AUTOMORPHISMS OF RELATIVELY HYPERBOLIC
GROUPS AND THE FARRELL-JONES CONJECTURE

NAOMI ANDREW, YASSINE GUERCH, AND SAM HUGHES

ABSTRACT. We prove the fibred Farrell-Jones Conjecture (FJC) in A-,
K-, and L-theory for a large class of suspensions of relatively hyperbolic
groups, as well as for all suspensions of one-ended hyperbolic groups.
We deduce two applications:

(1) FJC for the automorphism group of a one-ended group hyperbolic
relative to virtually polycyclic subgroups;

(2) FJC is closed under extensions of FJC groups with kernel in a
large class of relatively hyperbolic groups.
Along the way we prove a number of results about JSJ decompositions
of relatively hyperbolic groups which may be of independent interest.

1. INTRODUCTION

Let G be a group. The Farrell-Jones Conjecture (FJC) is one of the most
prominent open conjectures in algebraic and differential topology. In its
simplest form the K-theoretic conjecture predicts that a certain assembly
map

HE (pr): HS(EG;KR) — Kn(RG)

is an isomorphism. Here EG is the classifying space for the family of virtually
cyclic subgroups, Kp is the algebraic K-theory spectrum for the ring R,
and K, (RG) is the algebraic K-theory of the group ring RG. There are
variants of the conjecture for Waldhausen’s A-theory and for L-theory. The
conjecture for L-theory, as well as a detailed account of the Farrell-Jones
Conjecture, and the objects involved can be found in W. Liick’s book project
[Liic|]. For recent progress on A-theory the reader should consult [ELPT18].

Computing the algebraic K-theory of a group ring RG is a very diffi-
cult problem. In principle, knowing that FJC holds for G gives a method
of computing K, (RG) using equivariant algebraic topology. It also has a
number of other applications, for example, to the Borel Conjecture [BL12]
and to computing the Whitehead group Wh(G). Knowledge of Wh(G) is
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a fundamental step in classifications of higher dimensional manifolds with
fundamental group G.

From this point onward, by the Farrell-Jones Conjecture for G, we mean
the most general setting, that is, the fibred Farrell-Jones Conjecture with re-
spect to the family of virtually cyclic subgroups VC. See for example [ELP 18|
and [Liic| for a discussion of these terms. We will denote the classes of group
satisfying the FJC for X-theory by FJCx where X is A-, K-, or L-theory.

The class FJCxk of groups known to satisfy FJC for algebraic K-theory
is large: containing hyperbolic groups [BLR08a|, many relatively hyperbolic
groups [Barl7|, CAT(0) groups [Weg12| (see also |BL12| and [KR17]), soluble
groups [Wegl5|, GL,,(Z) [BLRR14| and more generally lattices in connected
Lie groups [BFL14| and S-arithmetic groups [Riip16|, as well as mapping
class groups |[BB19|, normally poly-free groups [BKW21a|, and suspensions
of virtually torsion free hyperbolic groups [BFW23|. The class enjoys many
closure properties: it passes to arbitrary subgroups, finite index overgroups,
and directed colimits. For more information the reader is referred to the
surveys [BLRO8b, LR0O5, Liic10, Bar16|.

One property that is not known is whether FJCx is closed under exten-
sions 1 > N - ' > @ — 1. One direction of interest is to put conditions
on N so that I' is in FJCx whenever @ is. By [BFL14, Theorem 2.7] and
[ELPT18, Theorem 1.1(ii)| this reduces to understanding cyclic extensions
of (G; which is to say the suspensions Ny = N Xg Z, where ® is some auto-
morphism of NV defining this suspension.

Intuitively, a group G is hyperbolic relative to P if its geometry is hyper-
bolic “away from the subgroups P € P.” One (of many: see [Hrul0] for the
definitions as well as proofs of their equivalence) way to formalise this uses
the notion of coning off a Cayley graph: take a vertex for every coset gP
of each element of P, and add an edge from each element of gP to the new
vertex. The group G is hyperbolic relative to P if the resulting graph is
d-hyperbolic in the sense of Gromov, and fine: every edge is contained in
finitely many cycles of a given finite length. An automorphism of G lies in the
subgroup Aut(G,P) if it preserves the conjugacy classes of every subgroup
P € P. For more information on Aut(G,P) see [MO12] and |[GL15].

Recently, Bestvina, Fujiwara and Wigglesworth [BFW23] proved the sus-
pension of a virtually torsion free hyperbolic group satisfies the Farrell-Jones
conjecture. We extend this result to a large class of relatively hyperbolic
groups.

Theorem A. Let (G,P) be a virtually torsion-free or one-ended relatively
hyperbolic group with P finite and let ® € Aut(G,P). If for every [P] € P
we have Py € FJCx, then Gg € FJCx.

These hypotheses include, for instance, all suspensions of toral relatively
hyperbolic groups and more generally one-ended or virtually torsion-free
groups that are hyperbolic relative to virtually polycyclic or soluble sub-
groups. Note that this removes the assumption of virtual torsion-freeness
in [BFW23| for one-ended hyperbolic groups. This is pertinent since it is a
well known question of Gromov whether every hyperbolic group is residually
finite (and hence virtually torsion-free).
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With infinitely ended groups more care is needed, we discuss this further
in Section 1.B.

1.A. Applications. Our first application is a result on extensions with rel-
atively hyperbolic kernel. A group is non-relatively hyperbolic or NRH if it
is not hyperbolic relative to a collection of proper subgroups.

Corollary B. Let (N,P) be a virtually torsion-free or one-ended relatively
hyperbolic group such that P consists of finitely many conjugacy classes of
groups which are NRH and whose suspensions P xg Z are in FICx for all
automorphisms W of P. Let1 — N — I' > (Q — 1 be a short exact sequence.
If Q is in FJCx, then I is in FJCx.

The assumption that peripheral subgroups are NRH is needed for Corol-
lary B, since it requires Theorem A to hold for arbitrary automorphisms.
The key point being that Aut(N;P) has finite index in Aut(N) under this
extra hypothesis.

It is a major open problem whether Out(Fy) satisfies FJCx. Whilst
we do not solve this, using Theorem A we are able to show automorphism
groups of one-ended groups hyperbolic relative to virtually polycyclic groups
satisfy FJC. In particular, Aut(G) and Out(G) for G a one-ended hyperbolic
group satisfy FJCx.

Theorem C. If G is a one ended group hyperbolic relative to finitely many
conjugacy classes of virtually polycyclic groups, then Aut(G) and Out(G) are
m FJCx.

1.B. Remarks on the proofs. Asisusual for (relatively) hyperbolic groups,
there are two main flavours to our arguments, depending on the number of
ends of G. In both cases we apply a result of Knopf [Knol9| allowing us to
deduce that a group acting acylindrically on a tree satisfies the Farrell-Jones
conjecture if and only if its vertex groups do, though the source of the trees
is different in each case.

For one-ended relatively hyperbolic groups, we have access to the powerful
machinery of JSJ decompositions developed (in this generality) by Guirardel
and Levitt [GL17]. We consider three related trees: the canonical JSJ de-
composition T relative to the peripheral subgroups P, a refinement 7% of
T°" which better suits the study of an outer automorphism ¢ and another
tree that we call 77", This tree is the canonical JSJ tree relative to the
(non-elementary) periodic subgroups of the outer automorphism ¢. That
is, we require that the periodic subgroups of every representative ® ad,, are
elliptic. Our main structural result about this tree is Theorem 5.21: even
without assuming that the periodic subgroups are finitely generated, they
agree exactly with the rigid vertices of TT". We prove that this ensures that
the induced action of G x4 Z is acylindrical, and then analyse vertex groups
that can appear in this new action.

We remark that the strong uniqueness properties of the JSJ decomposition
imply that for a one-ended, torsion free hyperbolic group, the rigid vertex
groups of the tree considered in [BFW23] agree with those in our T°r.

We consider the case when G is infinitely ended and has a finite index
subgroup which is a free product of one-ended groups. Being virtually torsion



AUTOMORPHISMS AND THE FARRELL-JONES CONJECTURE 4

free is sufficient but not necessary for this to occur, and we provide necessary
and sufficient conditions in Proposition 8.1. Once we have a free product
splitting we have the following combination-type theorem.

Theorem D. Let G = G1#...%*Gp+Fx be a free product of finitely generated
groups, let F' = {[G1],...,[Gk]} and let ® € Aut(G,F’). For every i €
{1,...,k}, denote by ®; an element of the outer class of ® preserving G;. If
for every i € {1,...,k} the group G; xo, Z is in FICx, then G x¢ Z is in
FJCx.

Theorem D is proved by induction on the Grushko rank k + N. There are
two kinds of induction step, depending on whether the maximal periodic free
factor system is sporadic or not. A free factor system (G, F) is sporadic if
G =~ G1 *G9 or G = (1 * Z. This division might seem unusual to experts; a
more standard division (for instance, in [BFW23| as well as throughout the
Out(F,,) literature) depends instead on if the automorphism is polynomially
or exponentially growing. Polynomially growing automorphisms are always
sporadic in this sense, but so are some exponentially growing automorphisms.
The non-sporadic case uses Dahmani and Li’s work on relative hyperbolicity
for suspensions of free factors [DL22|, whereas in the sporadic case we use
the fact that these splittings are rigid.

These rigidity arguments hold equally well for sporadic Stallings—Dunwoody
decompositions, and so we are still able to obtain some results without first
passing to a finite index free product: see Proposition 8.3.

1.C. Fixed and Periodic Subgroups, the classes AC(VNil) versus
FJCx, and localising invariants. Some previous results of this flavour
have concluded the stronger property that the suspension is in the class
AC(VNil). Every group in this class satisfies the Farrell-Jones conjecture
[BB19]. This class has similar closure properties to the class of groups satisfy-
ing the Farrell-Jones conjecture, except that FJCx is closed under directed
colimits while AC(VNIil) is not known to be. However, for the majority of
the paper we work directly with the class FJCx.

The reason for this is that we have to understand the periodic subgroups
of certain automorphisms as an ascending union of fixed subgroups, and
consider the action of the automorphism on this subgroup. In general our
hypotheses do not guarantee that this union stabilises — we do not have a
virtual neatness property to rely on.

However, there are hypotheses that ensure virtual neatness, and if we
assume these then again the suspensions will be in AC(VNil). One set of
sufficient conditions is,

Theorem 5.24. Let G be a hyperbolic group relative to a collection P of
slender groups and let ® € Aut(G). There exists N € N* such that Per(®) =
Fix(®Y) and Per(®) is finitely generated.

If we add these hypotheses to our main theorem, we can prove the sus-
pensions lie in AC(VNil).

Theorem E. Suppose (G,P) is one-ended or virtually torsion free, and
hyperbolic relative to finitely many conjugacy classes of slender subgroups.
Then for every automorphism ® of G, T' := G x¢ Z is in AC(VNIil).
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Except for replacing each periodic subgroup with the fixed subgroup of a
power, the proof of this theorem is identical to the proof of Theorem A. We
discuss this in a little more detail after completing that proof.

Remark. Following work of Bunke, Kaprowski, and Winges [BKW21b| our
results apply equally well to the Farrell-Jones Conjecture for localising in-
variants, that is, with coefficients in H : Cat%&’; — M a lax monoidal finitary
localising invariant with values in a stably monoidal and cocomplete stable
oo-category which admits countable products. We refer the reader to the
introduction of loc. cit. for more information.

1.D. Structure of the paper. Section 2 introduces the relevant back-
ground results on the Farrell-Jones conjecture.

Section 3 contains definitions and results on free products and their auto-
morphisms, needed for Section 6.

Section 4 collects results on JSJ decompositions of one ended relatively
hyperbolic groups, and provides a lemma on acylindricity when passing to
the action of a suspension.

The one-ended case of Theorem A is proved in Section 5 by careful analysis
of a certain JSJ tree. From this analysis, we also deduce Theorem 5.24.

In Section 6 we prove Theorem D and the infinitely-ended case of Theo-
rem A. Using these results we prove Theorem A and Theorem E.

In Section 7, we deduce Theorem C from Theorem A.

Finally, in Section 8 we extend Theorem A as far as possible with our
current techniques to groups which are infinitely ended but do not split as free
products. The arguments of the last three sections are almost independent
of Sections 4 and 5, apart from requiring the background information on
trees of cylinders from Section 4.A.

Acknowledgements. This work has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant agreement No. 850930). The second
author was supported by the LABEX MILYON of Université de Lyon. The
authors would like to thank Damien Gaboriau, Dominik Kirstein, Gilbert
Levitt, and Ric Wade for helpful conversations.

2. BACKGROUND ON THE FARRELL-JONES CONJECTURE

For full context and background on the Farrell-Jones conjecture, see for
instance Liick’s book project [Liic|. In this section, we recall some properties
of the class FJCx of groups which satisfy the Farrell-Jones conjecture for
X-theory where X is A, K, or L.

Theorem 2.1. The class FICx is closed under the following operations:
(1) taking subgroups;
(2) taking finite index overgroups;
(8) finite direct products;
(4) finite free products;
(5) directed colimits.

Proof. The cases of K- and L-theory are given in [GMR15, Theorem 2.1].
The case of A-theory is [ELPT18, Theorem 1.1(ii)]. O



AUTOMORPHISMS AND THE FARRELL-JONES CONJECTURE 6

While FJCx is not known to be closed under extensions, there is a partial
result which we make use of.

Theorem 2.2. Let1 > N - T —» Q — 1 be a short exact sequence with
N € FICx. If for every infinite cyclic subgroup C of Q, the preimage of C
in I' belongs to FICx, then I' belongs to FJCx.

Proof. The cases of K- and L-theory are given in [BFL14, Theorem 1.7]|.
The case of A-theory is given in [ELP*18, Theorem 1.1(ii)]. O

Here is an easy, mild strengthening of commensurability towards virtual
isomorphism.

Lemma 2.3. Let1 > N - I' > Q — 1 be a short exact sequence with N
finite. Then if Q is in FIJCx then so is I', and if T is residually finite and
mn FICx then so is Q).

Proof. For the first statement apply Theorem 2.2 to the short exact sequence,
noting that both finite groups and virtually cyclic groups are in FJCx. For
the second, observe that if I' is residually finite then there is a finite index
subgroup I'g of I' whose intersection with N is trivial, and then I'g = (g for
some finite index subgroup @y of ). The result follows from commensura-
bility. O

We refer for instance to the work of Bowditch [Bow12| for the definition
of a relatively hyperbolic group.

Theorem 2.4 (Bartels). Let G be a group hyperbolic relative to a collection
{[P1],...,[Pn]} of conjugacy classes of subgroups. If, for everyie {1,...,n},
we have P; € FJCx, then G € FJICx.

Proof. This result is due to Bartels. The cases of K- and L-theory are [Bar17,
Corollary 4.6]. The case of A-theory is also ostensibly due to Bartels com-
bined with some recent developments on the A-theoretic FJC. We sketch the
relevant details. The key here is that Bartels’ space A for a relatively hyper-
bolic group pair (G, P) is finitely P-amenable (see [Barl7, Theorem 3.1]).
By [Knol19, Proof of Theorem 1.8(a)| this implies that G is strongly transfer
reducible over F. The result now follows from [ELP*18, Theorem 6.19]. O

Let G be a group acting by isometries on a tree 1. Recall that the action
is acylindrical if there exists K > 0 such that the stabiliser of any geodesic
path of length at least K is finite.

Theorem 2.5 (Knopf). Let G be a group acting acylindrically by isometries
on a tree T. If every vertex stabiliser belongs to FICx, then G belongs to
FJCx.

Proof. The result is due to S. Knopf. For K-theory we refer to [Knol9,
Corollary 4.2]. The result for L-theory is [Knol9, Corollary 4.3], note that
here one has the additional hypothesis that index 2 overgroups of the sta-
bilisers in G must satisfy FJCy,. But this follows from Theorem 2.1. For
A-theory, as in Bartels’ result, one combines finite F-amenability [Knol9,
Proposition 4.1] with the recent developments for A-theory [Knol9, Proof of
Theorem 1.8(a)|] and [ELP*18, Theorem 6.19). O
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Let G be a group and let ® € Aut(G). Let Per(®) = (Fix(®"))nen be the
periodic subgroup of ®. At several points in our arguments we will need the
following lemma.

Lemma 2.6. Let G be a group belonging to FICx and let ® € Aut(G). The
group Per(®) xg Z belongs to FICx.

Proof. Note that
Per(®) x¢ Z = (Fix(®"))ery %0 Z = | J <Fix(<1>”’) o Z) :

neN
which is an increasing union of subgroups. Therefore, by Theorem 2.1 (5),
it suffices to prove that, for every n € N, the group Fix(®™) x4 Z belongs to
FJCx.

Let n € N. Note that Fix(®™) xgm Z is a finite index subgroup of
Fix(®™) xg Z. By Theorem 2.1 (2), the group Fix(®™) x¢ Z belongs to
FJCx if and only if the group Fix(®™) xgn Z belongs to FICx.

The group Fix(®™) xgn Z is isomorphic to Fix(®™) x Z. By Theo-
rem 2.1, the group Z belongs to FJCx. Since G € FJCx and since FJCx
is closed under taking subgroups by Theorem 2.1 (1), the group Fix(®™)
belongs to FJCx. Since FJCx is closed under taking direct products by
Theorem 2.1 (3), the group Fix(®™) x Z and hence the group Per(®) xg Z
belongs to FJCx. O

3. FREE PrRODUCTS OF GROUPS AND THEIR AUTOMORPHISMS

3.A. Free products of groups. Let N € N, let G1,...,Gi be countable
groups and let G = Gy = ...x Gy * Fn. Let F = {[G1],...,[Gk]} be the set
consisting of the conjugacy classes of the G;. We refer to (G, F) as a free
product.

An element g € G is peripheral if there exists [A] € F with g € A. Oth-
erwise, g is nonperipheral. A subgroup P of G is peripheral if every element
of P is peripheral, and is nonperipheral otherwise.

A free factor system of (G, F) is a set F' = {[A1],...,[A¢]} of conjugacy
classes of proper subgroups of G such that:

(1) for every i € {1,...,k}, there exists [A] € F' such that G; < A;
(2) there exists a subgroup B of G such that G = Ay # ... Ay * B.

The set of free factor systems of G is equipped with a partial order where
F1 < Fy if, for every [A1] € Fi, there exists [Ag] € Fo with A} € Ag. A
free factor system F' is sporadic if either F' = {[A1], [A2]} and G = A; = As
or F' = {[A1]} and G = A; = Z. Otherwise, the free factor system F’ is
nonsporadic. The free product (G, F) is sporadic (resp. nonsporadic) if F
is.

We denote by Aut(G, F) the subgroup of automorphisms of G preserving
F and by Out(G, F) the subgroup of outer automorphisms of G preserving
F. An automorphism ® € Aut(G,F) is fully irreducible if no power of ®
fixes a free factor system of (G, F).

A (G, F)-tree is a tree equipped with an action of G without inversion
such that, for every [A] € F, the group A is elliptic in T. A Grushko (G, F)-
tree is a (G, F)-tree T with trivial edge stabilisers and such that, for every
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v € VT, the conjugacy class of the stabiliser GG, of v is trivial or contained
in F.

Let F’ be a sporadic free factor system of (G, F). There is a unique, up to
unique G-equivariant homeomorphism, reduced (G, F’)-tree T, which we
call the Bass-Serre tree of (G, F’). The tree T'# has a unique orbit of edges.
The tree T is canonical in the sense that every element ® € Aut(G, F’)
induces a G-equivariant homeomorphism of Tz. Therefore, for every ® €
Aut(G, F'), the group G x¢ Z acts by homeomorphisms on Tz .

3.B. Growth under an automorphism of a free product. Let (G, F)
be a free product and let T be a Grushko (G, F)-tree. We turn T into a
metric graph by assigning length 1 to every edge of T'.

Let g € G. The translation length of g in T is ||g||7 = inf,er d(x, gx). The
translation length of ¢ only depends on the conjugacy class of g.

Let ® € Aut(G, F). An element g € G has ||.||p-polynomial growth under
iteration of ® if there exists P € Z[X] such that, for every n € N:

12" (@)l < P(n).

Note that any elliptic element of G in T has ||.||r-polynomial growth under
iteration of ®.

A subgroup P of G is a ||.|p-polynomial subgroup of ® if there exists an
automorphism ¥ € Aut(G, F) contained in the outer class of some power of
® such that ¥(P) = P and every element of P has ||.||7-polynomial growth
under iteration of W.

Let Pr(®) be the set of conjugacy classes of maximal ||.||7-polynomial
subgroups of ®. When & is fully irreducible, the set Pr(®) satisfies some
additional properties. Recall that a subgroup A of G is malnormal if, for
every g€ G — A, we have A n gAg~! = {e}.

Proposition 3.1. [DL22, Proposition 1.13] Let (G, F) be a nonsporadic
free product and let ® € Aut(G,F) be fully irreducible. Let T be a Grushko
(G, F)-tree.

(1) The set Pr(®) is finite.

(2) For every [A] € Pr(®), the subgroup A is malnormal in G.

Let P = {[P1],...,[Pr]} be a finite set of conjugacy classes of malnormal
subgroups of G. Let ® € Aut(G) be an automorphism such that, for every
i€ {l,...,}, there exists g; € G such that adg, o ®(P;) = FP;. The suspension
of P is the set {[F; Xady, o® Z]} considered as a set of conjugacy classes of
subgroups of G x4 Z.

The following result is due to Dahmani-Li [DL22].

Theorem 3.2. [DL22, Corollary 2.3| Let (G, F) be a nonsporadic free prod-
uct and let ® € Aut(G, F) be fully irreducible. Let T be a Grushko (G,F)-
tree and let Pp(®) be the set of conjugacy classes of mazimal ||.||p-polynomial
subgroups of ®. There exists n € N such that the group G xgn Z is hyperbolic
relative to the suspension of Pr(®).

Note that Theorem 3.2 implies that the set Pr(®) does not depend on
T when @ is fully irreducible. In the rest of the section, we give a precise
description of the set Pr(®) for a fully irreducible automorphism.
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We first need a result, which can be found for instance in the work of
Francaviglia-Martino—Syrigos [FMS21]| concerning the existence of a limiting
tree of a fully irreducible automorphism.

Lemma 3.3. [FMS21, Lemma 2.14.1] Let (G, F) be a nonsporadic free prod-
uct and let ® € Aut(G,F) be a fully irreducible automorphism. There exist
a Grushko (G, F)-tree S, an R-tree T equipped with an isometric action of
G and a constant X > 1 such that, for every g € G, we have

. 1
(1) lim —[®"glls = lgl7-

n—o \T

Let (G,F) be a free product. Note that, for any subgroup A of G, the
free factor system F induces a free factor system F|4 of A. Following the
terminology of for instance Guirardel-Horbez [GH22, Definition 3.2|, an R-
tree equipped with an isometric action of G is an arational (G, F)-tree if the
following holds:

(1) the tree T is not a Grushko (G, F)-tree;

(2) for every [A] € F, the group A is elliptic in T}

(3) for every free factor system F < F’ and every [A] € F such that A is
nonperipheral, the action of A on its minimal tree in 7" is a Grushko
(A, F|a)-tree.

Proposition 3.4. Let (G, F) be a nonsporadic free product, let ® € Aut(G, F)
be a fully irreducible automorphism and let S be a Grushko (G, F)-tree given
by Lemma 3.3. For every [P] € Ps(®), either [P] € F or P is nonperipheral
and infinite cyclic.

Proof. Let T be the R-tree associated with S given by Lemma 3.3. Note
that, by Equation (1), for every |.||s-polynomially growing element g € G,
we have ||g||7 = 0.

By [GH22, Theorems 3.4,4.1] the R-tree T is an arational (G, F)-tree. It
has trivial arc stabilisers (because it is mixing [Horl4, Lemma 4.9]). Thus,
for every [P] € Pg(®), the group P fixes a point in 7.

By [Horl4, Lemma 4.6, using the fact that 7" is arational, for every point
x € T, the stabiliser G, of x is either peripheral or nonperipheral and infi-
nite cyclic. Thus, for every [P] € Pg(®), the elliptic subgroup P is either
peripheral or nonperipheral and infinite cyclic. By maximality of P, either
[P] € F or P is nonperipheral and infinite cyclic. O

4. ACTIONS ON TREES AND JSJ DECOMPOSITIONS

4.A. Tree of cylinders. Let G be a group acting on a tree T'. In order
to construct an acylindrical action of G' on a tree, we will modify the tree
T using the technology of tree of cylinders introduced by Guirardel and
Levitt |GL11].
Let & be a class of subgroups of G, stable under conjugation. An £-tree is

a tree T equipped with an action of G without edge inversion and such that
the stabiliser of any edge is contained in £. An equivalence relation ~ on &
is admissible if, for any A, B € £, the following holds:

(1) for any g € G, if A ~ B, then gAg~! ~ gBg™!;

(2) if A< B, then A ~ B;
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(3) for every E-tree T, if A ~ B and A and B are elliptic in T, then
(A, B) is elliptic in T

Inclusion is an admissible relation for every class of groups £. If £ is the
class of virtually infinite cyclic groups, then commensurability is an admis-
sible equivalence relation, where two groups A, B € £ are commensurable if
A N B has finite index in both A and B.

Let T be an &-tree and let ~ be an admissible equivalence relation on
E. If e is an edge of T, we denote by G, its stabiliser in T. We define an
equivalence relation ~7 on the set of edges of T" by setting, for all edges
e,e/ € ET, e ~p ¢ if and only if G, ~ Go. A cylinder Y of T is a ~p-
equivalence class, seen as a subforest of 7. A cylinder is in fact a subtree of
T (see |GL11, Lemma 4.2]).

Definition 4.1. Let T be an E-tree. The tree of cylinders of T is the
bipartite tree T, whose vertex set VT, = VyT. | [ VAT, is defined as follows:

(1) VoT. is the set of vertices ot T belonging to at least two distinct
cylinders;

(2) V4T, is the set of cylinders ot T

(3) there is an edge between vy € VyT and vy € V1T if the vertex in T
corresponding to vy belongs to the cylinder corresponding to vy.

The tree of cylinders of T is a tree equipped with an action of G without
edge inversion.

4.B. JSJ decompositions of one-ended relatively hyperbolic groups.
We now let G be a one-ended hyperbolic group relative to a family P =
{[P1],...,[Pn]} of conjugacy classes of groups and let ® € Aut(G,P). Let
Go be the suspension G xg Z. In time, we will also assume the suspensions
of the P; belong to FJCx, and want to apply Theorem 2.5 to G in order
to prove that G € FJCx. That is, we will construct a simplicial tree 1" on
which Gg acts acylindrically. The construction of the tree 7" uses the theory
of JSJ decomposition of groups, which we now discuss, following the work of
Guirardel-Levitt [GL11, GL15, GL17].

A subgroup of G is elementary if it is virtually cyclic or conjugate into
some P; with i € {1,...,n}. Let A be the family of all elementary subgroups
of G.

Let ~4 be the equivalence relation on A given by A ~4 B if (A, B) is
elementary. The equivalence relation ~ 4 defines an admissible equivalence
relation called coelementarity.

Let H be any set of conjugacy classes of subgroups of G. Recall that
an (A, P u H)-tree is an A-tree T such that, for every [A] € P u H, the
group A is elliptic in 7. We denote by Out(G,P u ’H(t)) the subgroup of
Out(G, P u H) consisting of every ¢ € Out(G,P u H) such that, for every
[A] € H, there exists ¥ € ¢ with U(A) = A and ¥|4 = id4.

Let T be a tree equipped with an action of G by isometries with a finite
number of orbits of edges. If H is a subgroup of Out(G,P u H) preserving
the G-equivariant homeomorphism class of a tree T, we denote by H° the
finite index subgroup of H acting trivially on G\T. Note that, for every
v e VT, we have a homomorphism H? — Out(G,).
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Using |GL17, Theorem 9.18], [GL15, Theorem 3.9] and [GL11, Proposi-
tion 6.1], we have the following theorem.

Theorem 4.2. |GL11, GL15, GL17| Let G be a one-ended hyperbolic group
relative to a family P of non virtually cyclic groups. Let H be any family of
conjugacy classes of subgroups of G. There exists a tree of cylinders Ty for
coelementarity equipped with an isometric action of G such that:

(1) the group Aut(G, PUH) preserves the G-equivariant homeomorphism
class of Ty

(2) the action of G on Ty is 2-acylindrical;

(8) the number of orbits of edges is finite;

(4) edge stabilisers are infinite elementary;

(5) the tree Ty is an (A, P U H)-tree;

(6) vertex stabilisers corresponding to cylinders are elementary subgroups;

(7) vertex stabilisers G, corresponding to a vertex v of the original tree
satisfy one of the following:

e (&, is nonelementary and Quadratically Hanging (QH) with fi-
nite fibre; (see [GL17, Definition 5.13]);
e the vertex v is nonelementary and rigid: the stabiliser of v is
elliptic in every (A, P U H)-tree (see |GL17, Definition 2.14] ).

(8) if e1,ea are two distinct edges adjacent to the same nonelementary
vertex, then Ge, N G, is finite and {(G.,,Ge,) is not elementary;

(9) if [H] € H is not elementary, then H stabilises a unique rigid ver-
tex. (This follows from |GL17, Definition 5.13(3)|, and the fact that
QH vertices with finite fibre have virtually cyclic extended boundary
subgroups).

Moreover, if H = {[H1],...,[Hk]} with every H; finitely generated:

(10) |GL15, Theorem 3.9| for every rigid vertex v € VT, the homomor-
phism Out®(G, P U H®) — Out(G,) is finite;

(11) for every edge e € ETy, the homomorphism Out’(G,P u H®) —
Out(G.) s finite.

When the family H is trivial, we will refer to T as T*". (Our superscript
convention here is certainly not standard: we use it because we will shortly
need to discuss minimal invariant trees for subgroups coming from multiple
underlying actions. This choice lets us write T3, for instance, keeping both
the tree and the subgroup conveniently in the notation.)

We now prove a general lemma in order to deduce acylindrical actions of
Go with ® € Aut(G) on trees out of acylindrical actions of G. If Gg acts on
a tree T, we denote by Fg the G-equivariant isometry of 7" induced by ®.

Lemma 4.3. Let K > 1, and let ¢ = [®] € Out(G). Suppose that Go acts
on a tree T with finitely many orbits of edges and that the action of G on
T is K-acylindrical. Suppose that for every geodesic path ~v of length 3 and
every automorphism U € ¢ such that Fy preserves vy, there exist a vertex v
of v and g € G, of infinite order fized by a power of W.
(1) Letn € N* and let U € ¢™. Suppose that Fy fizes pointwise a geodesic
edge path of length at least equal to 2K +7. There exists N € N* such
that UV fizes elementwise a nonabelian free group L < G consisting
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of loxodromic elements of T'. Moreover, for every g € L, the isometry
Fyn~ fizes elementwise the axis of g.

(2) Let n € N* and let W € ¢™. Suppose that there exists g € Fix(V)
which acts loxodromically on T. There exist m € Z, n € Z* such that
g Fygn fixes pointwise the axis of g.

(8) The action of Gg on T is acylindrical if and only if for every n € N
and every W in the outer class of ®", the group Fix(V) is elliptic in
T.

Proof. (1) Suppose that Fy fixes pointwise a geodesic edge path ~ of length
2K +7. Thus, the path « is not reduced to an edge and the isometry Fy fixes
the initial and the terminal paths 71,2 of v length 3. Since the action of G
on T is K-acylindrical, for all vertices v; of 1 and wvo of 79, the intersection
Gy, N Gy, is finite.

Let i € {1,2}. Note that Fy preserves 7;. By hypothesis, there exist
N; € N* | a vertex v; € y; and an infinite order element g; € G,,, which is fixed
by Wi,

Let N = NiNy and let L = {g1,92) € Fix(¥V). Since Gy, N Gy, is
finite, we have Fix(g1) n Fix(g2) = &. By standard ping-pong arguments,
the group L is a non-abelian free group which contains a (non-abelian) sub-
group consisting of loxodromic elements of T'. This proves the first part of
Assertion (1).

Let g € L be loxodromic. Since ¥V (g) = g, the isometry Fyn commutes
with ¢g. In particular, the axis of ¢ is contained in the characteristic set of
Fyn~. Since Fyn is elliptic, this implies that Fy~ fixes pointwise the axis of
g. This concludes the proof of Assertion (1).

(2) Let g € Fix(¥) be a loxodromic element. As in the proof of Assertion (1),
the axis of g is preserved by Fy and is contained in the characteristic set of
Fy. Thus, we have a homomorphism A: (g, Fy) — R given by the transla-
tion length on the axis of g. Since T is a simplicial tree, the image of A is
a discrete subset of R. Thus, the image of A is cyclic. Therefore, the kernel
of A is nontrivial: there exist m € Z and n € Z* such that ¢ Fygn fixes
pointwise the axis of g. This proves Assertion (2).

(3) Suppose that there exist n € N*, U € ¢ and g € Fix(¥) such that the
action of g on T is loxodromic. By Assertion (2), there exist m € Z and
n € Z* such that ¢"Tyn fixes pointwise the axis of g. Hence the action of
G is not acylindrical.

Conversely, suppose that the action of Gg = (G, t) on T is not acylindrical.
Since the action of G on T is K-acylindrical, there exist g € G and k € N*
such that the element gt* fixes an edge path of length 2K + 7. Let U € ¢F
be the automorphism corresponding to gt¥. By Assertion (1), some power of
U fixes a loxodromic element of G. This proves Assertion (3) and concludes
the proof. O

5. THE PERIODIC JSJ DECOMPOSITION

We now specialise to the tree we will use to prove that suspensions of
one-ended relatively hyperbolic groups (under reasonable assumptions on
the parabolic subgroups) satisfy the Farrell-Jones conjecture. Let G be a



AUTOMORPHISMS AND THE FARRELL-JONES CONJECTURE 13

one-ended relatively hyperbolic group and let ® € Aut(G). We explain in the
following section the construction of G-trees which are naturally associated
with ©.

5.A. Trees associated with an automorphism of a one-ended rela-
tively hyperbolic group. Recall that, if & € Aut(G), we denote by Per(®)
the subgroup of G consisting of all g € G such that there exists n € N* with
®"(g) = g. Let ¢ = [®] € Out(G). We denote by NP(¢) the set of all
representatives ® € ¢ such that Per(®) is not an elementary subgroup. If
¢ € Out(G), we set Pernp(¢) = {[Per(®)]}oenp(g)-

We work with three ¢-invariant trees for G. The first is the canonical JSJ
tree T the second is the tree TP obtained by applying Theorem 4.2 with
H = Upnen+ Pernp(¢™). The third one is obtained from 7" by blowing-up
JSJ trees at QH with fibre vertices. The following lemmas motivate the
construction.

Lemma 5.1. Let G be a hyperbolic group relative to P and let ¢ = [P] €
Out(G,P). Let n € N* and let ¥,0 € ¢" be such that ¥ and © fix element-
wise the same nonelementary subgroup H of G.

There exists N € N* such that, ¥V = OV,

Proof. Since ¥ and O fix H elementwise, ¥ and O differ by an inner auto-
morphism in the centraliser of H. Since H is nonelementary, its centraliser is
finite (see for instance [Osi06, Theorem 4.19]). Thus, up to taking powers of
V¥ and © fixing elementwise the centraliser of H, we have ¥ = ad, 0 © where
g€ Cq(H) and g € Fix(0). Thus, for every m > 1, we have U = adgmo©™.
As g is finite order, there exists N € N* such that UV = @V, (]

Lemma 5.2. Suppose G is the vertex group of a QH with fibre vertex of T
and let ¢ = [®] € Out(G).
(1) The group Per(®) is finitely generated, and there is some k € N so
that Per(®) = Fix(®*).
(2) There ezists k € N* so that if [g] is a periodic conjugacy class of ¢
then [g] is fived by ¢F.
(8) As ® wvaries over the outer classes ¢" with n € N*, there are only
finitely many conjugacy classes of periodic subgroups Per(®).
(4) There exists k € N* so that if [K]| is a conjugacy class of periodic
subgroups of ¢, then [K] is fired by ¢F.

This result does not seem surprising, and in fact the same statement is
true for all hyperbolic groups (see Theorem 5.24 and [GL16a| for the torsion
free case). However, this special case is necessary to begin the arguments on
JSJ decompositions we use throughout this section, including to prove the
general statement.

Proof. We first prove Lemma 5.2 when G is a hyperbolic 2-orbifold. Recall
that hyperbolic 2-orbifolds are good, and let H be a characteristic finite
index subgroup of GG corresponding to an orientable surface cover of the
orbifold. (This can be obtained by taking the characteristic core of the
subgroup corresponding to any such cover, since G is finitely generated.)
In particular, ® preserves H. We now consider two periodic subgroups:
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Perg(®) < G and its subgroup Pery (®|y) < H. If g; and g9 are elements of
Perg(®) representing the same coset of H in G, then in fact they represent
the same coset of Pery(®|g) in Perg(®), so this is a finite index subgroup.
The restriction ®|g can be represented by an element of the mapping class
group of the surface, and it follows from [Iva92| that periodic subgroups here
are finitely generated. Finite generation is a commensurability invariant, so
the same is true of Perg(®). Then taking a sufficiently high power to fix
every element of a finite generating set shows that Per(®) = Fix(®F).

Let [g] be a ¢-periodic conjugacy class. If g has finite order, then, as
there exists finitely many conjugacy classes of finite order elements in G,
some power of ¢ fixes [¢g]. Suppose now that g has infinite order, and let
t € N* be such that ¢' € H. Since G is hyperbolic, g* has finitely many ¢-th
roots in GG, the number of such roots depending only on the finite numbers
of orders of the finite subgroups of G. Thus, if £ € N* is such that ¢ €
Out(H) fixes the conjugacy class of gt, then a power of ¢ fixes the conjugacy
class of g and this power does not depend on g. If H is a free group,
then the existence (and uniformity) of ¢ follows from the work of Handel-
Mosher [HM20, Theorem I1.4.1|. If H is the fundamental group of a closed
orientable surface, this follows from the work of Ivanov [Iva92].

Since the third statement is true for free and surface groups (by Ivanov [Iva92]
for the surface case, Bestvina-Handel [BH92| for the free case with noncyclic
periodic subgroups, and for instance Guirardel-Levitt [GL16a] for the general
case), it will suffice to bound the number of subgroups Perg(®) containing
(with finite index) a given restriction Pery (®|z). If this is non-elementary,
then it follows from Lemma 5.1 that any two automorphisms in ¢ fixing it
have a common power, and hence the same periodic subgroups. (First re-
place ®F ad(g1) and ®‘ad(gs) with their /-th and k-th powers respectively,
so they represent the same outer automorphism, then another power so as to
fix the common non-elementary subgroup Pery (®|f), then apply the lemma
as written.)

Now assume Per g (®|p) is elementary, and we want to control the periodic
subgroups of ® in G restricting to it. Recall that in a hyperbolic group, every
virtually cyclic subgroup is contained in a unique maximal one, and let M
be the maximal virtually cyclic subgroup containing Pery (®|g). Since ®
preserves Perp (®|g), it must also preserve M, and we consider the induced
automorphism of M. By for instance [MO10, Lemma 6.6], Out(M) is finite,
and so passing to a power ®* the induced automorphism is inner. Composing
with an inner automorphism coming from M, some representative ¥ of ®F
fixes M; in particular M is itself a periodic subgroup.

Note that this inclusion between the original periodic subgroup and the
one for W can stay proper at all powers: the infinite order inner automor-
phism of Dy, gives an example.

Finally, as there exist only finitely many conjugacy classes of finite sub-
groups in G, there exist only finitely many conjugacy classes of finite periodic
subgroups for any power of ¢.

The final property follows from taking a high enough power to fix (up to
composing with appropriate inner automorphisms) the generating sets of a
representative of each conjugacy class.
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Let G be the vertex group of a QH with finite fibre vertex. Let F be a finite
normal subgroup of G, such that G,/F is isomorphic to the fundamental
group m1(%,) of a 2-orbifold ¥,. Since G, is a hyperbolic group, it contains
finitely many conjugacy classes of finite subgroups. Thus, for every ¢ €
Out(G,), there exists M > 1 such that ¢™ induces an element ¢M|y, €
Out(m(Xy)).

Let ® € Aut(G). Up to taking a power of ®, we may suppose that &
induces an element of Aut(m;(3,)). Let ¢ € N* be the integer associated
with @|. (5, ) which satisfies both Assertions (1) and (2). Let g € Per(®).
Then the image of g in m(%,) is fixed by (IDZ\M(ZU). Thus, ®¢ preserves the

left coset gF. As F is finite, the automorphism ®¢ A" acts trivially on F.
Thus, we see that ®UFIIAU] fixes g. This proves Assertion (1). Similarly,
suppose that [g] is a periodic conjugacy class. Then @elﬂl(zv) preserves the
conjugacy class in 71(%,) induced by g. Thus, ®* sends g to hkigkoh ™! with
h € G and ki,ky € F. Let Ul = ad;-1 o &', Then ¥! sends g to kigko.
Note that U4 acts trivially on F and sends g to kj gkl with &}, k) € F.
Thus, UHARIIIET fives g and ®UAWEINIE fixes the conjugacy class of g.
This proves Assertion (2).

For the third assertion, notice that the periodic subgroups of the induced
action on 7(3,) contain (by passing to a finite index surface subgroup,
and if necessary then an infinite index one) a preserved (and periodic) free
group. This splits back to G, and since the arguments given earlier used
only Lemma 5.1 and properties of virtually cyclic subgroups of hyperbolic
groups, they apply equally well here (note that it is enough to take any
non-elementary periodic subgroup to apply Lemma 5.1). Again, the final
assertion follows by taking a high enough power to fix (up to composing with
appropriate inner automorphisms) the generating sets of a representative of
each conjugacy class. U

Let v be a QH with fibre vertex of 17", let eq,..., e, be representatives
of the G-orbits of edges in T°" adjacent to v and let T}, be the JSJ tree
of G, relative to |, e+ Perne([0" |G, ]) U {[Ger], - -, [Ge, ]} The idea is to
blow up, at every such vertex v the tree T),. But, we want the resulting tree
to be compatible with TP, so that we need to be careful when attaching
the edges of T°*" to vertices in T,.

Two (A, P)-trees T and T" are compatible if there exists an (A, P)-tree U
such that both T and T” are obtained from U by collapsing some orbits of
edges. By |GL17, Proposition A.26]|, there exists a unique such minimal tree
U which refines T and T’. The tree U satisfies the following properties: a
subgroup H of G stabilises a point in U if and only if H stabilises a point
in both 7" and T”. Moreover, for every edge e € EU, the image of e in either
T or T" is not reduced to a point.

By universality of 7" (see |GL17, Corollary 9.18(3)]), the trees 7"
and TP are compatible. We denote by TOI”elc their minimal refinement. By
minimality, since ¢ preserves both 7°" and TT", the tree Tgef is preserved
by ¢. The tree T is obtained from 7" by blowing up, for every vertex
v e T a tree S,. The tree S, is the minimal G,-tree in Toref.
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Suppose that v is a QH vertex of 7" with finite fibre. Let H be a
subgroup of G such that [H]| € [, .+ Perne([0"c,]) U {[Ger]l, -, [Ge,l}-
Then H is elliptic in both 7" and T, so that H is elliptic in T5Ef.
Since 5, is the minimal G,-tree in Téef, the group H is also elliptic in 5.
Thus, by universality of Ty, the trees T, and S, are compatible. Let U, be
their common minimal refinement. The tree U, is invariant by the outer
automorphism of G, induced by ¢. Moreover, since both S, and T, are
2-acylindrical, the minimality of U, implies that U, is 4-acylindrical.

Let Tlref be the tree obtained from Tgef by blowing up the trees U, at every
tree S, of T 5Ef and attaching an edge e of Tgef to the centre of the fixed point
set of Stab(e) in U,. The centre exists since for every ¢ € {1,. .., k}, the group
G, is elliptic in U, and U, is 4-acylindrical. It is the (necessarily common)
midpoint of the longest paths in the fixed point set of Stab(e). The centre is
not necessarily a vertex of U, so this construction might require to subdivide
some edges of U,.

Note that the tree Tfef is preserved by ¢ as it is obtained from Tgef by
blowing-up in a canonical way trees preserved by ¢.

Let T; g) be the tree obtained from Tlrelc by the following operations. We
have a natural collapse map gq: Tfef — T Let v e VI, If v is not
QH with fibre, then collapse ¢~!(v) to a point. If v is QH with fibre, then
¢ 1(v) = U, and we collapse U, to the tree T},. The resulting tree is our
desired T(‘f) . Note that, since T(‘f is obtained from T°*" by blowing up at each
vertex v € VT trees which are invariant by ¢ (namely, the trees T),), the
tree TgS is also invariant by ¢.

Notice that T is a common refinement of Tgb and TP so that T(‘f) and
TPer are compatible. Since 7" and all the trees T}, are acylindrical, so is
T,

Finally, let T¢ be the tree obtained from TO¢ by collapsing all the edges
whose endpoints are both elementary. Note that the resulting new vertices
are elementary since every infinite elementary subgroup is contained in a
unique maximal elementary one (see [GL15, Lemma 3.1]).

The tree T is preserved by ¢, it is compatible with 77" and the action
of G on T? is acylindrical. Additionally, the tree T is a bipartite tree:
every edge has an endpoint which is elementary and an endpoint which
is either rigid or QH with fibre. (Here, rigid vertices could correspond to
rigid vertices either in 7" or in some T, while QH vertices are QH in a
T,, though T, could be a point.) Note that, unlike 7%, the tree T'¢ is not
necessarily preserved by every element of Out(G, P). However, it is preserved
by ¢, which is sufficient for our considerations. Moreover, the tree T is not
necessarily compatible with every (A, P)-tree, but we will only need the fact
that it is compatible with TP¢". The fact that we replace T by T? is due
to the following lemmas.

Lemma 5.3. Let v e VI? be either rigid or QH with fibre and let e1, ey €
ET? be two distinct edges adjacent to v. Then Ge, N Ge, is finite and
(Gey, Gey) is mot elementary. In particular, the tree T? is 2-acylindrical.
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Proof. Note that, since v is rigid or QH with fibre, the preimages of e; and
e2 in Tg are unique edges since T is obtained from Tgﬁ by collapsing edges
with elementary endpoints. Thus, it suffices to prove the result for Tgﬁ .

Let v e VT(Szs be either rigid or QH with fibre and let e, es € ETS5 be two
distinct edges adjacent to v. Suppose first that both e; and ey are edges
in either 7" or Ty, for some w € VT which is QH with fibre. Then
Ge, N Ge, is finite and (G, , G, ) is not elementary by Theorem 4.2 (8).

Thus, we may suppose, up to reordering, that e; is an edge coming from
T and e is an edge coming from some T;, with w € VT QH with fibre.
In particular, since w is QH with fibre, the group G, is virtually cyclic.

Note that e; is attached to the centre of the fixed point set of G¢, in T,.
Moreover, by Theorem 4.2 (8), this centre is not elementary if and only if
the fixed point set is reduced to a point. Thus, the fixed point set of G, in
T, is reduced to v (seen as a point in Ty,).

Suppose towards a contradiction that Ge, N Ge, is infinite and let v" be
the endpoint of e distinct from v. As explained above, the point v’ is not
fixed by Ge,. Let g € G, be such that gv’ # v’. Then one of the endpoints
of gey is v since Ge, fixes v. Moreover, since G, is virtually cyclic, the
intersection Ge, N gGe,g~! is infinite (it contains the normal core in G, of
the intersection Ge¢;, N Ge,). Therefore, es and geg are two distinct edges
of T, adjacent to the nonelementary vertex v such that G, N gGe,g™ ' is
infinite. This contradicts Theorem 4.2 (8). Thus, the intersection Ge, N Ge,
is finite.

We now prove that (G,,Ge,) is not elementary. Since w is a QH with
fibre vertex of 1" the group G, is Gromov hyperbolic. Therefore, the
only elementary subgroups of G contained in G,, are virtually cyclic. Since
Ge, N Ge, is finite, the group (G.,, Ge,) is not virtually cyclic, hence is not
elementary.

The fact that T? is 2-acylindrical follows from the fact that any edge of
T has an endpoint which is nonelementary. (]

Lemma 5.4. Let v € T? be rigid. The map ($)° — Out(G,) has finite
1mage.

Proof. Since v is rigid, the group G, is the stabiliser of a rigid vertex of
either T°°" or some T, where w € V1" is QH with finite fibre.

If G, is the stabiliser of a rigid vertex of 7", then, by Theorem 4.2 (10),
then map (¢)* — Out(G,) has finite image.

Suppose now that G, is the stabiliser of a rigid vertex of some T, where
w e VT is QH with finite fibre. By Lemma 5.2, the set Pernp([é|c,,]) U
{[Ge,]s- -+, [Ge, ]} is a finite set of conjugacy classes of finitely generated
subgroups of T,,. Thus, Theorem 4.2 (10) applies (to T3,) and the image of
()Y — Out(G,) is finite. O

Lemma 5.5. Let ve T? and let [H] € Pernp (o).
(1) Suppose that v is QH with fibre. Then H n G, is elementary.
(2) Suppose that v is rigid. If H n G, is nonelementary, then G, < H.

Proof. Suppose first that v is QH with fibre. By construction of 7', the
group G, is the stabiliser of a QH with fibre vertex of some JSJ tree T,
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where w is a QH with fibre vertex of T°". But the intersection of G, with
every subgroup H’ such that [H'] € Pernp([¢|g,]) U {[Gerl,-- -, [Ge,l} is
elementary by the definition of QH with fibre vertices. Thus, the intersection
of H with G, is elementary. This proves Assertion (1).

Suppose now that v is rigid.

Let W € ¢ be such that Per(¥) = H. Suppose that the intersection H NG,
is nonelementary. Then ¥ preserves G, since v is the unique vertex in 7°¢
fixed by H n G,. By Lemma 5.4, there exists k € N* such that U* acts
as a global conjugation on G, by an element g € GG,,. Taking a larger k if
necessary, we may also assume that U¥ also act trivially on a nonelementary
subgroup H' € H n G,,.

Note that © = adg-1 o Uk acts trivially on G,. Thus, ¥* and © acts
trivially on the same nonelementary subgroup H' < G,. By Lemma 5.1,
there exists N € N such that ¥V = @V In particular, ¥ has a power which
fixes G, elementwise. Thus, we have G, € H. O

Remark 5.6. Note that, for every ® € NP(¢), the isometry Fgp of T? is
elliptic. Indeed, if Fg is loxodromic, then ® can only fix an element g € G
which is loxodromic and whose axis is the same as the one of Fg. Since the
action of G on T? is acylindrical, the element g is contained in a unique

maximal virtually cyclic subgroup. In particular, Per(®) is a virtually cyclic
group and ® ¢ NP(¢).

Let G be a one-ended hyperbolic group relative to P and let ¢ = [®] €
Out(G, P). The rest of the section is dedicated to the proof of some proper-
ties of the set Pernp(¢) and of the action of Gg on T'?. To this end we prove
that Pernp(¢) is finite (see Lemma 5.11). We need the following lemmas
regarding the intersection of characteristic sets of isometries in 7.

Lemma 5.7. Let G be a one-ended hyperbolic group relative to P, let v €
VT? be non-elementary and let ey and ey be distinct edges adjacent to v. Let
¢ € Out(G, P). If there is a representative ® € ¢ such that ®(Ge,) = Ge, for
each © = 1,2, then v is rigid and G, is fized elementwise by some power of

.

Proof. We first prove that v is rigid. Indeed, suppose towards a contradiction
that v is QH with finite fibre. Then G., and G, are virtually cyclic. Thus,
for every i € {1,2}, the automorphism ® has a power ®* fixing an infinite
order element g; € G.,. By Lemma 5.3 and as the groups G¢, and G,
are virtually cyclic, the group (g1, ¢2) is a non-elementary subgroup. As
{91, 92) < Per(®) n Gy, this contradicts Lemma 5.5. Thus, the vertex v is
rigid.

By Lemma 5.4, after taking a power ®¢, it acts on G,, as global conjugation
by an element g € G,.

We claim that, after taking a further power of ®, the element g is trivial.
Indeed, note that, by Lemma 5.3 the stabiliser of an edge adjacent to v is
almost malnormal in G,: for every edge € of T? adjacent to v and every
g € Gy, if ¢Geg’~' N G, is infinite then ¢’ € G.. Moreover, if ¢ and ¢’ are
two distinct edges adjacent to v, then G N G is finite. Since ® preserves
G., and G.,, the power ® must act by conjugating by an element of the
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finite intersection G, N G.,. This becomes trivial on taking a further power
of ®, which concludes the proof of the claim.

Thus we have shown that ® has a power fixing G, elementwise, which
concludes the proof. O

Corollary 5.8. Let G be a one-ended hyperbolic group relative to P and let
¢ = [®] € Out(G,P). Let [H] = [Per(®)] € Pernp(¢) and let Tf} be the
manimal H -invariant subtree of T.

If Tg contains an edge e, then the endpoints of e are respectively elemen-
tary and rigid. If v is the rigid endpoint of e, then G, < G, € H and G, is
fixed elementwise by some power of ®.

Proof. Note that, since T? is bipartite, the endpoints of e are respectively
elementary and rigid or QH with fibre. It suffices to prove that an endpoint
v of e cannot be QH with fibre.

Since T Z} contains an edge, it follows that H is not elliptic in T¢. Thus,

T }3 is the union of the axes of elements of H. Then, e is contained in the axis
of an element ¢ of H. Recalling the bipartite structure of T, let v be the
rigid or QH vertex adjacent to e. Then there exists an edge €’ # e adjacent
to v and contained in the axis of g. Let ® € ¢ be such that Per(®) = H
and let N € N* be such that ®¥(g) = g. Since ®V is elliptic in T? by
Remark 5.6, it fixes pointwise the axis of g. In particular, it fixes e and ¢’.
By Lemma 5.7, we see that v is rigid and that G, is fixed elementwise by a
power of ®. O

Corollary 5.9. Let G be a one-ended hyperbolic group relative to P and
let ¢ = [®] € Out(G,P). Let [H] € Perxp(¢) and let TS be the minimal
H-invariant subtree of T?.

The tree T;_z} does not contain a QH with fibre verter.

Proof. Suppose first that Tf} is reduced to a point v. Then H < G, and v is
not QH with fibre by Lemma 5.5. Suppose now that Tf} is not reduced to a

point. Then any vertex v of Tf} is adjacent to an edge and the result follows
from Corollary 5.8. O

Lemma 5.10. Let G be a one-ended hyperbolic group relative to P and let

¢ = [®] € Out(G,P). Let n e N* and let ¥, 0 € ¢™ be such that Fy and Fg

are elliptic isometries of T?. Suppose that there exist g, h € G lozodromic in

T?, such that ¥(g) = g, ©(h) = h and Ax(g) n Ax(h) contains an edge e.
There exists N € N* such that UN = @V,

Proof. First note that Fy (resp. Fg) fixes pointwise the axis of g (resp. h).
Therefore, both ¥ and © preserves the stabilisers of the endpoints of e. By
construction of 7%, one of the endpoints v of e is either a rigid or a QH with
fibre vertex. Moreover, both ¥ and © preserve the subgroup associated with
an edge adjacent to v distinct from e.

Therefore, we can apply Lemma 5.7: there exists N € N* such that both
UN and OV act as the identity on the nonelementary subgroup G,. By
Lemma 5.1, up to taking powers of ¥ and ©, we have ¥V = @~ O
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Lemma 5.11. Let G be a one-ended relatively hyperbolic group and let ¢ =
[@] € Out(G). The set |, Pernp(¢") is finite. Consequently, there exists
N e N* such that any subgroup whose conjugacy class is in |, cn+ Pernp(¢™)
belongs to a subgroup whose conjugacy class is in Perxp (o™ ).

Proof. Note that, for every N € N* and every ¥ € ¢, we have Per(¥V) =
Per(¥). Thus, we will generally take a power of the considered automor-
phisms if needed.

Let T? be the above described tree associated with ¢. Up to taking a power
of ¢, we may suppose that ¢ acts trivially on G\T'?, that the homomorphism
(¢) — Out(G,) is trivial for every e € ET? and that the homomorphism
{(¢p) — Out(G,) is trivial for every rigid vertex v.

Counting elliptic subgroups: Let [H] € o+ Pernp(¢™). Suppose
first that every element of H is elliptic in 7%. We claim that H is elliptic in
T?. Indeed, otherwise, by acylindricity of the action, there would exist two
distinct g, h € H with Fix(g) n Fix(h) = @. Therefore, the element gh € H
would be loxodromic by [CM87, Proposition 1.5], a contradiction. Therefore
the group H is elliptic in T°¢.

Since [H] € [J,,en+ Pernp(¢™), the group H is not contained in the sta-
biliser of a vertex which is elementary. By Corollary 5.8, it is also not con-
tained in the stabiliser of a QH with finite fibre vertex. Therefore, the group
H is contained in the stabiliser of a vertex v which is rigid. By Lemma 5.5,
we have in fact H = G,,.

In particular, the stabiliser of any vertex of T contains at most one
conjugacy class of elliptic subgroups in [ J, .+ Pernp(¢™). Since the action
of G on T? has finitely many orbits of vertices, the set | J, .y Pernp(¢™)
contains only finitely many conjugacy classes of elliptic subgroups of T¢.

Counting subgroups containing loxodromic elements: Suppose
now that H contains a loxodromic element h. Let n € N* let ¥ € ¢"
be such that Per(¥) = H and let N € N* be such that ¥V (h) = h. By
Remark 5.6, the isometry Fygn~ is elliptic. Let D be a finite fundamental
domain for the action of G on T®. Up to taking a conjugate of H, we may
suppose that D contains an edge e of the axis of h.

Let © € ¢™ with [Per(0)] € Pernp(¢™) and let A’ € G loxodromic be such
that ©V(h') = b/ and that Ax(h') contains e. As above the isometry Fgy
is elliptic in 7%, By Lemma 5.10, there exists m € N* such that U™ = @™,
Therefore, we see that Per(¥) = Per(0). Hence the conjugacy class of H in
Pernp(¢™) is entirely determined by the edges of the fundamental domain
D contained in translates of axes of elements of H. Since D is finite, and
since the natural map Peryp(¢™) — Peryp(¢("*1)') is injective, there exist
only finitely many [H] € | J,,cn+ Pernp(¢™) containing the conjugacy class
of a loxodromic element. (In fact, their number is bounded above by the
number of edges in the fundamental domain.)

As we have ruled out every case, we see that the set |, .+ Pernp(¢") is
finite.

The second assertion follows from the first since the set  J, .y« Peryp (™)
is a nondecreasing sequence of sets exhausting [ J, .+ Pernp (¢™). O
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Definition 5.12. Let ¢ € Out(G,P) and let N € N* be the integer given
by Lemma 5.11. If N = 1, we say that ¢ is almost rotationless.

Note that Lemma 5.11 implies that every element of Out(G,P) has an
almost rotationless power.

Lemma 5.11 has also the following corollary regarding isogredience classes
of automorphisms. Recall that two automorphisms ®, ¥ of a group G are in
the same isogredience class if there exists g € G such that & = adg\Iladgl.
The isogredience class of ® is contained in its outer class. Lemma 5.11
immediately implies the following.

Corollary 5.13. Let G be one-ended hyperbolic group relative to P and
let ¢ € Out(G,P). There exist only finitely many isogredience classes of
automorphisms in ¢ with a nonelementary periodic subgroup.

Notice that Lemma 5.11 implies that there exist only finitely many iso-
morphism classes of nonelementary periodic subgroups for automorphisms
contained in a given outer class. We ask for the following generalisation
when the peripherals are virtually polycyclic.

Question 5.14. Let G be a hyperbolic group relative to virtually polycyclic
groups. Do there exist only finitely many isomorphism classes of nonelemen-
tary periodic subgroups for automorphisms of G?

The case where the peripherals are abelian and G is torsion free follows
from the work of Guirardel-Levitt [GL16a, GL16b].

5.B. The Periodic JSJ tree. We now need to understand vertex stabilisers
of a JSJ tree given by Theorem 4.2 and its acylindricity in order to apply
Theorem 2.5. We set H = [, e+ Pernp(¢"), and refer to the JSJ tree
relative to P U H as TT°". (Again, while this notation is neither standard
nor entirely unambiguous, we use it consistently through our proofs.)

We highlight the fact that, if the subgroups in H are finitely generated,
then the acylindricity and the understanding of the vertex stabilisers of 7T
mostly follow from Theorem 4.2 (10) (using our Lemma 5.11 for the other
assumption). The main technical difficulty is thus to show that, when the
periodic subgroups are not finitely generated, we still have a complete un-
derstanding of the stabilisers of rigid vertices.

Remark 5.15. Note that, by Lemma 5.11, there exists an almost rotation-
less power ¢V of ¢ such that every subgroup of G whose conjugacy class
is in H is contained in a subgroup whose conjugacy class is in Pernp(®").
Thus, every (A, P U H)-tree is an (A, P U Peryp(®Y))-tree, and conversely.
Thus the JSJ tree of G relative to P u H is also the JSJ tree relative to
P U Perxp(®V) (see [GL17, Definition 2.12]). Thus, we only need to work
with almost rotationless automorphisms and we will still get results regarding
the periodic JSJ tree associated with an arbitrary automorphism.

Let ¢" be an almost rotationless power of ¢. Let Pernp(¢™) = {[H1], ..., [H:]}
where, for every i € {1,...,k}, the group H; is not elementary and there ex-
ist ®; € ¢V such that H; = Per(®;). Note that, for every i € {1,...,k},
Theorem 4.2(9) gives that the group H; fixes a unique rigid vertex v; in 77
since H; is nonelementary.
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Recall the construction of T¢ at the beginning of Section 5.A. Note that
the trees 7% and TP are compatible. Let 7" be the unique minimal tree
which refines 7% and T7". We denote by Do T - T9 and pper: T —
TPer the associated G-equivariant projections. The tree Tf satisfies the
following properties: a subgroup H of G stabilises a point in 77 if and
only if H stabilises a point in both 7% and TF°". Moreover, for every edge
e € ET™ at least one of the images py(e) or ppec(e) is not reduced to a
point.

Note that, since the actions of G on T¢ and TP°" are acylindrical, by min-
imality of 7", the action of G on T is also acylindrical. (Any sufficiently
long path in T7f will project to a path of length at least 3 in at least one
of T? and T"f; edge stabilisers are not changed by the projection map, and
so the stabiliser of the path must have been finite to begin with.) Moreover,
by uniqueness of 7%, and since the outer automorphism ¢ preserves T¢ and
TPer we see that ¢ also preserves T7¢f.

For i € {1,...,k}, let Fp, be the isometry of 7" induced by ®;. As in
Remark 5.6, one can show that Fg, is elliptic in Tref (this uses the acylin-
dricity of the action of G on T). For every i € {1,...,k}, let T;Ef be the

minimal tree of H; in T*f. It might be that every element of some H; is
elliptic in 77f: in this case the acylindricity of 7% implies that the whole
subgroup H; is also elliptic. Then H; stabilises a vertex in both 7P and
T?; since H; is non-elementary these vertices are unique. But since every
edge of T" survives in the projection to at least one of T% and TT, there
cannot be an edge of T stabilised by H;, and we may take the unique fixed
vertex as the minimal invariant tree in this case.

Lemma 5.16. Suppose that ¢ is almost rotationless. Let H = Per(®), v a
vertex in its minimal invariant tree T}Elef, and Fy the isometry of T induced
by ®. There exists n € N such that Fen fizes v.

Proof. 1f T}Jef consists of a single vertex v, then this is the unique vertex
stabilised by H. Since ® preserves H, Fp must also fix v. Otherwise, the
vertex v is contained in the axis of some g € H. In particular, since g is
periodic, there exists n € N* with ®"(g) = g, and hence Fgn preserves this
axis. Since Fp is elliptic in T, the isometry Fypn fixes elementwise the axis
of g. In particular, Fgn fixes the vertex v. U

Proposition 5.17. Let G be a one-ended hyperbolic group relative to P and
let ® and ¥ be two representatives of an almost rotationless ¢ € Out(G,P).
Let H = Per(®) and K = Per(V) be two non-elementary periodic subgroups
of ¢, perhaps conjugate. Then their minimal invariant trees T}"{ef and T}}ef
have non-empty intersection if and only if H = K.

Proof. If H = K then the minimal invariant trees T Irff and T }(‘?f are equal,
so only one direction needs proof. Consider the minimal invariant trees of H
and K in T?. If Tfl and Tf? do not intersect, then neither do T}ff and T7ef,
so for the remainder of the proof we assume there is an intersection here. If
the intersection contains an edge, Lemma 5.10 implies that H = K, so from
now on assume the intersection is a single vertex v = Tf] N T;;.

Each of H and K stabilise a unique rigid vertex in 77, and whenever
H # K we will construct an (A, P uPernp(¢))-tree where H and K stabilise
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different vertices. This prevents (H, K) being contained in a rigid vertex
group, by Theorem 4.2(9). But then the rigid vertices stabilised by H and
K are distinct, and the trees in 77 (containing T;Ief and T }}ef as subtrees)
collapsing to them must be disjoint.

We distinguish two cases, according to the nature of v. Note that v is not
QH with fibre by Corollary 5.9.

Case 1: v is a rigid vertex. By Lemma 5.5 if H or K is elliptic
and Corollary 5.8 otherwise, there exists N € N* such that Stab(v) <
Fix(®") and Stab(v) < Fix(¥"). Hence both ¥" and ®" fix elementwise
the same nonelementary subgroup. By Lemma 5.1, we see that H = K.

Case 2: v is elementary. Let 7T, be the set of minimal trees T 2 with
[K] € Pernp(¢) which contain v. Since, for every [K] € Pernp(¢), the group
K is nonelementary, no tree S € T, is reduced to a point. By Lemma 5.10,
for all distinct S, 5" € Ty, the intersection S N S’ is reduced to v. Let E(v)
be the set of edges in S adjacent to v. We have a partition

E(v) = E] [(Es)ser,

where for every e € F, the edge e is not contained in any S € 7, and, for
every S € T, and every e € Eg, the edge e is contained in S.

Let S, be the tree with one central vertex vy adjacent to all the other
vertices and that the leaves vg are indexed by the trees S € 7,. We suppose
that the stabiliser of vy is equal to Stab(v) and, for every S € T, that the
stabiliser of vg is equal to Stab(Eg). Let T” be the tree obtained from 7" by
blowing up S, at v and attaching for every e € F, the edge e to vy and for
every S € T, and every e € Eg, by attaching the edge e to vg.

Note that the tree 7" obtained is an (A, P)-tree. Moreover, for any
[K1],[K2] € Pernp(¢) with T;;l # T;;Q € 7, the minimal trees of T} and
T[’<2 of K7 and Ky in T" are disjoint.

Let U be the (A, P U H)-tree obtained from 7" by collapsing the minimal
tree of every H with [H] € Pernp(¢). Then K and H fix distinct points
in U. Thus, U is an (A, P u H)-tree where H and K fix distinct points.
By Theorem 4.2 (7), the groups H and K fix distinct rigid vertices in T°".
Therefore, the minimal trees Tl?} and Tf; of H and K in T are disjoint. [

Lemma 5.18. Suppose ¢ is almost rotationless. For every H € Pernxp(¢),
the stabiliser of the vertex vy of TT is equal to the global stabiliser GTIr{cf

of the minimal tree T}{ef of H in T,

Proof. First note that, since the projection pper: T — TP is equivariant,
the tree T5¢! collapses onto vy. Thus, we have GT;;f < Stab(vg).

Conversely, let U be the (A, P UH)-tree obtained from T by collapsing,
for every H € Pernp(¢), the tree T}{ef. For every H € Perxp(¢), let wy be the
vertex of U fixed by H. Note that, by Lemma 5.17, for any H, K € Pernp(¢)
and every g € G such that gHg~' # K, the trees gT}ff and T}(ef are disjoint.
Thus, the stabiliser of wg is equal to GTIrff. Since the vertex vy of TYe is
rigid in every (A, P u H)-tree (see Theorem 4.2 (7)), the group Stab(vy) is
elliptic in U and contains H. As H fixes a unique point in U, which is wg,
we see that Stab(vy) < GTIr{Cf. O
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Lemma 5.19. Suppose that ¢ is almost rotationless. Let H € Pernxp(¢)
and let v € VTS, Then Stab(v) € H or the intersection Stab(v) n H is
elementary. In this case Stab(v) admits a (non-reduced) splitting Stab(v) =
Stab(v) * g ~stab(v) (H N Stab(v)) with elementary edge stabilisers.

Proof. By Lemma 5.16, up to taking a power of ®, we may suppose that
Fy,, fixes v. Let pg(v) be the projection of v in T¢. We distinguish between
several cases, according to the nature of pg(v). Note that, by Corollary 5.9,
the vertex py(v) is not QH with fibre.

Suppose that py(v) is elementary. Then Stab(v) is elementary. Thus,
Stab(v) splits naturally as Stab(v) = Stab(v) * gstab(v) (H N Stab(v)) and
H n Stab(v) is elementary.

Suppose now that pe(v) is rigid. By Lemma 5.4 applied to pg(v), up to
taking a power of ®y, we may suppose that @z acts on Stab(pg(v)) as a
global conjugation by an element g € Stab(pg(v)).

If g is finite, up to taking a power of ®f, we see that &y acts as the
identity on Stab(pg(v)), so that Stab(v) < Stab(po(v)) < H.

So we may suppose that g is infinite. Then H n Stab(pg(v)) consists
of all elements h € Stab(pg(v)) which commute with a power of g. But
the commensurator of (¢g) in G is elementary (because maximal elementary
subgroups are almost malnormal, see [GL15, Corollary 3.2|). Thus, the group
H n Stab(pg(v)) is elementary. Hence the group H n Stab(v) is elementary
and the splitting Stab(v) = Stab(v) *;~stan() (H; N Stab(v)) is over an
elementary subgroup.

As we have ruled out every case, this concludes the proof. O

Lemma 5.20. Suppose that ¢ is almost rotationless. For every H € Perxp(¢),
and the unique vertex vy € TV it stabilises, we have Stab(vy) = H.

Proof. Let H € Perxp(¢). By Lemma 5.18, it suffices to show that the
stabiliser GT;;,f of T}”{ef is equal to H.

Claim 1. The stabiliser of any edge of Tlr{ef is contained in H.

Proof. Let e € ET}EIef. Note that e is contained in the axis of an element
g€ H. Since H is elliptic in T, the image ppe(€) of e in TP is collapsed
to a point.

By minimality of 7%, the image py(e) is an edge, and G, = Gp,(e)- By
Corollary 5.8, any edge contained in TE« is adjacent to a rigid vertex v, and
Gp¢(e)<GU<H. | |
Claim 2. Let v e VTE!. The stabiliser Stab(v) of v in G is contained in
H.

Proof. Suppose towards a contradiction that Stab(v) is not contained in H.
By Lemma 5.19, there exists of splitting .S, of Stab(v) with elementary edge
stabilisers such that H n Stab(v) fixes a point w in S, distinct from any
point fixed by Stab(v). This splitting induces a refinement 7" of T by
blowing up S, at the vertex v and attaching the adjacent edges accordingly.
We make the additional assumption that if e is an edge in 7% adjacent to
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v such that Stab(e) < Stab(w), then we attach e to w. The tree T” is an
(A, P)-tree since any edge of T*f or S, is elementary and since Stab(v) fixes
a point in S, if v is elementary by Lemma 5.19.

By Claim 1, every edge of 7™ is attached to w when blowing up the
splitting S,. Therefore, the minimal tree T}, of H in 7" does not contain
any vertex stabilised by Stab(v). Collasping, for every K € Pernp(¢), the
tree T}, gives an (A, P U Pernp(¢))-tree U such that Stab(vg) does not fix
a point in it. This contradicts the fact that Stab(vg) is elliptic in every
(A, P U Perxp(¢))-tree (see Theorem 4.2 (7)). Hence, we have Stab(v) <
H. |

Claim 3. Suppose that g € GTgf. Then ge H.

ref one of its fixed point is

Proof. 1f g is elliptic, then since g preserves T
contained in T}”{ef. By Claim 2, we see that g € H.

So we may suppose that ¢ is loxodromic in 7. We claim that there
exists v € VT;ff with infinite nonelementary stabiliser. Indeed, first note
that T l{ff is not reduced to a point as ¢ is loxodromic. In particular, H does
not fix a point of 77f. Thus, by minimality of 7%, the projection p¢(T}ff)
is nontrivial. By Corollary 5.9, the tree p¢(TI§f) contains a rigid vertex and
the preimage in 7" of such a rigid vertex contains a vertex v with infinite
nonelementary stabiliser.

Let h € Stab(v) be of infinite order. Since the action of G on T is acylin-
drical, up to taking a vertex v far enough from the axis of g, we may suppose
that h and ghg~' do not have a common fixed point in 7'. In particular, they
generate a nonabelian free group by standard ping pong arguments. More-
over, this nonabelian free group contains a finitely generated nonabelian free
subgroup L consisting of loxodromic elements, hence consisting of nonpe-
ripheral elements.

Note that h, ghg™', g>hg—2 € H since g preserves T' Ir_ff and since any vertex
stabiliser of Tlr{elc is contained in H by Claim 2. Thus, up to taking a power
of ®, we may suppose that (L, gLg™') < (h,ghg™", g*hg~2) < Fix(®). Let
K = {[{L,gLg~")]} and let T be the canonical JSJ tree associated with K
given by Theorem 4.2.

Since (L, gLg~') is nonelementary, it fixes a unique rigid point w e V Ty
by Theorem 4.2 (9). We claim that g fixes w. Indeed, otherwise the path
between w and gw would be fixed by gLg~" which is a nonelementary sub-
group. This would contradict Theorem 4.2 (2).

Hence we have g € Stab(w). Since w is rigid and since (L,gLg~ ') is
finitely generated, by Theorem 4.2 (10), the automorphism ® acts as a global
conjugation on Stab(w). Since ® fixes L which is nonelementary, it must act
as a periodic automorphism of Stab(w). In particular, we have g € H, which
concludes the proof of the claim. [ |

Combining Lemma 5.18 and by Claim 3, we see that the stabiliser of vy
is equal to H, which concludes the proof. O

Theorem 5.21. Let G be a one-ended hyperbolic group relative to P and
let ¢ = [®] € Out(G,P). Let ¢V be an almost rotationless power of .
For every rigid vertex v € VTV there exists [H] € Pernp(¢Y) such that
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Stab(v) = H. Conversely, for every [H] € Perxp(¢”), there exists a rigid
verter v € VITT with Stab(v) = H.

Proof. Up to taking a power of ¢, we may assume that ¢ is almost rotationless
(see Remark 5.15). Let v € VTP be rigid. We claim that there exists
[H] € Pernp(¢) with H < Stab(v). Consider the pre-image of v in T%f. If
it is a vertex, then Stab(v) also stabilises a non-elementary vertex w of T¢.
If w is rigid, then (¢)° — Out(G,) has finite image, so Stab(v) is periodic
for some ¢, and so for ¢ (since we assume it is almost rotationless).

Otherwise w is a QH with fibre vertex. Note that all elementary subgroups
of Stab(w) are virtually cyclic. In particular, the edges adjacent to v € VTFer
are all virtually cyclic, hence finitely generated. Thus, Stab(v) is a finitely
generated subgroup of Stab(w). Since w is a QH with fibre vertex, it is
locally quasi-convex. Thus, Stab(v) is hyperbolic.

Note that, since Stab(v) is hyperbolic and a subgroup of Stab(w), the
restriction P U Pernp (@) |sab(v) of P U Pernp(¢) to Stab(v) is a finite family
of virtually cyclic subgroups of Stab(v) by Lemma 5.2. Thus, we can ap-
ply [GL15, Theorem 3.9] to show that Out(Stab(v), P U Perxp()stab(v) v
Inc,) (which has Out(Stab(v), P U (Pernp(9)|stan(v) U Inc,)®) as a finite in-
dex subgroup) is infinite if and only if Stab(v) has an (A, PUPernp (¢)|stab(v) Y
Inc,)-splitting. Since v is rigid, no such splitting of Stab(v) exists. There-
fore, Out(Stab(v), P|stab(v) U Pernp(#)[stan(v) U Incy) is finite. In particular,
the group Stab(v) is a nonelementary periodic subgroup of some power of ¢.

Now suppose that the pre-image of v contains an edge. Since v is non-

elementary, in fact this pre-image must be the minimal invariant tree Tsrgb(v).

If this is contained in T}j’f for some H € Pernp(¢), then v is the unique vertex
of TP stabilised by H, and by Lemma 5.20 Stab(v) (as the stabiliser of this
vertex) is equal to H.

So suppose Téfib(v) is not contained in any T;Ief. Since the T}{ef are disjoint

by Proposition 5.17, there is some edge of Téﬁ;b(v) contained in no T}ff, and

hence collapsing all the 7% will give an (A, PUPernp(¢)) tree where Stab(v)
is not elliptic, contradicting Theorem 4.2(7).
Conversely, let [H] € Peryp(¢). By construction of TV, the group H

fixes a vertex v of 7T, Since H is nonelementary, such a vertex is unique
and is rigid by Theorem 4.2 (10). By Lemma 5.20, we have Stab(v) = H. O

Corollary 5.22. Let G be a one-ended hyperbolic group relative to P and
let ® € Aut(G,P). Let H = |, e+ Pernp(¢™).

(1) For every geodesic edge path v of TY®" of length 3 and every auto-
morphism W € ¢ preserving vy, there exist a vertex v of v and g € G,
of infinite order fized by a power of ¥.

(2) The group Ge acts acylindrically on TT.

Proof. Let v be a geodesic edge path of length 3 in 77 preserved by an
automorphism ¥ € ¢. Suppose that there exists an edge e of v whose
stabiliser is virtually cyclic (this applies in particular when one of the vertices
of v is QH with fibre). Hence Out(G,) is finite. Thus, ¥ has a power acting
as the identity on the infinite cyclic subgroup of G.
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Thus, we may suppose that v only contains elementary and rigid vertices.
Since 7 has length 3 and since 77" is bipartite, it contains an interior vertex
v which is rigid. Let ej,es be the two edges of v adjacent to v. Then
Ge, N G, is finite by Theorem 4.2 (8) and for every i € {1, 2} the group G,
is its own normaliser in GG,,.

Let ¢V be an almost rotationless power of ¢. By Theorem 5.21, there
exists [H] € Peryp(¢?) such that Stab(v) = H. Let ®5 € ¢" be such that
Per(®y) = H. Since ¥ preserves H, and since H is its own normaliser by
Lemma 5.20, there exists h € H such that ¥V = ad,®y. As UV preserves
both G¢, and Ge,, we see that h € N(G.,) n N(G,), which is finite as
explained above. Up to taking a power of ®5 and ¥V, we may assume that
both @ and WV act trivially on N(Ge,) n N(G,,). Taking further powers
of UV and & shows that there exists M € N such that UM = @AH/[.

Let g € H be infinite order, which exists since H is nonelementary. Then
U has a power which fixes g. This proves Assertion (1).

We now prove that the action of Gg on TF¢" is acylindrical. Note that, if
a finite index subgroup of G acts acylindrically on T, so does Gg. Thus,
we may assume that ¢ is almost rotationless.

By Theorem 4.2 (2), the action of G on TT® is acylindrical. Thus, by
Lemma 4.3 (3) (which we can apply by Assertion (1)), it suffices to prove
that, for every n € N* every ¥ € ¢" and every g € Fix(¥"), the element g
is elliptic in T'.

Since ¢ is almost rotationless, in order to prove Assertion (2), it suffices
to prove that, for every n € N* every W € ¢ and every g € Fix(U"), the
element g is elliptic in T

Let g be as above. If g is peripheral, then g fixes a point by construction
of TP,

Suppose now that g is nonperipheral. Suppose towards a contradiction
that ¢ is loxodromic in 77, Since ¥"(g) = g, the characteristic set of
the isometry Fyn contains the axis of g. By Lemma 4.3 (2), up to taking
a power of ¢ and changing the representative ¥, the isometry Fygn fixes
pointwise the axis of g. By Lemma 4.3 (1), up to taking a power of ¥, the
automorphism W fixes elementwise a nonabelian free group of loxodromic
elements. In particular, since every peripheral element fixes a point in 77,
we see that W fixes a nonabelian free group of nonperipheral elements. Since
¢ is almost rotationless, for every n > 1, we have Pernxp(¢) = Pernxp(¢™),
we see that [Per(¥)] € Pernp(¢). Thus, there exists [H] € Pernp(¢) such
that g € Fix(¥) € H. In that case, the element g is elliptic in 77 by
construction of T7¢ a contradiction.

Therefore, the element g is elliptic in 77" and we can apply Lemma 4.3 (3)
to prove that the action of Gg on TP is acylindrical. (]

Let G be a finitely generated group and let ® € Aut(G). Suppose that ¢
has a power which preserves the conjugacy class of a malnormal subgroup
F of G. We then denote by Fg the group F' Xaq,0enr Z, where np is the
minimal positive integer such that ®"F preserves the conjugacy class of F'
and g € G is such that ady o ®"#(F) = F. Since F is malnormal, the group
Fg does not depend on g. Note that the group Fg only depends on the outer
class of .
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Corollary 5.23. Let G be a one-ended hyperbolic group relative to P and
let ® € Aut(G,P). If for every [P] € P the group Pg is in FJCx, then Gg
1s in FJCx.

Proof. Consider the action of Gg on TP, By Corollary 5.22, the action
of Gg on TP is acylindrical. Up to taking a power of ® (which does not
change the conclusion by Theorem 2.1), we may assume that ¢ = [®] is
almost rotationless.

By Theorem 2.5, it suffices to show that, for every v € VI, the stabiliser
(Gp)y of v in Gg belongs to FICx. Note that, for every v € VTT, the
group (Gg), can be written as a semi direct product G, x Z, where G, is
the stabiliser of v in G.

Suppose first that G, is elementary. If G, < P for some [P] € P, then
(Gg)y is a subgroup of Pg. In particular, it belongs to FJCx by Theo-
rem 2.1 (1). If G, is infinite virtually cyclic, then (Gg), belongs to FJCx.

Suppose now that G, is QH with fibre. Then G, fits in a short exact
sequence

1>F -G, —>m(E,)—1,
where Y, is a hyperbolic 2-orbifold and F is finite. Moreover, up to taking a
power of ® (which is possible by Theorem 2.1 (2)), since Out(G,) has a finite
index subgroup acting as the identity on F', there exists W € ¢ preserving
G, and fixing F' elementwise. Thus, we have a short exact sequence

1—>F—>(Gq>)v—>71’1(2v) X Z — 1.

The groups F' and m1(X,) % Z belong to FJCx. For the latter one may use
that surface bundles over the circle are locally CAT(0) and apply [Wegl2).
Moreover, for every virtually cyclic group Q < 71(X,) x Z, the preimage of
Q in (Gg), is virtually cyclic, and hence belongs to FJCx. Thus, the group
(Gg)y belongs to FJCx.

Suppose that G, is rigid. By Theorem 5.21, since ¢ is almost rotationless,
there exists [H] € Pernp(¢) such that G, = H.

Suppose that ® € ¢ is such that Per(®) = H. Then (Gs), is isomorphic
to Per(®) xg Z. By Lemma 2.6, we have (Gg), € FJCx.

As we have ruled out every case, for every v € VI the group (Gg),
belongs to FJCx. By Theorem 2.5, the group Gg belongs to FJCx. O

5.C. An aside on slender peripherals. We also isolate here an interest-
ing consequence of Theorem 5.21 for automorphisms of groups hyperbolic
relative to slender groups. Recall that a group is slender if all its subgroups
are finitely generated.

Theorem 5.24. Let G be a hyperbolic group relative to a collection P of
slender groups and let ® € Aut(G). There exists N € N* such that Per(®) =
Fix(®Y) and Per(®) is finitely generated.

Proof. See also the proof of [GL15, Theorem 8.2|. We claim that it suffices
to prove that Per(®) is finitely generated. Indeed, suppose that Per(®)
is generated by ai,...,a,. For every i € {1,...,n}, let k; be such that
®%i(a;) = a;. Let N = ky ...k,. Then Per(®) = Fix(®V).

So we prove that Per(®) is finitely generated. Note that slender groups
are NRH groups, so that Aut(G) = Aut(G,P). Note also that, since P is a
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set of conjugacy classes of slender groups, every elementary subgroup of G
is finitely generated. Thus, we may suppose that Per(®) is not elementary.

Let ¢ = [®] € Out(G). Suppose first that G is one-ended relative to
H = Pernp(¢). Let TP be the associated JSJ tree.

Since edge stabilisers of TP are elementary, they are all finitely generated.
Thus, every vertex stabiliser of 7T is also finitely generated.

By Theorem 5.21, the group Per(®) is equal to the stabiliser of a vertex
of TP¢" hence is finitely generated.

Suppose now that G is not one-ended relative to H and consider a minimal
reduced Stallings-Dunwoody decomposition S of G such that, for every [H] €
P UH, the group H is contained in the stabiliser of a vertex of S. Recall that
edge stabilisers in S are all finite. Since Per(®) is infinite, it fixes a unique
vertex v. Since the deformation space of S (see |GL07|) is invariant by ®,
the group ®(G,) also fixes a unique vertex w in S. As Per(®) < ®(G,) and
as Per(®) only fixes v, we see that v = w. This shows that ®(G,) = G,.

Note that, by minimality of S, the group G, is one-ended hyperbolic
relative to the restriction P, of P in G,. Since P is a set of conjugacy
classes of slender groups, so is P,. Thus, the conclusion follows from the
one-ended case applied to the restriction ®|¢, . O

We remark that Minasyan—Osin [MO12, Corollary 1.3] also proved that
the fixed subgroup of the automorphism of any hyperbolic group relative to
slender groups is finitely generated.

6. A COMBINATION THEOREM FOR THE FARRELL—JONES CONJECTURE

Let G be a finitely generated group and let ® € Aut(G). If F' is a malnor-
mal subgroup of G whose conjugacy class is ®-periodic, recall the definition
of Fg from just above Corollary 5.23. In this section, we prove the following
combination theorem.

Theorem D. Let G = G1#*...«Gp*Fy be a free product of finitely generated
groups, let F' = {[G1],...,[Gk]} and let ® € Aut(G,F’). If for each i €
{1,...,k}, the group (G;)e is in FICx, then G x4 Z is in FJCx.

The proof of Theorem D is by induction on k + N. Let 7/ < F be a
maximal proper ®-periodic free factor system. Up to taking a power of ®
(which does not change the conclusion of Theorem D by Theorem 2.1 (2)),
we may suppose that ® € Aut(G, F). We will distinguish between two cases,
according to whether F is sporadic or not.

6.A. The nonsporadic case.

Lemma 6.1. Let G = Gy ... Gy = Fiy be a free product of groups, let
F ={[G1],...,[Gk]} and let ® € Aut(G,F) be fully irreducible. If for each
i€ {l,...,k}, the group (G;)s is in FICx, then G x¢ Z is in FICx.

Proof. Let S be the Grushko (G, F)-tree given by Lemma 3.3. Let Pg(®)
be the ||.||s-maximal polynomial subgroups of ®. By Theorem 3.2, up to
taking a power of ® (which does not change the conclusion of Lemma 6.1 by
Theorem 2.1 (2)) the group G x¢ Z is hyperbolic relative to the suspension
of Ps(®). By Proposition 3.4, for every [P] € Pg(®), either [P] € F or P
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is infinite cyclic. In either case Py is contained in FJCx. By Theorem 2.4,
the group G x¢ Z is contained in FJCx. O

6.B. The sporadic case. This section follows [BFW23, Proof of Proposi-
tion 4.1]. Let (G, F) be a sporadic free product and let ® € Aut(G, F). Since
(G, F) is sporadic, the automorphism ¢ induces a G-equivariant homeomor-
phism of the Bass-Serre tree T'r associated with F. This induces an action
of G x¢ Z on Tr. However, this action is not necessarily acylindrical. In
order to apply Theorem 2.5, we will consider the action of G x¢ Z on the
tree of cylinders of Tr associated with an admissible relation that we now
describe.

Let t be a generator of the Z-factor. Up to taking a finite index subgroup
of G x¢ Z (which is possible by Theorem 2.1 (2)), we may suppose that ¢
fixes an edge e. In that case, edge stabilisers of the action of G x4 Z are all
infinite cyclic, generated by conjugates of t. Therefore, the commensurabil-
ity relation is an admissible equivalence relation, and we define the tree of
cylinders T, of T'r relative to this admissible relation.

Lemma 6.2. Let Y be the cylinder of Tr containing e. The stabiliser of Y
in G Xg Z is isomorphic to (Fix(®") pen X o Z.

Proof. Note that any element h € G x¢ Z can be written uniquely as w™1#/,
where w € G and j € Z. Let w™'#/ € Stab(Y) with w € G and j € Z and let
¢/ = w™te. Then we have G = (w~'tw). Moreover, since e,e’ € EY, by
definition of the commensurability relation, there exist n,m € N such that

t" = w M = wT O™ (w)t™.
In particular, we see that n = m and ®"(w) = w. O
Lemma 6.3. The action of G x¢ Z on T, is acylindrical.

Proof. The proof is identical to [BFW23, Lemma 4.6]. Let v,v’ € VT, with
dr,(v,v") = 6. We may suppose that v and v’ correspond to vertices w and
w’ in T’F up to considering adjacent vertices in the path between them. Even
after this operation, we have dr, (v,v") = 4.

Let g € G, n Gy. Then g fixes the path in Tr between w and w’. Since
dr,(v,v") = 4, the path in Tr between w and w’ must contain two edges
in distinct cylinders. Hence g fixes two edges in distinct cylinders. Since
edge stabilisers in T are infinite cyclic and since we are considering the
commensurability relation, two edges in T'r are in the same cylinder if and
only if the intersection of their stabilisers is nontrivial. In particular, this
shows that g is trivial and that the action of G x¢Z on T, is acylindrical. [J

Lemma 6.4. Let (G,F) be a sporadic free product of groups and let ® €
Aut(G, F). If for each [A] € F, the group Ag is in FICx, then G xg Z is
m FJCx.

Proof. Let T'r be the Bass-Serre tree associated with F and let T, be its tree
of cylinders relative to the commensurability relation. We want to apply
Theorem 2.5 to the action of G x4 Z on T,.. This action is acylindrical by

Lemma 6.3. Thus, it suffices to prove that every vertex stabiliser belongs to
FJCx.
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Recall that we have a bipartition of VT, = V)T, [ [ V1V,, where vertices in
VoT, correspond to vertices of T'r and vertices in V1T, correspond to cylinders
of T,.

If v € VT, then its stabiliser is isomorphic to Ag. In that case, the
stabiliser of v belongs to FJCx by hypothesis.

Suppose now that v € ViT,.. By Lemma 6.2, the stabiliser of v is isomor-
phic to Per(®) xg Z. By Lemma 2.6, the group Per(®) x¢ Z belongs to
FJCx.

Thus, every vertex stabiliser of the action of G x¢ Z on T, belongs to
FJCx. By Theorem 2.5, the group G x¢ Z belongs to FJCx. U

6.C. End of the proof of Theorem D. Let G = G *...* Gy = Fiy be
a free product of groups, let 7' = {[G1],...,[G]} and let ® € Aut(G, F').
We prove by induction on k£ + N that G € FJCx.

Suppose first that k+ N = 1. If N =0, then G = G; and G x¢Z € FJCx
by hypothesis. If £ = 0, then G = Z, G x¢Z is solvable and the result follows
from [Wegl5|. This proves the base case.

Suppose now that k+ N > 2 and let F be a maximal ®-periodic free factor
system. We may assume, up to taking a power of ®, that F is ®-invariant,
so that we can view ® as an element of Aut(G,F). This is possible by
Theorem 2.1 (2) as, for every n € N, the group G x¢n Z is a finite index
subgroup of G x¢ Z.

By induction hypothesis, for every [A] € F, the group Ag belongs to
FJCx. Combining the nonsporadic case (Lemma 6.1) and the sporadic case
(Lemma 6.4), we conclude that G x¢ Z belongs to FJCx. This concludes
the proof. O

6.D. Proving Theorem A. We first record a corollary of Theorem D.

Corollary 6.5. Let (G,P) be a virtually torsion-free relatively hyperbolic
group with P finite and let ® € Aut(G,P). If for every [P] € P we have
Pq:. € FJCX, then ch € FJCX.

Proof. By Theorem 2.1 we may assume G is torsion-free. Let F be the
minimal free factor system of G such that, for every [P] € P, there exists
[A] € F with P € A. Since ® € Aut(G,P), by minimality of F, we have
® e Aut(G, F). Let [A] € F. We denote by P4 the peripheral structure of A
induced by P. Since G is torsion-free, the group A is one-ended hyperbolic
relative to P4. By Corollary 5.23 the group Ag belongs to FJCx. By
Theorem D, the group G belongs to FJCx. O

Finally, combining Corollary 5.23 and Corollary 6.5 proves our first theo-
rem from the introduction.

Theorem A. Let (G,P) be a virtually torsion-free or one-ended relatively
hyperbolic group with P finite and let ® € Aut(G,P). If for every [P] € P
we have Py € FJCx, then Gg € FJCx.

We now discuss the (minor) changes to the proof used to prove the fol-
lowing theorem.
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Theorem E. Suppose (G,P) is one-ended or virtually torsion free, and
hyperbolic relative to finitely many conjugacy classes of slender subgroups.
Then for every automorphism ® of G, T := G x¢ Z is in AC(VNIil).

Proof. Knopf’s work on acylindrical actions of trees applies equally well in
the setting of AC(VNil) (see [Knol9, Corollary 4.2] and [BFW23, Theo-
rem 2.4], note that Knopf does not state this but it is implicit in her work).
We use the same trees as every step of the proof of Theorem A. Whenever
a vertex group is identified as Per(®) x¢ Z, use Theorem 5.24 to further
identify it as some Fix(®*) xg Z. As this has a finite index subgroup iso-
morphic to Fix(®*) x Z, and AC(VNil) passes to both subgroups and direct
products, this vertex group lies in AC(VNIl). O

7. PROOFS OF THE APPLICATIONS

Our first application is to extensions of groups with relatively hyperbolic
kernel.

Corollary B. Let (N,P) be a virtually torsion-free or one-ended relatively
hyperbolic group such that P consists of finitely many conjugacy classes of
groups which are NRH and whose suspensions P xg Z are in FJCx for all
automorphisms V¥ of P. Let1 - N - I' > Q — 1 be a short exact sequence.
If Q is in FICx, then I' is in FJCx.

Proof. Since for all [P] € P the group P is NRH we have that Aut(G,P) is
a finite index subgroup of Aut(G). Let ® € Aut(G). The suspension G has
a finite index subgroup Ggn» such that ®" € Aut(G,P). Now, Theorem A
implies that Ggr is in FJCx. It follows from Theorem 2.1 that Gg is in
FJCx. The result now follows from Theorem 2.2. O

Our other application is that Aut(G) is in FJCx for G a one-ended group
hyperbolic relative to finitely many conjugacy classes of polycyclic subgroups.
Before we prove this, we collect some results.

Theorem 7.1 (|GL15, Theorem 4.3|). Let (G,P) be a relatively hyperbolic
group. Suppose for every [P] € P, the group P is finitely generated. If G is
one-ended relative to P, then there is a short exact sequence

P
1% — Outo(G,P) - HMCGO(SI) X HOUt(Pj,IHng) —1
i=1 J

where

(1) T is a quotient of a finite direct product where each factor is virtually
cyclic or contained in some P for P e P;

(2) MCGq(S;) maps onto a finite index subgroup of the extended mapping
class group MCG*(S;) with finite kernel (they are virtually isomor-
phic).

Proposition 7.2. If G is a virtually polycyclic group, then G, Out(G) and
Aut(QG) are in FJICx.

Proof. By [BG06, Theorem 1.1] we see that Out(G) is an arithmetic group.
Hence, Out(G) is in FJCx by [BFL14|. Technically they only prove the con-
jecture for K- and L-theory but it follows for A-theory by |Riip16], [Knol9,
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Proof of Theorem 1.8(a)|, and [ELP*18, Theorem 6.19]. Alternatively, one
may use [ELP*18] and [KUWW13|.

Since G is virtually soluble it is in FJCx by [Wegl5| (for K- and L-
theory), [KUWW18] (for A-theory), and Theorem 2.1. Now, a virtually
polycyclic group is poly-{virtually cyclic}, so any extension G x Z is also
virtually polycyclic. Thus, G x Z is in FJCx. Further, note that G/Z(G)
is virtually polycyclic and so in FJCx. Combining these observations with
Theorem 2.2 shows that Aut(G) is in FJCx. O

Proposition 7.3. The mapping class group of a hyperbolic 2-orbifold is in
FJCx.

Proof. This follows from the result for (orientable) surfaces |[BB19| and as-
sembling results in the literature. Note that Bartels—Bestvina only prove
FJC for K- and L-theory but the result for A-theory follows (as usual) from
[Kno19, Proof of Theorem 1.8(a)|, and [ELP*18, Theorem 6.19].

Let S be a hyperbolic orbifold, and let ¥ be an orientable surface covering
S with finite degree so that 7;(X) is characteristic in m1(S). (This can be
achieved by taking any covering surface, passing to its orientation cover if
necessary, and then taking the characteristic core of the corresponding sub-
group and realising the covering surface.) By [KE21] there is an injective
map from Autgeom(71(5)) to Autgeom(m1(X)), where these geometric auto-
morphism groups are exactly the lifts of the mapping class groups.

Restricting to the image, Inn(7(.S)) will be normal, and by the third iso-
morphism theorem the quotient is isomorphic to C'/(Inn (7 (S))/ Inn(m (X)),
where C' is a subgroup of Autgeom(71(X))/Inn(7i(X)), the mapping class
group of ¥. The quotient of inner automorphism groups is finite (in fact
isomorphic to the deck transformations 71 (S)/m1(X), so we have realised
MCG(S) as an extension

1> F—>C—- MCG(S) - 1.

Since mapping class groups of surfaces are residually finite by [Gro74| (and
residual finiteness passes to subgroups), we may apply Lemma 2.3 to obtain
the conclusion. O

Proposition 7.4. If G is a one ended group hyperbolic relative to finitely
many conjugacy classes of virtually polycyclic groups, then Out(G) is in
FJCx.

Proof. By Theorem 7.1 there is a finite index subgroup Outg(G) fitting into
a short exact sequence

P
1= T = Outg(G) — [ [MCGo(8;) x [ [ Out(P;, Incf)) — 1.
i=1 j
We want to apply Theorem 2.2 to this short exact sequence. First we
check the kernel ¥: this is a quotient of a direct product of virtually poly-
cyclic groups, and hence is itself virtually polycyclic, and so in FJCx by
Proposition 7.2.
Now consider the image. The subgroups Out(FP;, Incgj) are subgroups of

Out(P;) for a virtually polycyclic P;, and hence are in FJCx by Propo-
sition 7.2. Each MCG(S;) maps with finite kernel onto the mapping class
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group of a hyperbolic 2-orbifold. By Lemma 2.3 it is enough to consider
these mapping class groups. These are in FJCx by Proposition 7.3. Then
the product is in FJCx by Theorem 2.1.

To apply Theorem 2.2 it remains to check the preimages of elements.
These are of the form ¥ x Z, which are in FJCx by Proposition 7.2 since
they are again virtually polycyclic. O

Theorem C. If G is a one-ended group hyperbolic relative to finitely many
conjugacy classes of virtually polycyclic groups, then Aut(G) and Out(G) are
m FJCX.

Proof. Since P contains only finitely many conjugacy classes of virtually
polycyclic groups, by [DS05, Corollary 1.14], we may modify P such that
that for every [P] € P, the group P is NRH. Observe that since G is hy-
perbolic relative to finitely many conjugacy classes of virtually polycyclic
subgroups its centre is finite. Hence, Inn(G) is quasi-isometric to G and
again hyperbolic relative to finitely many conjugacy classes of NRH virtu-
ally polycyclic subgroups by [BDMO09]. The result now follows from applying
Corollary B to the short exact sequence

1 - Inn(G) — Aut(G) — Out(G) — 1. O

Theorem C allows to prove that the outer automorphism groups of some
small complexity relatively hyperbolic groups also belong to FJCx.

Corollary 7.5. Let G = A ¢ B, where A and B are one-ended hyper-
bolic groups relative to finitely many conjugacy classes of virtually polycyclic

groups and C is a finite group. The groups Out(G) and Aut(G) are in
FJCx.

Proof. We prove the result for Out(G), the proof for Aut(G) being identical
to the proof of Theorem C (this uses Proposition 8.3 when C' is nontrivial
and Theorem A otherwise). Let Out’(G) be the index (at most) 2 subgroup
of Out(QG) preserving the conjugacy classes of A and B. By [For02|, every
element ¢ € Out’(G) has a representative ® € ¢ such that ®(A) = A and
®(B) = B. Moreover, the map sending ¢ to ® defines an isomorphism
between Out®(G) and Aut(A, C) x Aut(B,C). By Theorem C, the groups
Aut(A,C) and Aut(B,C) belong to FJCx. By Theorem 2.1, the groups
Out’(@) and Out(G) belong to FJCx. O

Corollary 7.6. Let G = Axc, where A is a one-ended hyperbolic group
relative to finitely many conjugacy classes of virtually polycyclic groups and
C' is a finite group. The groups Out(G) and Aut(G) are in FJCx.

Proof. As above we only prove the result for Out(G). Let ¢ be a stable letter
for the HNN extension A#¢. By [Lev05], the group Out(G) has an index 2
subgroup Out®(G) such that any element ¢ € Out®(G) has a representative
® € ¢ such that ®(A) = A and ®(t) = ta for some a € A. Moreover, the map
sending ¢ to ® induces an isomorphism between Out®(G) and A x Aut(A4, C).
Thus, Out?(G) fits in a short exact sequence

1 - A— Out’(G) — Aut(4,C) — 1.
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The group Aut(A, C) belongs to FJCx by Theorem C. Moreover, for every
infinite cyclic subgroup @ € Aut(A, C), the preimage of @ in Out’(G) be-
longs to FICx by Theorem A. Thus, by Theorem 2.2, the groups Out’(Q)
and Out(G) belong to FJCx. O

One more infinitely ended case is known, since Out(F3) = GL(2,Z) is an
arithmetic group, and the same extension arguments as above will give the
result for Aut(Fy). Our techniques do not seem to extend to Out(F},), which
will be necessary to make any further progress.

8. TORSION IN THE INFINITELY ENDED CASE

The aim in this section is to prove as much of Section 6 as possible without
the assumption that G is virtually torsion free. To this end we give two
propositions. The first allows us — in many cases — to pass from an infinitely-
ended group to a finite index subgroup which is a free product of one-ended
groups and a finitely generated free group, while the second is a generalisation
of the sporadic case (of Section 6.B) to graphs of groups with one, finitely
stabilised, edge.

Proposition 8.1. Suppose G is finitely generated, infinitely-ended and ac-
cessible.  Further suppose that for each one-ended vertex group G, in a
Stallings—Dunwoody decomposition of G, there is a normal finite index sub-
group K, that trivially intersects all the incident edge groups. Then G has
a finite index subgroup K that is a free product of one-ended groups and a
finitely generated free group.

Furthermore, for any automorphism ®, the suspension Gg has a finite
index subgroup Ky, where W is the restriction of some power of ® to H.

Note that [AGHK23, Lemma 5.4] is a similar result, but the statement and
proof are considerably simplified by the underlying assumption of that paper
that all groups considered are residually finite. Here we prove necessary and
sufficient conditions on the vertex groups and incident edge groups for the
existence of such a subgroup.

Remarks 8.2. We record a number of observations about the hypotheses.

e Accessibility is only used to ensure that the vertex groups are one-
ended. More generally, given a splitting over finite edge groups and
where the vertex groups satisfy the separability hypothesis, one can
find a finite index free product where the non-trivial vertex groups are
finite index subgroups of (conjugates of) the original infinite vertex
groups.

e The sufficient conditions given in the statement are also necessary:
any finite index K satisfying the conclusion will have intersections
K n Gy, finite index in G, avoiding the edge groups. Passing to the
normal core recovers the finite index normal subgroup having the
desired property.

¢ Finite generation is only used in the “furthermore”; a sufficient con-
dition on ® would be that it has such a power.
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The proof involves Bass—Serre covering theory, see [Bas93| for details.
Since it is independent of the rest of the paper we do not provide a self-
contained description of the theory here, though references to the appropriate
results and definitions will be made as necessary.

Proof. Let G be the graph of groups corresponding to a Stallings—Dunwoody
decomposition of G. We will produce a graph of groups X which covers G
(in the sense of [Bas93, Definition 2.6]). To do this we need to produce a
graph with a map to the underlying graph of G, and its vertex (and edge,
though these will be trivial) groups, together with monomorphisms to the
appropriate vertex group of G. Abusing notation, we refer to all these graph
and group maps as f, trusting that it will be clear from context which is
meant. For each edge (and inverse edge) e of K we also need to define an
element dc € Gy(,(c)). These allow us to assemble the “star maps” at a vertex
v of K (see [Bas93, Proposition 2.4]):

Lleef*l(e’),L(e):v KL(6> - GL(e’)/Ge
(evk) = 0ckGer

which we are required to check are bijective to ensure we defined a cov-
ering. (Note that, in general, there are compatibility conditions to check on
the 6.. However, these are vacuous when K, are trivial, as they will be for
us — see [Bas93, Definition 2.1].)

By [Bas93, Proposition 2.7|, once we have defined K and f so that we
have a covering, there is an inclusion (defined using f) from H = m1(K) to
G = m(G), and the Bass—Serre trees of are the same, with K acting as a
subgroup of G. In this case, we can use [And23, Lemma 3.4| to calculate the
index [G : K]: it is the sum (as = ranges over the preimages of any vertex or
edge) of the indices [G, : K,]. In particular, to get a finite index subgroup,
we need to ensure that all these indices are finite, and that the sums agree.

To facilitate this, let K, < G, be as given in the statement when G, is
infinite, and if G, is finite, let K, be trivial. Set d, = [G, : K,], and set
d = lem({d,}). (Observe that for v = i(e), by the tower law and second
isomorphism theorem, |G| = [Ge : Ky N Ge| = [K,Ge : K] divides [G, :
K,Ge| - [K,Ge : K| =[Gy : K] = d,, so this accounts for all edge groups
as well.)

Now let the vertex set of K consist of d/d, preimages of each v, each with
vertex group K,. Let each f(K,) be the inclusion into G,. For the edge
groups, let v = u(e) and note that in order for the local action of K, on
its star to respect the index sum formula, we must have d,/|G¢| preimages
of e adjacent to a preimage of v. Note that by the tower law argument
above, d,/|G.| = [G, : KyGe]. Summing across the d/d, preimages of v,
we will see the expected d/|G.| preimages of e adjacent to preimages of v.
Exactly the same argument applies to 7(e), and so for every edge e there is
a bijection between the “heads” at preimages of ¢(e) and “tails” at preimages
of 7(e) where we would like to attach a preimage of e. Picking any explicit
bijection, give K edges joining the indicated heads and tails. Set all edge
groups to be trivial.

Setting d to be the least common multiple ensures that the resulting graph
is connected whatever choices are made. (If it has some smaller connected
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component, then summing indices over the orbits within it will provide a
smaller common multiple.)

Given a vertex v of K and the set of incident preimages of some €', let the
de range over a set of coset representatives G,/K,G.. We now investigate
the star maps.

First, we see they are injective. Suppose that d., k1Ge = 0¢,k2Ge. This
(together with normality of K, in G,) implies that d., and d., represent the
same K,G. coset, and so that e; = ey. Cancelling the d.,, we now have
that k1G. = koG.. This implies that kl_lkg is contained in G, but since the
intersection G, N K, is trivial, they must be equal.

To see surjectivity, consider some coset gG¢r. Let & be the previously de-
termined representative of the coset gK,G.. Notice that §;1g is contained
in K,Ge, and so there is some element g, of G so that k = 5, 1gg. is con-
tained in K,. By construction, the copy of k lying inside the K, associated
to the coset . K,G . is mapped to 56(5glgge/Ge which is gGe.

Since K is a finite graph of groups with trivial edge groups, K is a free
product of its non-trivial vertex groups and a finitely generated free group.
The non-trivial vertex groups are (conjugates of) finite index subgroups of
the original vertex groups, so are themselves one-ended, as required. Finally,
K covers G and the sums of indices over the preimages of any edge or vertex
is d, so K has finite index in G.

For the final statement, note that a finitely generated group has only
finitely many subgroups of a given finite index, and so some power ¥ = &F
preserves K. The suspension Ky is finite index in Gg by one final application
of the tower law. O

Even if this fails, we may still be able to proceed in some cases.

Proposition 8.3. Suppose G =~ Axc B or G = Ax¢c with C a finite group.
Further suppose that ® € Aut(G) preserves the conjugacy classes of A and
B, and that the restrictions of ® to A is such that Ax g, Z belongs to FICx
(and similarly for B, if applicable). Then G x¢ Z belongs to FJCx.

The proof being largely an elaboration of the arguments in Section 6.8,
here we indicate the necessary changes and references.

Proof. First, we have to argue that ® preserves the action on the Bass—Serre
tree T for this splitting. This follows from [Lev05], or for the two vertex case
already from [For02|, which give that these one edge splittings are rigid: the
unique reduced tree in their deformation spaces, together with the hypothesis
that ® preserves the vertex groups.

So we may consider the action of G x¢ Z on T. Use t to denote the
generator of the Z factor. After possibly passing to a finite index subgroup
(by taking the square of ®, if necessary) we may suppose the quotient graphs
are the same for both actions, and that ¢ stabilises an edge e. Edge stabilisers
are virtually cyclic, and admit a map to Z with a conjugate of ¢ is mapped
to the generator. For G, we may take this preimage to be t.

Note that by work of Wall [Wal67, Lemma 4.1] virtually cyclic groups act
on the line and have a unique maximal finite normal subgroup which is the
kernel of this action. Since G surjects onto Z, in fact this is the unique
maximal finite subgroup.
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Following the proof in the free splitting case, we need to take a tree of
cylinders to ensure that we have an acylindrical action. Just as in that case,
the commensurablilty relation is admissible, and we take the tree of cylinders
T. relative to this relation.

We need to adapt the proofs of Lemma 6.2 and Lemma 6.3 to the new
situation. In the first case, we assume that e and w™'t/e = w™'e are edges
in the same cylinder. Then (t) and (w~!'tw) are finite index subgroups of
the respective stabilisers, and again the commensurability relation implies
that there are powers n,m € N so that

t" = w M = wTLe™ (w)t™.
As before, we see that n = m and w is periodic.

To adapt the proof of Lemma 6.3, make the adjustments of the first
paragraph of that proof and then consider the whole intersection G, N G, .
This group fixes edges in two distinct cylinders, so is contained inside some
Ge N G, where this intersection is between two virtually cyclic subgroups
that are not commensurable. In particular, this means the intersection is
finite; in fact its cardinality is bounded by the size of the unique maximal
finite subgroup (in either — they are conjugate). This means the action of
G xg Z on T, is acylindrical.

To finish the proof, we recall the bipartite nature of T, and observe that
vertex stabilisers are either isomorphic to A ¢, Z (or the same for B — the

original vertex stabilisers), or a cylinder stabiliser Per(®) x¢ Z. The first
kind is in FJCx by hypothesis; the second by Lemma 2.6. U

With this in hand, one can begin to try and run the induction argument of
Section 6 on a Stallings—Dunwoody decomposition of a more general infinitely
ended group. However, there seems as yet to be no analogy for the relative
hyperbolicity argument used in the non-sporadic case, and so the induction
will not be able to proceed if at some stage we encounter a maximal periodic
“Stallings—Dunwoody type splitting” that has more than one edge, and at
least one edge with non-trivial stabiliser.

A proof of the following conjecture, the analogy of Theorem 3.2 for general
infinite ended groups, should complete the proof of Theorem A with no
assumption on torsion.

Conjecture 8.4. Suppose G is the fundamental group of a non-sporadic
graph of groups with finite edge stabilisers, and ® € Aut(G) is fully irre-
ducible relative to this splitting. Then G Xgn Z is hyperbolic relative to the
suspensions of polynomially growing subgroups of ®.

It may be necessary to assume accessibility in the previous conjecture but
for now we do not. As in the free product case, the correct notion of growth
should be with respect to the translation length function for the action of G
on the Bass—Serre tree. The correct definition of fully irreducible appears to
be that in any splitting (strictly) dominated by ours every power of ® does
not preserve the set of elliptic subgroups.
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