJCX. Note that, for every v P V TPer, the
group pGΦqv can be written as a semi direct product Gv ¸ Z, where Gv is
the stabiliser of v in G.

Suppose first that Gv is elementary. If Gv Ď P for some rP s P P, then
pGΦqv is a subgroup of PΦ. In particular, it belongs to FJCX by Theo-
rem 2.1 p1q. If Gv is infinite virtually cyclic, then pGΦqv belongs to FJCX.

Suppose now that Gv is QH with fibre. Then Gv fits in a short exact
sequence

1 Ñ F Ñ Gv Ñ π1pΣvq Ñ 1,

where Σv is a hyperbolic 2-orbifold and F is finite. Moreover, up to taking a
power of Φ (which is possible by Theorem 2.1 p2q), since OutpGvq has a finite
index subgroup acting as the identity on F , there exists Ψ P ϕ preserving
Gv and fixing F elementwise. Thus, we have a short exact sequence

1 Ñ F Ñ pGΦqv Ñ π1pΣvq ¸ Z Ñ 1.

The groups F and π1pΣvq ¸ Z belong to FJCX. For the latter one may use
that surface bundles over the circle are locally CATp0q and apply [Weg12].
Moreover, for every virtually cyclic group Q Ď π1pΣvq ¸ Z, the preimage of
Q in pGΦqv is virtually cyclic, and hence belongs to FJCX. Thus, the group
pGΦqv belongs to FJCX.

Suppose that Gv is rigid. By Theorem 5.21, since ϕ is almost rotationless,
there exists rHs P PerNPpϕq such that Gv “ H.

Suppose that Φ P ϕ is such that PerpΦq “ H. Then pGΦqv is isomorphic
to PerpΦq ¸Φ Z. By Lemma 2.6, we have pGΦqv P FJCX.

As we have ruled out every case, for every v P V TPer, the group pGΦqv
belongs to FJCX. By Theorem 2.5, the group GΦ belongs to FJCX. □

5.C. An aside on slender peripherals. We also isolate here an interest-
ing consequence of Theorem 5.21 for automorphisms of groups hyperbolic
relative to slender groups. Recall that a group is slender if all its subgroups
are finitely generated.

Theorem 5.24. Let G be a hyperbolic group relative to a collection P of
slender groups and let Φ P AutpGq. There exists N P N˚ such that PerpΦq “

FixpΦN q and PerpΦq is finitely generated.

Proof. See also the proof of [GL15, Theorem 8.2]. We claim that it suffices
to prove that PerpΦq is finitely generated. Indeed, suppose that PerpΦq

is generated by a1, . . . , an. For every i P t1, . . . , nu, let ki be such that
Φkipaiq “ ai. Let N “ k1 . . . kn. Then PerpΦq “ FixpΦN q.

So we prove that PerpΦq is finitely generated. Note that slender groups
are NRH groups, so that AutpGq “ AutpG,Pq. Note also that, since P is a
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set of conjugacy classes of slender groups, every elementary subgroup of G
is finitely generated. Thus, we may suppose that PerpΦq is not elementary.

Let ϕ “ rΦs P OutpGq. Suppose first that G is one-ended relative to
H “ PerNPpϕq. Let TPer be the associated JSJ tree.

Since edge stabilisers of TPer are elementary, they are all finitely generated.
Thus, every vertex stabiliser of TPer is also finitely generated.

By Theorem 5.21, the group PerpΦq is equal to the stabiliser of a vertex
of TPer, hence is finitely generated.

Suppose now that G is not one-ended relative to H and consider a minimal
reduced Stallings-Dunwoody decomposition S of G such that, for every rHs P

PYH, the group H is contained in the stabiliser of a vertex of S. Recall that
edge stabilisers in S are all finite. Since PerpΦq is infinite, it fixes a unique
vertex v. Since the deformation space of S (see [GL07]) is invariant by Φ,
the group ΦpGvq also fixes a unique vertex w in S. As PerpΦq Ď ΦpGvq and
as PerpΦq only fixes v, we see that v “ w. This shows that ΦpGvq “ Gv.

Note that, by minimality of S, the group Gv is one-ended hyperbolic
relative to the restriction Pv of P in Gv. Since P is a set of conjugacy
classes of slender groups, so is Pv. Thus, the conclusion follows from the
one-ended case applied to the restriction Φ|Gv . □

We remark that Minasyan–Osin [MO12, Corollary 1.3] also proved that
the fixed subgroup of the automorphism of any hyperbolic group relative to
slender groups is finitely generated.

6. A combination theorem for the Farrell–Jones conjecture

Let G be a finitely generated group and let Φ P AutpGq. If F is a malnor-
mal subgroup of G whose conjugacy class is Φ-periodic, recall the definition
of FΦ from just above Corollary 5.23. In this section, we prove the following
combination theorem.

Theorem D. Let G “ G1˚. . .˚Gk˚FN be a free product of finitely generated
groups, let F 1 “ trG1s, . . . , rGksu and let Φ P AutpG,F 1q. If for each i P

t1, . . . , ku, the group pGiqΦ is in FJCX, then G¸Φ Z is in FJCX.

The proof of Theorem D is by induction on k ` N . Let F 1 ď F be a
maximal proper Φ-periodic free factor system. Up to taking a power of Φ
(which does not change the conclusion of Theorem D by Theorem 2.1 p2q),
we may suppose that Φ P AutpG,Fq. We will distinguish between two cases,
according to whether F is sporadic or not.

6.A. The nonsporadic case.

Lemma 6.1. Let G “ G1 ˚ . . . ˚ Gk ˚ FN be a free product of groups, let
F “ trG1s, . . . , rGksu and let Φ P AutpG,Fq be fully irreducible. If for each
i P t1, . . . , ku, the group pGiqΦ is in FJCX, then G¸Φ Z is in FJCX.

Proof. Let S be the Grushko pG,Fq-tree given by Lemma 3.3. Let PSpΦq

be the ∥.∥S-maximal polynomial subgroups of Φ. By Theorem 3.2, up to
taking a power of Φ (which does not change the conclusion of Lemma 6.1 by
Theorem 2.1 p2q) the group G¸Φ Z is hyperbolic relative to the suspension
of PSpΦq. By Proposition 3.4, for every rP s P PSpΦq, either rP s P F or P
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is infinite cyclic. In either case PΦ is contained in FJCX. By Theorem 2.4,
the group G¸Φ Z is contained in FJCX. □

6.B. The sporadic case. This section follows [BFW23, Proof of Proposi-
tion 4.1]. Let pG,Fq be a sporadic free product and let Φ P AutpG,Fq. Since
pG,Fq is sporadic, the automorphism Φ induces a G-equivariant homeomor-
phism of the Bass-Serre tree TF associated with F . This induces an action
of G ¸Φ Z on TF . However, this action is not necessarily acylindrical. In
order to apply Theorem 2.5, we will consider the action of G ¸Φ Z on the
tree of cylinders of TF associated with an admissible relation that we now
describe.

Let t be a generator of the Z-factor. Up to taking a finite index subgroup
of G ¸Φ Z (which is possible by Theorem 2.1 p2q), we may suppose that t
fixes an edge e. In that case, edge stabilisers of the action of G¸Φ Z are all
infinite cyclic, generated by conjugates of t. Therefore, the commensurabil-
ity relation is an admissible equivalence relation, and we define the tree of
cylinders Tc of TF relative to this admissible relation.

Lemma 6.2. Let Y be the cylinder of TF containing e. The stabiliser of Y
in G¸Φ Z is isomorphic to xFixpΦnqynPN ¸Φ Z.

Proof. Note that any element h P G¸Φ Z can be written uniquely as w´1tj ,
where w P G and j P Z. Let w´1tj P StabpY q with w P G and j P Z and let
e1 “ w´1tje. Then we have Ge1 “ xw´1twy. Moreover, since e, e1 P EY , by
definition of the commensurability relation, there exist n,m P N such that

tn “ w´1tmw “ w´1Φmpwqtm.

In particular, we see that n “ m and Φmpwq “ w. □

Lemma 6.3. The action of G¸Φ Z on Tc is acylindrical.

Proof. The proof is identical to [BFW23, Lemma 4.6]. Let v, v1 P V Tc with
dTcpv, v1q ě 6. We may suppose that v and v1 correspond to vertices w and
w1 in TF up to considering adjacent vertices in the path between them. Even
after this operation, we have dTcpv, v1q ě 4.

Let g P Gv X Gv1 . Then g fixes the path in TF between w and w1. Since
dTcpv, v1q ě 4, the path in TF between w and w1 must contain two edges
in distinct cylinders. Hence g fixes two edges in distinct cylinders. Since
edge stabilisers in TF are infinite cyclic and since we are considering the
commensurability relation, two edges in TF are in the same cylinder if and
only if the intersection of their stabilisers is nontrivial. In particular, this
shows that g is trivial and that the action of G¸ΦZ on Tc is acylindrical. □

Lemma 6.4. Let pG,Fq be a sporadic free product of groups and let Φ P

AutpG,Fq. If for each rAs P F , the group AΦ is in FJCX, then G ¸Φ Z is
in FJCX.

Proof. Let TF be the Bass-Serre tree associated with F and let Tc be its tree
of cylinders relative to the commensurability relation. We want to apply
Theorem 2.5 to the action of G ¸Φ Z on Tc. This action is acylindrical by
Lemma 6.3. Thus, it suffices to prove that every vertex stabiliser belongs to
FJCX.
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Recall that we have a bipartition of V Tc “ V0Tc
š

V1Vc, where vertices in
V0Tc correspond to vertices of TF and vertices in V1Tc correspond to cylinders
of Tc.

If v P V0Tc, then its stabiliser is isomorphic to AΦ. In that case, the
stabiliser of v belongs to FJCX by hypothesis.

Suppose now that v P V1Tc. By Lemma 6.2, the stabiliser of v is isomor-
phic to PerpΦq ¸Φ Z. By Lemma 2.6, the group PerpΦq ¸Φ Z belongs to
FJCX.

Thus, every vertex stabiliser of the action of G ¸Φ Z on Tc belongs to
FJCX. By Theorem 2.5, the group G¸Φ Z belongs to FJCX. □

6.C. End of the proof of Theorem D. Let G “ G1 ˚ . . . ˚ Gk ˚ FN be
a free product of groups, let F 1 “ trG1s, . . . , rGksu and let Φ P AutpG,F 1q.
We prove by induction on k `N that G P FJCX.

Suppose first that k`N “ 1. If N “ 0, then G “ G1 and G¸ΦZ P FJCX

by hypothesis. If k “ 0, then G “ Z, G¸ΦZ is solvable and the result follows
from [Weg15]. This proves the base case.

Suppose now that k`N ě 2 and let F be a maximal Φ-periodic free factor
system. We may assume, up to taking a power of Φ, that F is Φ-invariant,
so that we can view Φ as an element of AutpG,Fq. This is possible by
Theorem 2.1 p2q as, for every n P N, the group G ¸Φn Z is a finite index
subgroup of G¸Φ Z.

By induction hypothesis, for every rAs P F , the group AΦ belongs to
FJCX. Combining the nonsporadic case (Lemma 6.1) and the sporadic case
(Lemma 6.4), we conclude that G ¸Φ Z belongs to FJCX. This concludes
the proof. □

6.D. Proving Theorem A. We first record a corollary of Theorem D.

Corollary 6.5. Let pG,Pq be a virtually torsion-free relatively hyperbolic
group with P finite and let Φ P AutpG,Pq. If for every rP s P P we have
PΦ P FJCX, then GΦ P FJCX.

Proof. By Theorem 2.1 we may assume G is torsion-free. Let F be the
minimal free factor system of G such that, for every rP s P P, there exists
rAs P F with P Ď A. Since Φ P AutpG,Pq, by minimality of F , we have
Φ P AutpG,Fq. Let rAs P F . We denote by PA the peripheral structure of A
induced by P. Since G is torsion-free, the group A is one-ended hyperbolic
relative to PA. By Corollary 5.23 the group AΦ belongs to FJCX. By
Theorem D, the group GΦ belongs to FJCX. □

Finally, combining Corollary 5.23 and Corollary 6.5 proves our first theo-
rem from the introduction.

Theorem A. Let pG,Pq be a virtually torsion-free or one-ended relatively
hyperbolic group with P finite and let Φ P AutpG,Pq. If for every rP s P P
we have PΦ P FJCX, then GΦ P FJCX.

We now discuss the (minor) changes to the proof used to prove the fol-
lowing theorem.
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Theorem E. Suppose pG,Pq is one-ended or virtually torsion free, and
hyperbolic relative to finitely many conjugacy classes of slender subgroups.
Then for every automorphism Φ of G, Γ :“ G¸Φ Z is in ACpVNilq.

Proof. Knopf’s work on acylindrical actions of trees applies equally well in
the setting of ACpVNilq (see [Kno19, Corollary 4.2] and [BFW23, Theo-
rem 2.4], note that Knopf does not state this but it is implicit in her work).
We use the same trees as every step of the proof of Theorem A. Whenever
a vertex group is identified as PerpΦq ¸Φ Z, use Theorem 5.24 to further
identify it as some FixpΦkq ¸Φ Z. As this has a finite index subgroup iso-
morphic to FixpΦkq ˆZ, and ACpVNilq passes to both subgroups and direct
products, this vertex group lies in ACpVNilq. □

7. Proofs of the applications

Our first application is to extensions of groups with relatively hyperbolic
kernel.

Corollary B. Let pN,Pq be a virtually torsion-free or one-ended relatively
hyperbolic group such that P consists of finitely many conjugacy classes of
groups which are NRH and whose suspensions P ¸Ψ Z are in FJCX for all
automorphisms Ψ of P . Let 1 Ñ N Ñ Γ Ñ Q Ñ 1 be a short exact sequence.
If Q is in FJCX, then Γ is in FJCX.

Proof. Since for all rP s P P the group P is NRH we have that AutpG,Pq is
a finite index subgroup of AutpGq. Let Φ P AutpGq. The suspension GΦ has
a finite index subgroup GΦn such that Φn P AutpG,Pq. Now, Theorem A
implies that GΦn is in FJCX. It follows from Theorem 2.1 that GΦ is in
FJCX. The result now follows from Theorem 2.2. □

Our other application is that AutpGq is in FJCX for G a one-ended group
hyperbolic relative to finitely many conjugacy classes of polycyclic subgroups.
Before we prove this, we collect some results.

Theorem 7.1 ([GL15, Theorem 4.3]). Let pG,Pq be a relatively hyperbolic
group. Suppose for every rP s P P, the group P is finitely generated. If G is
one-ended relative to P, then there is a short exact sequence

1 Ñ T Ñ Out0pG,Pq Ñ

p
ź

i“1

MCG0pSiq ˆ
ź

j

OutpPj , Inc
ptq
Pj

q Ñ 1

where
(1) T is a quotient of a finite direct product where each factor is virtually

cyclic or contained in some P for P P P;
(2) MCG0pSiq maps onto a finite index subgroup of the extended mapping

class group MCG˚pSiq with finite kernel (they are virtually isomor-
phic).

Proposition 7.2. If G is a virtually polycyclic group, then G, OutpGq and
AutpGq are in FJCX.

Proof. By [BG06, Theorem 1.1] we see that OutpGq is an arithmetic group.
Hence, OutpGq is in FJCX by [BFL14]. Technically they only prove the con-
jecture for K- and L-theory but it follows for A-theory by [Rüp16], [Kno19,
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Proof of Theorem 1.8(a)], and [ELP`18, Theorem 6.19]. Alternatively, one
may use [ELP`18] and [KUWW18].

Since G is virtually soluble it is in FJCX by [Weg15] (for K- and L-
theory), [KUWW18] (for A-theory), and Theorem 2.1. Now, a virtually
polycyclic group is poly-{virtually cyclic}, so any extension G ¸ Z is also
virtually polycyclic. Thus, G ¸ Z is in FJCX. Further, note that G{ZpGq

is virtually polycyclic and so in FJCX. Combining these observations with
Theorem 2.2 shows that AutpGq is in FJCX. □

Proposition 7.3. The mapping class group of a hyperbolic 2-orbifold is in
FJCX.

Proof. This follows from the result for (orientable) surfaces [BB19] and as-
sembling results in the literature. Note that Bartels–Bestvina only prove
FJC for K- and L-theory but the result for A-theory follows (as usual) from
[Kno19, Proof of Theorem 1.8(a)], and [ELP`18, Theorem 6.19].

Let S be a hyperbolic orbifold, and let Σ be an orientable surface covering
S with finite degree so that π1pΣq is characteristic in π1pSq. (This can be
achieved by taking any covering surface, passing to its orientation cover if
necessary, and then taking the characteristic core of the corresponding sub-
group and realising the covering surface.) By [KE21] there is an injective
map from Autgeompπ1pSqq to Autgeompπ1pΣqq, where these geometric auto-
morphism groups are exactly the lifts of the mapping class groups.

Restricting to the image, Innpπ1pSqq will be normal, and by the third iso-
morphism theorem the quotient is isomorphic to C{pInnpπ1pSqq{ Innpπ1pΣqqq,
where C is a subgroup of Autgeompπ1pΣqq{ Innpπ1pΣqq, the mapping class
group of Σ. The quotient of inner automorphism groups is finite (in fact
isomorphic to the deck transformations π1pSq{π1pΣq, so we have realised
MCGpSq as an extension

1 Ñ F Ñ C Ñ MCGpSq Ñ 1.

Since mapping class groups of surfaces are residually finite by [Gro74] (and
residual finiteness passes to subgroups), we may apply Lemma 2.3 to obtain
the conclusion. □

Proposition 7.4. If G is a one ended group hyperbolic relative to finitely
many conjugacy classes of virtually polycyclic groups, then OutpGq is in
FJCX.

Proof. By Theorem 7.1 there is a finite index subgroup Out0pGq fitting into
a short exact sequence

1 Ñ T Ñ Out0pGq Ñ

p
ź

i“1

MCG0pSiq ˆ
ź

j

OutpPj , Inc
ptq
Pj

q Ñ 1.

We want to apply Theorem 2.2 to this short exact sequence. First we
check the kernel T: this is a quotient of a direct product of virtually poly-
cyclic groups, and hence is itself virtually polycyclic, and so in FJCX by
Proposition 7.2.

Now consider the image. The subgroups OutpPj , Inc
ptq
Pj

q are subgroups of
OutpPjq for a virtually polycyclic Pj , and hence are in FJCX by Propo-
sition 7.2. Each MCGpSiq maps with finite kernel onto the mapping class
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group of a hyperbolic 2-orbifold. By Lemma 2.3 it is enough to consider
these mapping class groups. These are in FJCX by Proposition 7.3. Then
the product is in FJCX by Theorem 2.1.

To apply Theorem 2.2 it remains to check the preimages of elements.
These are of the form T ¸ Z, which are in FJCX by Proposition 7.2 since
they are again virtually polycyclic. □

Theorem C. If G is a one-ended group hyperbolic relative to finitely many
conjugacy classes of virtually polycyclic groups, then AutpGq and OutpGq are
in FJCX.

Proof. Since P contains only finitely many conjugacy classes of virtually
polycyclic groups, by [DS05, Corollary 1.14], we may modify P such that
that for every rP s P P, the group P is NRH. Observe that since G is hy-
perbolic relative to finitely many conjugacy classes of virtually polycyclic
subgroups its centre is finite. Hence, InnpGq is quasi-isometric to G and
again hyperbolic relative to finitely many conjugacy classes of NRH virtu-
ally polycyclic subgroups by [BDM09]. The result now follows from applying
Corollary B to the short exact sequence

1 Ñ InnpGq Ñ AutpGq Ñ OutpGq Ñ 1. □

Theorem C allows to prove that the outer automorphism groups of some
small complexity relatively hyperbolic groups also belong to FJCX.

Corollary 7.5. Let G “ A ˚C B, where A and B are one-ended hyper-
bolic groups relative to finitely many conjugacy classes of virtually polycyclic
groups and C is a finite group. The groups OutpGq and AutpGq are in
FJCX.

Proof. We prove the result for OutpGq, the proof for AutpGq being identical
to the proof of Theorem C (this uses Proposition 8.3 when C is nontrivial
and Theorem A otherwise). Let Out0pGq be the index (at most) 2 subgroup
of OutpGq preserving the conjugacy classes of A and B. By [For02], every
element ϕ P Out0pGq has a representative Φ P ϕ such that ΦpAq “ A and
ΦpBq “ B. Moreover, the map sending ϕ to Φ defines an isomorphism
between Out0pGq and AutpA,Cq ˆ AutpB,Cq. By Theorem C, the groups
AutpA,Cq and AutpB,Cq belong to FJCX. By Theorem 2.1, the groups
Out0pGq and OutpGq belong to FJCX. □

Corollary 7.6. Let G “ A˚C , where A is a one-ended hyperbolic group
relative to finitely many conjugacy classes of virtually polycyclic groups and
C is a finite group. The groups OutpGq and AutpGq are in FJCX.

Proof. As above we only prove the result for OutpGq. Let t be a stable letter
for the HNN extension A˚C . By [Lev05], the group OutpGq has an index 2
subgroup Out0pGq such that any element ϕ P Out0pGq has a representative
Φ P ϕ such that ΦpAq “ A and Φptq “ ta for some a P A. Moreover, the map
sending ϕ to Φ induces an isomorphism between Out0pGq and A¸AutpA,Cq.
Thus, Out0pGq fits in a short exact sequence

1 Ñ A Ñ Out0pGq Ñ AutpA,Cq Ñ 1.
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The group AutpA,Cq belongs to FJCX by Theorem C. Moreover, for every
infinite cyclic subgroup Q P AutpA,Cq, the preimage of Q in Out0pGq be-
longs to FJCX by Theorem A. Thus, by Theorem 2.2, the groups Out0pGq

and OutpGq belong to FJCX. □

One more infinitely ended case is known, since OutpF2q – GLp2,Zq is an
arithmetic group, and the same extension arguments as above will give the
result for AutpF2q. Our techniques do not seem to extend to OutpFnq, which
will be necessary to make any further progress.

8. Torsion in the infinitely ended case

The aim in this section is to prove as much of Section 6 as possible without
the assumption that G is virtually torsion free. To this end we give two
propositions. The first allows us – in many cases – to pass from an infinitely-
ended group to a finite index subgroup which is a free product of one-ended
groups and a finitely generated free group, while the second is a generalisation
of the sporadic case (of Section 6.B) to graphs of groups with one, finitely
stabilised, edge.

Proposition 8.1. Suppose G is finitely generated, infinitely-ended and ac-
cessible. Further suppose that for each one-ended vertex group Gv in a
Stallings–Dunwoody decomposition of G, there is a normal finite index sub-
group Kv that trivially intersects all the incident edge groups. Then G has
a finite index subgroup K that is a free product of one-ended groups and a
finitely generated free group.

Furthermore, for any automorphism Φ, the suspension GΦ has a finite
index subgroup KΨ, where Ψ is the restriction of some power of Φ to H.

Note that [AGHK23, Lemma 5.4] is a similar result, but the statement and
proof are considerably simplified by the underlying assumption of that paper
that all groups considered are residually finite. Here we prove necessary and
sufficient conditions on the vertex groups and incident edge groups for the
existence of such a subgroup.

Remarks 8.2. We record a number of observations about the hypotheses.

‚ Accessibility is only used to ensure that the vertex groups are one-
ended. More generally, given a splitting over finite edge groups and
where the vertex groups satisfy the separability hypothesis, one can
find a finite index free product where the non-trivial vertex groups are
finite index subgroups of (conjugates of) the original infinite vertex
groups.

‚ The sufficient conditions given in the statement are also necessary:
any finite index K satisfying the conclusion will have intersections
K XGv, finite index in Gv avoiding the edge groups. Passing to the
normal core recovers the finite index normal subgroup having the
desired property.

‚ Finite generation is only used in the “furthermore”; a sufficient con-
dition on Φ would be that it has such a power.
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The proof involves Bass–Serre covering theory, see [Bas93] for details.
Since it is independent of the rest of the paper we do not provide a self-
contained description of the theory here, though references to the appropriate
results and definitions will be made as necessary.

Proof. Let G be the graph of groups corresponding to a Stallings–Dunwoody
decomposition of G. We will produce a graph of groups K which covers G
(in the sense of [Bas93, Definition 2.6]). To do this we need to produce a
graph with a map to the underlying graph of G, and its vertex (and edge,
though these will be trivial) groups, together with monomorphisms to the
appropriate vertex group of G. Abusing notation, we refer to all these graph
and group maps as f , trusting that it will be clear from context which is
meant. For each edge (and inverse edge) e of K we also need to define an
element δe P Gfpιpeqq. These allow us to assemble the “star maps” at a vertex
v of K (see [Bas93, Proposition 2.4]):

Ů

ePf´1pe1q,ιpeq“vKιpeq Ñ Gιpe1q{Ge

pe, kq ÞÑ δekGe1

which we are required to check are bijective to ensure we defined a cov-
ering. (Note that, in general, there are compatibility conditions to check on
the δe. However, these are vacuous when Ke are trivial, as they will be for
us – see [Bas93, Definition 2.1].)

By [Bas93, Proposition 2.7], once we have defined K and f so that we
have a covering, there is an inclusion (defined using f) from H “ π1pKq to
G “ π1pGq, and the Bass–Serre trees of are the same, with K acting as a
subgroup of G. In this case, we can use [And23, Lemma 3.4] to calculate the
index rG : Ks: it is the sum (as x ranges over the preimages of any vertex or
edge) of the indices rGx : Kxs. In particular, to get a finite index subgroup,
we need to ensure that all these indices are finite, and that the sums agree.

To facilitate this, let Kv Ĳ Gv be as given in the statement when Gv is
infinite, and if Gv is finite, let Kv be trivial. Set dv “ rGv : Kvs, and set
d “ lcmptdvuq. (Observe that for v “ ιpeq, by the tower law and second
isomorphism theorem, |Ge| “ rGe : Kv X Ges “ rKvGe : Kvs divides rGv :
KvGes ¨ rKvGe : Kvs “ rGv : Kvs “ dv, so this accounts for all edge groups
as well.)

Now let the vertex set of K consist of d{dv preimages of each v, each with
vertex group Kv. Let each fpKvq be the inclusion into Gv. For the edge
groups, let v “ ιpeq and note that in order for the local action of Kv on
its star to respect the index sum formula, we must have dv{|Ge| preimages
of e adjacent to a preimage of v. Note that by the tower law argument
above, dv{|Ge| “ rGv : KvGes. Summing across the d{dv preimages of v,
we will see the expected d{|Ge| preimages of e adjacent to preimages of v.
Exactly the same argument applies to τpeq, and so for every edge e there is
a bijection between the “heads” at preimages of ιpeq and “tails” at preimages
of τpeq where we would like to attach a preimage of e. Picking any explicit
bijection, give K edges joining the indicated heads and tails. Set all edge
groups to be trivial.

Setting d to be the least common multiple ensures that the resulting graph
is connected whatever choices are made. (If it has some smaller connected
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component, then summing indices over the orbits within it will provide a
smaller common multiple.)

Given a vertex v of K and the set of incident preimages of some e1, let the
δe range over a set of coset representatives Gv{KvGe. We now investigate
the star maps.

First, we see they are injective. Suppose that δe1k1Ge “ δe2k2Ge. This
(together with normality of Kv in Gv) implies that δe1 and δe2 represent the
same KvGe coset, and so that e1 “ e2. Cancelling the δei , we now have
that k1Ge “ k2Ge. This implies that k´1

1 k2 is contained in Ge, but since the
intersection Ge XKv is trivial, they must be equal.

To see surjectivity, consider some coset gGe1 . Let δe be the previously de-
termined representative of the coset gKvGe1 . Notice that δ´1

e g is contained
in KvGe, and so there is some element ge1 of Ge1 so that k “ δ´1

e gge1 is con-
tained in Kv. By construction, the copy of k lying inside the Kv associated
to the coset δeKvGe1 is mapped to δeδ´1

e gge1Ge which is gGe.
Since K is a finite graph of groups with trivial edge groups, K is a free

product of its non-trivial vertex groups and a finitely generated free group.
The non-trivial vertex groups are (conjugates of) finite index subgroups of
the original vertex groups, so are themselves one-ended, as required. Finally,
K covers G and the sums of indices over the preimages of any edge or vertex
is d, so K has finite index in G.

For the final statement, note that a finitely generated group has only
finitely many subgroups of a given finite index, and so some power Ψ “ Φk

preservesK. The suspensionKΨ is finite index inGΦ by one final application
of the tower law. □

Even if this fails, we may still be able to proceed in some cases.

Proposition 8.3. Suppose G – A ˚C B or G – A˚C with C a finite group.
Further suppose that Φ P AutpGq preserves the conjugacy classes of A and
B, and that the restrictions of Φ to A is such that A¸Φ|A

Z belongs to FJCX

(and similarly for B, if applicable). Then G¸Φ Z belongs to FJCX.

The proof being largely an elaboration of the arguments in Section 6.B,
here we indicate the necessary changes and references.

Proof. First, we have to argue that Φ preserves the action on the Bass–Serre
tree T for this splitting. This follows from [Lev05], or for the two vertex case
already from [For02], which give that these one edge splittings are rigid : the
unique reduced tree in their deformation spaces, together with the hypothesis
that Φ preserves the vertex groups.

So we may consider the action of G ¸Φ Z on T . Use t to denote the
generator of the Z factor. After possibly passing to a finite index subgroup
(by taking the square of Φ, if necessary) we may suppose the quotient graphs
are the same for both actions, and that t stabilises an edge e. Edge stabilisers
are virtually cyclic, and admit a map to Z with a conjugate of t is mapped
to the generator. For Ge, we may take this preimage to be t.

Note that by work of Wall [Wal67, Lemma 4.1] virtually cyclic groups act
on the line and have a unique maximal finite normal subgroup which is the
kernel of this action. Since Ge surjects onto Z, in fact this is the unique
maximal finite subgroup.



AUTOMORPHISMS AND THE FARRELL–JONES CONJECTURE 38

Following the proof in the free splitting case, we need to take a tree of
cylinders to ensure that we have an acylindrical action. Just as in that case,
the commensurablilty relation is admissible, and we take the tree of cylinders
Tc relative to this relation.

We need to adapt the proofs of Lemma 6.2 and Lemma 6.3 to the new
situation. In the first case, we assume that e and w´1tje “ w´1e are edges
in the same cylinder. Then xty and xw´1twy are finite index subgroups of
the respective stabilisers, and again the commensurability relation implies
that there are powers n,m P N so that

tn “ w´1tmw “ w´1Φmpwqtm.

As before, we see that n “ m and w is periodic.
To adapt the proof of Lemma 6.3, make the adjustments of the first

paragraph of that proof and then consider the whole intersection Gv X Gv1 .
This group fixes edges in two distinct cylinders, so is contained inside some
Ge X Ge1 , where this intersection is between two virtually cyclic subgroups
that are not commensurable. In particular, this means the intersection is
finite; in fact its cardinality is bounded by the size of the unique maximal
finite subgroup (in either – they are conjugate). This means the action of
G¸Φ Z on Tc is acylindrical.

To finish the proof, we recall the bipartite nature of Tc, and observe that
vertex stabilisers are either isomorphic to A¸Φ|A

Z (or the same for B – the
original vertex stabilisers), or a cylinder stabiliser PerpΦq ¸Φ Z. The first
kind is in FJCX by hypothesis; the second by Lemma 2.6. □

With this in hand, one can begin to try and run the induction argument of
Section 6 on a Stallings–Dunwoody decomposition of a more general infinitely
ended group. However, there seems as yet to be no analogy for the relative
hyperbolicity argument used in the non-sporadic case, and so the induction
will not be able to proceed if at some stage we encounter a maximal periodic
“Stallings–Dunwoody type splitting” that has more than one edge, and at
least one edge with non-trivial stabiliser.

A proof of the following conjecture, the analogy of Theorem 3.2 for general
infinite ended groups, should complete the proof of Theorem A with no
assumption on torsion.

Conjecture 8.4. Suppose G is the fundamental group of a non-sporadic
graph of groups with finite edge stabilisers, and Φ P AutpGq is fully irre-
ducible relative to this splitting. Then G ¸ΦN Z is hyperbolic relative to the
suspensions of polynomially growing subgroups of Φ.

It may be necessary to assume accessibility in the previous conjecture but
for now we do not. As in the free product case, the correct notion of growth
should be with respect to the translation length function for the action of G
on the Bass–Serre tree. The correct definition of fully irreducible appears to
be that in any splitting (strictly) dominated by ours every power of Φ does
not preserve the set of elliptic subgroups.
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