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Abstract. We prove that residually finite mapping tori of polynomi-
ally growing automorphisms of hyperbolic groups, groups hyperbolic
relative to finitely many virtually polycyclic groups, right-angled Artin
groups (when the automorphism is untwisted), and right-angled Coxeter
groups have the cheap rebuilding property of Abert, Bergeron, Fraczyk,
and Gaboriau. In particular, their torsion homology growth vanishes for
every Farber sequence in every degree.

1. Introduction

Let Γ be a residually finite group of type F. By Lück’s celebrated approx-
imation theorem, the ith `2-Betti number bp2qi pΓq of Γ is a measure of the
growth of the ith homology of Γ with rational coefficients [Lüc94]. More pre-
cisely, if pΓkqkPN is a descending sequence of finite index normal subgroups
of Γ such that

Ş

kPN Γk “ 1, then

b
p2q
i pΓq “ lim

kÑ8

dimQHipΓk,Qq
rΓ: Γks

.

The `2-Betti numbers are important group invariants which have found many
applications in topology and group theory (see [Lüc02] and the references
therein for a comprehensive account). It is thus natural to study the growth
of other homology groups associated to Γ, as well as the growth of the torsion
part |HipΓk,Zq|tors of the homology.

This paper is concerned with the growth of the mod-p Betti numbers of
certain groups Γ, as well as the homology torsion growth, which is defined to
be

tjpΓ; Γkq “ lim
kÑ8

log |HjpΓk,Zqtors|

rΓ : Γks
,
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where pΓkqkPN is a Farber sequence of Γ. The integral torsion ρZpΓq of Γ is
given by

ρZpΓq :“
ÿ

jě0

tjpΓ; Γkq.

The invariant has largely evaded computation, aside from right-angled Artin
groups and certain graph products [AOS21, OS21] (see also [FHL22] where
non-vanishing is proven for certain Bestvina–Brady groups), the only other
known results the authors are aware of prove its vanishing in various instances
[BV13, Sau16, KKN17, ABFG21]. Although we mention there is an upper
bound for negatively curved Riemannian manifolds of dimension at least four
in terms of their volume [BGS20]. An important conjecture of Lück relates
the `2-torsion ρp2qpΓq of Γ with the integral torsion ρZpΓq.

Conjecture 1.1 ([Lüc13, Conjecture 1.11(3)]). Let Γ be an infinite residu-
ally finite `2-acyclic group of type VF. Then, ρp2qpΓq “ ρZpΓq.

The conjecture is known to hold for some classes of groups, including
amenable groups by the work of Kar–Kropholler–Nikolov [KKN17] and Li–
Thom [LT14], and fundamental groups of closed aspherical manifolds which
admit non-trivial S1-action, or contain a nontrivial elementary amenable
normal subgroup by the work of Lück [Lüc13].

Recently, the first, third and fourth authors proved that the conjecture
holds for all mapping tori of polynomially growing outer automorphisms of
finite rank free groups [AHK22]. Specifically, they showed that such groups
have vanishing homology torsion growth; the vanishing of the `2-torsion was
proven by Clay [Cla17]. The aim of this paper is to extend the homological
torsion growth vanishing to a much larger family of polynomially growing
mapping tori.

To that end, fix a finite generating set S of a group G. For any g P G,
let }rgs}S denote the length of the shortest word in the conjugacy class rgs
of g, and |g|S the length of the shortest word equivalent to g in G. An
outer automorphism Φ P OutpGq is said to grow polynomially, if for every
conjugacy class c in G, there exists some integer d ě 0 and real number
C ą 0 such that for all n P N,

}Φnpcq}S ď Cnd ` C.

An automorphism φ P AutpGq is said to grow polynomially, if for every
element g P G, there exists some integer d ě 0 and C ą 0 such that for all
n P N,

|φnpgq|S ď Cnd ` C.

Note that both of these notions are independent of the choice of a finite
generating set for G.

The growth of (outer) automorphisms has been widely studied in the lit-
erature, most notably for automorphisms of free abelian groups thanks to
the Jordan decomposition, surface groups with the Nielsen–Thurston de-
composition [FM11, Theorem 13.2], or free groups thanks to the train track
theory of Bestvina–Handel [BH92]. We note that, for a large family of groups
G including free abelian groups or hyperbolic groups, an automorphism of
G P G has either polynomial or at least exponential growth (see [Cou22,
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Theorem 1.1]). This dichotomy is even finer in the case of free groups where
Levitt [Lev09] gave a complete classification of all possible types of growth
for automorphisms of free groups. However, as shown by Coulon [Cou22],
the automorphisms of some groups may have more exotic types of growth.

Our main result is the following:

Theorem A. Let Γ be a residually finite group isomorphic to one of

‚ G¸Φ Z with G hyperbolic;
‚ G¸Φ Z with G is hyperbolic relative to a finite collection of virtually
polycyclic groups;

‚ AL ¸Φ Z where AL is a right-angled Artin group and Φ P OutpALq
is untwisted (see Section 6); or

‚ WL ¸Φ Z where WL is a right-angled Coxeter group.

If Φ is polynomially growing, then for every Farber sequence pΓkqkPN of Γ,
every j ě 0 and every field K, we have

lim
kÑ8

dimKHjpΓk,Kq
rΓ : Γks

“ 0 and lim
kÑ8

log |HjpΓk,Zqtors|

rΓ : Γks
“ 0.

As explained above, the automorphisms of most of the groups involved in
Theorem A have either exponential or polynomial growth, so that Theorem A
deals with a substantial class of cyclic extensions of such groups.

As in [AHK22], the key tool in proving Theorem A is the cheap rebuilding
property developed in a recent breakthrough of Abert–Bergeron–Fraczyk–
Gaboriau [ABFG21]. The property ensures the vanishing of homology tor-
sion growth of residually finite groups Γ which satisfy it. Crucially for us, the
cheap rebuilding property of Γ can be deduced whenever Γ admits a suffi-
ciently nice action on a CW-complex with stabilisers which satisfy the cheap
rebuilding property (see Section 2.2 for more details, and specifically Theo-
rem 2.11). The strategy introduced by Abert–Bergeron–Fraczyk–Gaboriau,
which allows for inductive arguments, turns out to be sufficiently flexible
to be applied in various distinct situations. Indeed, such a technique en-
ables the control of the (torsion) homology growth of for instance SLnpZq,
mapping class groups [ABFG21], OutpWnq [GGH22] or of inner-amenable
groups [Usc22].

When the fibre G is one-ended and relatively hyperbolic we deploy the
theory of JSJ decompositions [GL17] following Guirardel–Levitt. In order
to tackle the case where the fibre G in G¸ Z is infinitely-ended, we prove a
combination-type theorem, which uses the key observation that if a polyno-
mially growing outer automorphism preserves a free product decomposition,
then after possibly passing to a power, the outer automorphism preserves
a sporadic free factor system (see Proposition 3.1). The terminology and
machinery we build upon comes from the work of Guirardel–Horbez [GH22].

Theorem 3.2. Let G “ G1 ˚ . . . ˚Gk ˚ FN be a residually finite free product
of groups. Fix α P N. Suppose that for every i P t1, . . . , ku, and every
polynomially growing automorphism φi P AutpGiq, the group Gi ¸φi Z has
the cheap α-rebuilding property.
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Then for every polynomially growing automorphism φ P AutpGq preserving
the conjugacy classes of the groups Gi with i P t1, . . . , ku, the group G¸φ Z
has the cheap α-rebuilding property.

The work to extend this theorem (and the first two parts of Theorem A)
to groups which might have torsion is done in Section 5.

To prove Theorem A in the case of right-angled Artin and Coxeter groups,
we use the work of Fioravanti on coarse median preserving automorphisms of
groups [Fio21]. Whilst we do not explicitly use any coarse median geometry,
this does explain the extra hypothesis of untwisted in the case of right-angled
Artin groups. The key here is that Fioravanti provides us with an action on
a product of trees invariant under the automorphism. From here, we use an
inductive argument involving Theorem 3.2 to deduce the cheap rebuilding
property.

Acknowledgements. This work has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant agreement No. 850930).

The second author was supported by the LABEX MILYON of Univer-
sité de Lyon. He also thanks Damien Gaboriau for numerous very helpful
discussions regarding the cheap rebuilding property. The fourth author was
supported by an Engineering and Physical Sciences Research Council stu-
dentship (Project Reference 2422910).

2. Background

2.1. Free products, free factor systems and the graph of free factors.
Let G1, . . . , Gk be a finite collection of finitely generated groups, let FN be
a free group of rank N and let

G “ G1 ˚ . . . ˚Gk ˚ FN .

We denote by F the set of conjugacy classes of the groups Gi with i P
t1, . . . , ku. We refer to the pair pG,Fq as a free product.

Definition 2.1. The pair pG,Fq is a sporadic free product if one of the
following holds:

(1) we have k “ 0 and G “ Z;
(2) we have k “ 1 and G “ G1 or G “ G1 ˚ Z;
(3) we have k “ 2 and G “ G1 ˚G2.

Otherwise, the pair pG,Fq is a nonsporadic free product.

Given a free product pG,Fq, an element g P G is peripheral if there exists
rAs P F with g P A. Otherwise, we say that g is nonperipheral.

A free factor system of pG,Fq is a finite collection F 1 “ trA1s, . . . , rA`su
of conjugacy classes of finitely generated subgroups of G such that:

(1) for every i P t1, . . . , ku, there exists a subgroup A of G with Gi Ď A
and rAs P F 1;

(2) there exists a subgroup B of G such that G “ A1 ˚ . . . ˚A` ˚B.
A free factor system of pG,Fq is proper if it is distinct from F and trGsu.
There is a natural partial order on the set of free factor systems of pG,Fq,

where F1 ď F2 if, for every rAs P F1, there exists rBs P F2 with A Ď B.
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Note that F is minimal for this partial order. A free factor of pG,Fq is a
free factor system consisting of a unique element.

Definition 2.2. Let pG,Fq be a free product. The free factor graph of
pG,Fq, denoted by FFpG,Fq, is the graph whose vertices are the proper free
factors of pG,Fq, two free factors F1 and F2 being adjacent if F1 ă F2 or
F2 ă F1.

By results of Guirardel and Horbez [GH22, Proposition 2.11] (see also the
work of Bestvina and Feighn [BF14] and Handel and Mosher [HM14] for the
case G “ FN ), the graph FFpG,Fq is Gromov hyperbolic.

The group OutpG,Fq of outer automorphisms of G which preserve F
has a natural action by isometries on the graph FFpG,Fq induced by its
action on the set of free factors of pG,Fq. The next result describes the
loxodromic elements of FFpG,Fq. Recall that an element φ P OutpG,Fq is
fully irreducible if no power of φ fixes a free factor system of pG,Fq.
Theorem 2.3. [GH22, Theorem 4.1] Let pG,Fq be a nonsporadic free prod-
uct. An element φ P OutpG,Fq is a loxodromic element of FFpG,Fq if and
only if φ is fully irreducible.

The next theorem gives an existence condition of fully irreducible elements
in subgroups of OutpG,Fq.
Theorem 2.4. [GH22, Theorem 7.1] Let pG,Fq be a nonsporadic free prod-
uct and let H be a finitely generated subgroup of OutpG,Fq. If H does not
virtually preserve a proper pG,Fq-free factor system then H contains a fully
irreducible outer automorphism.

We now describe the Gromov boundary of FFpG,Fq. A pG,Fq-tree is an
R-tree T equipped with an action of G by isometries such that, for every
i P t1, . . . , ku, the group Gi fixes a point in T . Given a pG,Fq-tree T and a
point x P T , we denote by Gx the stabiliser of x.

A pG,Fq-tree is very small if tripod stabilisers are trivial and arc stabilis-
ers are cyclic (maybe trivial), nonperipheral and root-closed.

A Grushko pG,Fq-tree is a very small pG,Fq-tree T such that T is sim-
plicial, the action of G is minimal, edge stabilisers are trivial and, for every
vertex v, either Gv is trivial or rGvs P F . Recall that minimal means that G
does not preserve a proper subtree of T .

Note that, if trAsu is a free factor of pG,Fq, the free factor system F
induces a free factor system F |A of A. A pG,Fq-arational tree is a very
small pG,Fq-tree T which is not a Grushko tree and such that, for every
free factor trAsu of pG,Fq the action of pA,F |Aq on its minimal tree in T
induces a Grushko pA,F |Aq-tree.

The following theorem relates the Gromov boundary of FFpG,Fq with
the pG,Fq-arational trees.
Proposition 2.5. [GH22, Theorem 3.4] Let pG,Fq be a nonsporadic free
product and let H be a finitely generated subgroup of OutpG,Fq. If H has
a finite orbit in B8FFpG,Fq, then H has a finite index subgroup which fixes
the homothety class of a pG,Fq-arational tree.

If T is a pG,Fq-arational tree, we denote by rT s its homothety class and
by SF: StabprT sq Ñ R˚` the stretching factor homomorphism.
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Lemma 2.6. [GH22, Lemma 6.1, Corollary 6.7] Let T be a pG,Fq-arational
tree. For every φ P StabprT sq, we have SFpΦq ‰ 1 if and only if Φ is fully
irreducible.

Lemma 2.7. Let pG,Fq be a nonsporadic free product and let Φ P OutpG,Fq
be polynomially growing. Then Φ is not fully irreducible.

Proof. Suppose towards a contradiction that Φ is fully irreducible. By The-
orem 2.3, the element Φ is a loxodromic element of FFpG,Fq. In particular,
Φ acts on FFpG,Fq with North-South dynamics and has exactly two finite
orbits in B8FFpG,Fq consisting of its attracting and repelling fixed points.
By Proposition 2.5, up to taking a power of Φ, we may suppose that Φ fixes
the homothety class of a pG,Fq-arational tree. By Lemma 2.6, the stretch-
ing factor λ of Φ is distinct from 1. We may suppose, up to considering Φ´1

that λ ą 1.
Let g P G and let `prgsq be the translation length of the conjugacy class

of g in T . Since Φ preserves the homothety class of T , for every m P N,
we have `pΦmprgsqq “ λm`prgsq. But `pΦmprgsqq is bounded from above
by a multiple of }Φmprgsq} (see for instance [CM87, Propositions 1.5, 1.8]).
As Φ is polynomially growing, this implies that, for every g P G, we have
`prgsq “ 0. Since G is finitely generated, the group G fixes a point in T
(see for instance [CM87, Section 3]), a contradiction. Thus, Φ is not fully
irreducible. �

2.2. The cheap rebuilding property. Let α P N. In this section, we give
the relevant background regarding the cheap α-rebuilding property, which was
introduced by Abert, Bergeron, Fraczyk and Gaboriau [ABFG21] to prove
that certain groups have vanishing (torsion) homology growth. Although we
will not state the complete definition of this property, we list in the following
propositions the properties which we will use in the rest of the paper. This
property is relevant for our considerations by the following theorem.

Theorem 2.8. [ABFG21, Theorem 10.20] Let Γ be a residually finite count-
able group and let α P N. Suppose that Γ has the cheap α-rebuilding property.
For every Farber sequence pΓkqkPN of Γ, each j ď α and every coefficient field
K, we have

lim
kÑ8

dimKHjpΓk,Kq
rΓ : Γks

“ 0 and lim
kÑ8

log |HjpΓk,Zqtors|

rΓ : Γks
“ 0.

We refer to [ABFG21] for the definition of a Farber sequence. Examples
include decreasing sequences of finite index normal subgroups with trivial
intersection.

Proposition 2.9. [ABFG21, Corollary 10.13] Let Γ be a residually finite
countable group and let α P N. The following statements hold.

(1) Let Γ1 Ď Γ be a finite index subgroup. Then Γ has the cheap α-
rebuilding property if and only if Γ1 does.

(2) If Γ has an infinite normal subgroup N such that Γ{N is of type
Fα and N has the cheap α-rebuilding property, then Γ has the cheap
α-rebuilding property.
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(3) For every m P N˚ and every α P N, the group Zm has the cheap
α-rebuilding property.

Lemma 2.10. [ABFG21, Corollary 10.13(4)] Infinite virtually polycyclic
groups have the cheap α-rebuilding property for all α P N.

Theorem 2.11. [ABFG21, Corollary 10.13] Let Γ be a residually finite group
acting on a CW-complex Ω in such a way that any element stabilising a cell
fixes it pointwise. Let α P N. Suppose that the following conditions hold:

(1) ΓzΩ has finite α-skeleton;
(2) Ω is pα´ 1q-connected;
(3) for each cell ω P Ω of dimension j ď α the stabiliser StabΓpωq has

the cheap pα´ jq-rebuilding property.
Then Γ itself has the cheap α-rebuilding property.

3. A combination theorem for the cheap rebuilding property
of mapping tori

Let pG,Fq be a free product. The main result of this section, Theo-
rem 3.2, is a combination theorem which allows us to deduce the cheap
rebuilding property for some mapping tori of G, assuming that it holds for
the mapping tori of the factors F . We will use the combination theorem
in subsequent sections to prove the cheap α-rebuilding property for a large
family of mapping tori with polynomially growing monodromy.

The main step in the proof of Theorem 3.2 is to construct, for every poly-
nomially growing outer automorphism Φ P OutpGq, a Φ-invariant splitting of
G. This is done in Proposition 3.1, which is reminiscent of the Kolchin theo-
rem for elements of OutpFnq, due to Bestvina, Feighn and Handel [BFH05].

Proposition 3.1. Let pG,Fq be a free product and let Φ P OutpG,Fq be
polynomially growing. There exists k P N such that Φk preserves a sporadic
free factor system F 1. In particular, Φk preserves the Bass-Serre tree asso-
ciated to F 1.

Proof. If F is sporadic, we may set F 1 “ F . Otherwise, let F 1 be a maximal
Φ-periodic proper free factor system. It suffices to prove that F 1 is sporadic.
Suppose towards a contradiction that F 1 is nonsporadic. Up to taking a
power of Φ, we may suppose that F 1 is Φ-invariant. Thus, we may view Φ
as an element of OutpG,F 1q. By maximality of F 1 and Theorem 2.4, the
element Φ is fully irreducible. This contradicts Lemma 2.7. Thus, the free
factor system F 1 is sporadic. �

Theorem 3.2. Let G “ G1 ˚ . . . ˚Gk ˚FN be a residually finite free product
of groups. Fix α P N. Suppose that for every i P t1, . . . , ku, and every
polynomially growing automorphism φi P AutpGiq, the group Gi ¸φi Z has
the cheap α-rebuilding property.

Then for every polynomially growing automorphism φ P AutpGq preserving
the conjugacy classes of the groups Gi with i P t1, . . . , ku, the group G¸φ Z
has the cheap α-rebuilding property.

Proof. The proof is by induction on the Grushko rank k `N of G. If k “ 1
and N “ 0, then the group G¸φ Z has the cheap α-rebuilding property by
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hypothesis. If k “ 0 and N “ 1, then G¸φ Z is virtually isomorphic to Z2.
By Proposition 2.9 (1) (3), for every α P N, the group G¸φ Z has the cheap
α-rebuilding property.

Suppose now that k`N ě 2. Let Φ be the outer class of φ and let F be a
sporadic free factor sytem given by Proposition 3.1. Let T be the canonical
Bass-Serre tree of G associated to F . The tree T has a unique orbit of edges
and its edge stabilisers in G are trivial. In particular, vertex stabilisers in G
of T are proper free factors of G, hence have a smaller Grushko rank than
the one of G. Since T is canonical, it is preserved by Φ. Up to taking a
power of Φ we may suppose that Φ acts trivially on the underlying graph of
GzT .

The actions of G and Φ on T induce an action of G ¸φ Z on T . Edge
stabilisers in G ¸φ Z are infinite cyclic and the stabiliser of a vertex v of T
is isomorphic to Gv ¸φ|Gv Z, where Gv is the vertex stabiliser of v in G and
φ|Gv is the automorphism of Gv induced by a representative of Φ preserving
Gv.

We now prove thatG¸φZ has the cheap α-rebuilding property by applying
Theorem 2.11 to the action of G ¸φ Z on T . Since the action is cocompact
and since T is a tree, it suffices to prove that the stabiliser of any vertex of
T has the cheap α-rebuilding property and that the stabiliser of any edge of
T has the cheap pα´ 1q-rebuilding property.

Since edge stabilisers in G¸φZ are infinite cyclic, they have the cheap pα´
1q-rebuilding property by Proposition 2.9 (3). Let v be a vertex of T . Note
that, since φ is a polynomially growing automorphism, so is φ|Gv P AutpGvq.
Since the Grushko rank of Gv is smaller than the one of G, by induction
hypothesis, the group Gv¸Φ|Gv

Z has the cheap α-rebuilding property. Thus
by Theorem 2.11, the group G ¸φ Z has the cheap α-rebuilding property,
which concludes the proof. �

Remark 3.3. Note that the following fact follows from the proof. Let G “
G1 ˚ . . . ˚Gk ˚ FN be a residually finite free product of groups and let φ be
a polynomially growing automorphism of G which preserves the conjugacy
classes of the factors Gi. If for every i P t1, . . . , ku and every α P N the group
Gi ¸φ|Gi

Z has the cheap α-rebuilding property, then G¸φ Z has the cheap
α-rebuilding property for all α P N.

4. The cheap rebuilding property for residually finite torsion
free (relatively) hyperbolic groups

In this section,we prove the cheap rebuilding property for mapping tori of
residually finite (relatively) hyperbolic groups. Theorem 3.2 is the main step
in order to prove the cheap rebuilding property for infinitely ended hyperbolic
groups. The one-ended case requires the use of the JSJ decomposition of the
group, whose properties are presented after Lemma 4.2, following Guirardel–
Levitt [GL17].

Proposition 4.1. Let G be a finitely generated residually finite group of type
F8. Let P be a collection of conjugacy classes of subgroups of G. Suppose
that the group OutpG,Pq of outer automorphism of G preserving P is finite.
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For every φ P AutpGq with rφs P OutpG,Pq and every α P N, the group
G¸φ Z has the cheap α-rebuilding property.
Proof. Since OutpG,Pq is finite, the group G¸φZ has a finite index subgroup
isomorphic to Gˆ Z. By Proposition 2.9 (2) (3), for every α P N the group
GˆZ has the cheap α-rebuilding property. By Proposition 2.9 (1), for every
α P N, the G¸φ Z has the cheap α-rebuilding property. �

Lemma 4.2. Let S be a compact, connected hyperbolic surface and let G “
π1pSq. Let D P MCGpSq be a Dehn multi-twist. For every α P N, the group
G¸D Z has the cheap α-rebuilding property.
Proof. Let β “ pβ1, . . . , βkq be the multi-curve associated to D, where, for
any distinct i, j P t1, . . . , ku, the curves βi and βj are disjoint and not parallel.
Then β induces a decomposition of the surface S which is preserved by D.
This decomposition also induces a tree T equipped with an action of G with
cyclic stabilisers which is preserved by D. Thus, the group G¸D Z also acts
on T .

In order to prove Lemma 4.2, we use Theorem 2.11 applied to the action
of G ¸D Z on T . As in the proof of Theorem 3.2, it suffices to prove that,
for every α P N and every cell w P T , the stabiliser of w in G¸D Z has the
cheap α-rebuilding property.

Edge stabilisers in G¸D Z are isomorphic to Z2, hence have the cheap α-
rebuilding property for every α P N by Proposition 2.9 (3). Vertex stabilisers
in G¸T Z are isomorphic to Gv ˆ Z, where Gv is the fundamental group of
a connected component of Szβ, hence have the cheap α-rebuilding property
for every α by Proposition 2.9 (2). Thus, by Theorem 2.11, for every α P N,
the group G¸D Z has the cheap α-rebuilding property. �

Let G be the family of torsion free groups which are hyperbolic relative
to a finite family of virtually polycyclic groups. This includes for instance
the class of toral relatively hyperbolic groups, which are torsion free groups
hyperbolic relative to a finite collection P of conjugacy classes of finitely
generated abelian subgroups. Let G P G and suppose that G is one-ended
relative to P. Using the work of Guirardel and Levitt [GL17, Corollary 9.20]
(see also [GL15, Section 3.3]), one can construct a canonical JSJ tree TG for
G, that is, a simplicial tree equipped with an action of G which is preserved
by AutpGq. The group AutpGq has a finite index subgroup KpTGq which
acts as the identity on the underlying graph of GzTG. Edge stabilisers of TG
in G are virtually polycyclic. If v is a vertex of TG, its stabiliser Gv in G
satisfies one of the following:

(1) the group Gv is isomorphic to the fundamental group of a compact
hyperbolic surface S and the image of the natural homomorphism
KpTGq Ñ OutpGvq is contained in the mapping class group MCGpSq
of S;

(2) there exists rP s P P with Gv “ P . In particular, the group Gv is
virtually polycyclic;

(3) the image of the natural homomorphism KpTGq Ñ OutpGvq is finite.
Theorem 4.3. Let G P G and let Φ “ rφs P OutpGq be a polynomially grow-
ing outer automorphism. Then G ¸φ Z has the cheap α-rebuilding property
for all α.
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Proof. By Theorem 3.2, it suffices to prove the result when G is one-ended.
Let TG be the JSJ tree associated toG described above. Since TG is preserved
by AutpGq, the action of G and φ on TG induces an action of G¸φ Z on TG.
Up to taking a power of φ, we may suppose that φ P KpTGq.

We prove Theorem 4.3 by applying Theorem 2.11 to the action of G¸φ Z
on TG. As in the proof of Theorem 3.2, it suffices to prove that, for every
cell ω P TG, the group Stabpωq has the cheap α-rebuilding property for every
α P N.

Edge stabilisers in G¸φZ are virtually polycyclic. Thus, by Lemma 2.10,
they have the cheap α-rebuilding property for every α P N.

Let v P TG. There are three cases for the vertex stabilisers.
Case 1:. Gv is the fundamental group of a compact hyperbolic surface S and
KpTGq Ñ OutpGvq has image contained in MCGpSq.

Since φ is polynomially growing, its image in MCGpSq is in fact a Dehn
multi-twistD. Thus, the stabiliser in G¸φZ of v is isomorphic to π1pSq¸DZ.
By Lemma 4.2, it has the cheap α-rebuilding property for every α P N. ˛

Case 2:. Gv is virtually polycyclic.
Here the stabiliser of v in G ¸φ Z is virtually polycyclic-by-Z (hence,

polycyclic). Thus, it has the cheap α-rebuilding property for every α P N by
Lemma 2.10. ˛

Case 3:. The image of the natural homomorphism KpTGq Ñ OutpGvq is
finite.

Up to taking a power of φ, we may suppose that the stabiliser of v in
G ¸φ Z is isomorphic to Gv ˆ Z. By for instance [GL15, Lemma 3.8], the
group Gv belongs to G. By results of Dahmani [Dah03, Theorem 0.1], the
group Gv is of type F8. By Proposition 2.9 (2), for every α P N, the group
Gv ˆ Z has the cheap α-rebuilding property. ˛

Thus, Theorem 2.11 implies that G¸φZ has the cheap α-rebuilding prop-
erty for every α P N. �

Remark 4.4. The restriction to virtually polycyclic subgroups is also used
in Case (3); to deduce thatGv is of type F8 requires that arbitrary subgroups
in P themselves are of finite type.

5. Extending to groups with torsion

In this section we prove two results, allowing the methods in Sections 3
and 4 to apply to groups which have torsion, and therefore can be infinitely
ended without splitting as a free product.

First, we extend Theorem 4.3 to all residually finite groups hyperbolic
relative to finitely many virtually polycyclic subgroups, which requires only
one more passage to a finite index subgroup.

Lemma 5.1. Let G be a residually finite group which is hyperbolic relative to
a finite collection of virtually polycyclic groups. Then G is virtually torsion
free.

Proof. It is well known, using for instance the action of G on a relative Rips
complex (see [Dah03]), that for a relatively hyperbolic group G, there exists
a finite number of finite subgroups F1, . . . , Fk of G, such that any finite-order
element g P G can be conjugated into some Fi, or into a peripheral subgroup
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of G. Since polycyclic groups contain finitely many conjugacy classes of finite
order elements by [BCRS91, Theorem 7.1], it follows that G also has finitely
many conjugacy classes of finite order elements. Now since G is residually
finite, there exists a finite index normal subgroup G1 of G which does not
contain any of the finite conjugacy classes, and thus is torsion free. �

Theorem 5.2. Suppose G is a finitely generated residually finite group, hy-
perbolic relative to a finite set P of conjugacy classes of virtually polycyclic
groups, and suppose Φ P OutpGq is polynomially growing. Then G¸Φ Z has
the cheap α-rebuilding property for all α.

Proof. Let G1 be a finite index torsion free characteristic subgroup of G as in
Lemma 5.1. By Proposition 2.9(1), it suffices to show that the finite index
subgroup G1 ¸Φ|G1

Z ďf G¸Φ Z has the cheap α-rebuilding property for all
α. Note that G1 ďf G is one ended, torsion free and hyperbolic relative to
virtually polycyclic subgroups, and thus by Theorem 4.3 it has the cheap
α-rebuilding property for all α. �

Since it may be of independent interest, we also record a version of The-
orem 3.2 for infinitely ended and accessible (for instance, finitely presented)
groups. Note that such a group is not necessarily virtually torsion free.

Recall that an infinitely ended group splits over a finite subgroup [Sta71];
that the group is accessible when such a splitting can be iteratively refined
until the vertex groups are one-ended or finite, and that finitely presented
groups are accessible [Dun85]. Two such splittings of an accessible infin-
itely ended group will have the same set of elliptic subgroups, although it is
possible that there are finite subgroups stabilising a vertex in one splitting
and not in another. However, the same one-ended vertex stabilisers occur
in all such splittings, and passing to a reduced splitting removes even this
ambiguity [GL17].

Theorem 5.3. Let G be a residually finite, infinitely ended, and accessible
group. Fix α P N. Let tGiu be (representatives of each conjugacy class of)
the one-ended groups occurring in a Stallings–Dunwoody decomposition of G,
and suppose that for every Gi and every polynomially growing automorphism
φi P AutpGiq, the group Gi ¸φi Z has the cheap α-rebuilding property.

Then for every polynomially growing automorphism φ P AutpGq the group
G¸φ Z has the cheap α-rebuilding property.

First, we prove a lemma reducing the situation above to a free product:

Lemma 5.4. Suppose a finitely generated group G is infinitely-ended, resid-
ually finite and accessible. Then G has a finite index subgroup H which is a
free product of one-ended groups and a finitely generated free group, and the
suspension G¸φ Z has a finite index subgroup H ¸φ1 Z.

Proof. Since G is accessible, it has a Stallings–Dunwoody decomposition: a
splitting over finite groups where the vertex groups are finite or one-ended.
Consider a graph of groups with Bass–Serre tree T realising such a splitting.

Consider the set of of non-trivial elements which either stabilise an edge
in a fixed fundamental domain or are contained in a finite group stabilising
a vertex in that fundamental domain. (The cases overlap; equivalently, one
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can take the set of non-trivial elements in the edge groups and finite vertex
groups of the graph of groups.) This set is finite, and so G has a finite index
normal subgroup H that intersects this set trivially.

We consider the action of H on T . Since H was chosen to be normal,
it has trivial intersection with all edge stabilisers (they are conjugates of
those that were excluded), and so this action is with trivial edge stabilisers.
For the vertex stabilisers, there are two possibilities: either Gv was finite,
in which case Hv “ H X Gv is trivial, or Gv was one-ended, in which case
Hv is finite index in the original stabiliser Gv, so is again one ended. The
quotient graph of groups — giving a splitting of H — is finite, has trivial
edge groups, and has one-ended or trivial vertex groups, so H satisfies the
first conclusion.

For the statement about the suspension, note that since G is finitely gen-
erated it has only finitely many subgroups of a given finite index, and so
some power of the automorphism φ preserves H. Let φ1 be the restriction to
H, and observe that H ¸φ1 Z is finite index in G¸φ Z as required. �

Proof of Theorem 5.3. Using Lemma 5.4, we see that G ¸φ Z has a finite
index subgroup H¸φ1 Z where H is a free product of one-ended groups tHju

and a finitely generated free group. This is a Grushko decomposition of H,
and so up to passing to a finite index subgroup corresponding to taking a
higher power of φ we can assume that the conjugacy class of every Hj is
preserved by φ1. We now apply Theorem 2.11 to H ¸φ1 Z together with
Proposition 2.9(1) to obtain the conclusion. �

6. Right angled Artin and Coxeter groups

Let L be a flag complex on rms “ t1, . . . ,mu and recall that AL and WL,
respectively, denote the right-angled Artin and Coxeter groups on L. We
say an automorphism of AL is untwisted if it is contained in the subgroup
UpLq ď AutpALq where UpLq is the subgroup generated by the following
automorphisms:

(1) graph automorphisms, namely automorphisms of L;
(2) inversions, namely ιv : AL Ñ AL by v ÞÑ v´1 and u ÞÑ u for u ‰ v

and u, v P Lp0q;
(3) partial conjugations, namely kw,C for w P Lp0q and a connected com-

ponent C of Lz stpwq. We have kw,Cpuq “ w´1uw if u P Cp0q and
kw,Cpuq “ u if u P Lp0qzC; and

(4) folds, namely τv,w for v, w P Lp0q with lk v Ď stw and lk v Ď lkw.
They are defined by τv,wpvq “ vw and τv,wpuq “ u for all u P Lp0qztvu.

Note that by [Fio21, Proposition A(3)] untwisted automorphisms of AL are
exactly the automorphisms which preserve the standard coarse median struc-
ture on AL. We will not use this fact or any results about coarse medians
explicitly but we note that it underpins much of our work in this section.

We denote the finite index subgroup of UpALq generated by inversions,
folds and partial conjugations by U0pALq. Similarly we denote the finite
index subgroup of AutpWLq generated by all automorphisms except graph
automorphisms by U0pWLq “ Aut0pWLq. This notation is justified since
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all automorphisms of WL are coarse median preserving by [Fio21, Proposi-
tion A(2)]. That these subgroups are indeed finite index is given by [Fio21,
Remark 3.27] in the case of AL and [SS19, Proposition 1.2] in the case of
WL.

Theorem 6.1. Let L be a flag complex on rms and let Γ “ AL ¸φ Z. If φ
is an untwisted and polynomially growing automorphism of AL, then Γ has
the cheap α-rebuilding property for all α.

Proof. We proceed by induction on m, the number of vertices of L. When
m “ 1 we have that AL is isomorphic to Z. In this case Γ is virtually Z2 and
so the result follows from Proposition 2.9. We now suppose m ą 1. Note
that if K Ă L is a full subcomplex then any untwisted automorphism of AL
preserving AK restricts to an untwisted automorphism of AK . To prove the
inductive step there are three cases to consider.
Case 1:. AL is freely reducible. In this case AL admits a Grushko splitting
AK1 ˚ ¨ ¨ ¨ ˚ AKk ˚ Fn where each Ki and rns is a full subcomplex of L. A
sufficiently high power of an automorphism preserves the conjugacy class
of every factor AKi , and so after passing to such a power and applying
Proposition 3.1 we may assume this Grushko decomposition is φ-invariant.
Moreover, each such subcomplex contains at least one vertex but strictly
less than m vertices. Thus, by the inductive hypothesis each AKi ¸φ|AKi

Z
satisfies the cheap α-rebuilding hypothesis for all α. The conclusion follows
from Remark 3.3. ˛

Case 2:. AL is freely and directly irreducible.
As in the previous case, up to taking a power of φ, we may assume that

φ is contained in the subgroup U0pALq. By [Fio21, Proposition D] AL splits
as an amalgamated free product AJ ˚AJXK

AK with each J,K, J XK Ă L
non-empty such that the Bass–Serre tree T is φ-invariant. Moreover, for X P

tJ,K, JXKu we see φpAXq “ AX (see [Fio21, Lemma 5.3]). It follows Γ acts
on T with stabilisers conjugate to AX ¸φ|AX Z. By the inductive hypothesis,
the subgroups AX ¸φ|AX Z satisfy the cheap α-rebuilding property for all
α P N. The conclusion follows from Theorem 2.11. ˛

Case 3:. AL is directly reducible.
Now, AL splits as

ś

iAKi where each AKi is non-trival and either freely
reducible or freely and directly irreducible. Thus, AL acts on a product of
trees X “

ś

i Ti. Here each Ti either arises from Proposition 3.1 if AKi is
freely reducible, or from the amalgamated product splitting given by [Fio21,
Proposition D] as in Case 2 when AKi is both directly and freely irreducible.

As in the previous two cases, up to passing to a power we may assume
φ|AKi preserves the stabilisers of AKi acting on Ti. Since the stabilisers of
AL acting on X are products of the stabilisers of the AKi acting on Ti we
see that φpStabALpσqq “ StabALpσq for each cell σ P X. Thus, AL ¸φ Z
acts on X with the stabiliser of a cell σ isomorphic to AJσ ¸φ|AJσ Z for some
RAAG AJσ where Jσ is non-empty and has strictly less vertices than L. The
conclusion follows from Theorem 2.11. ˛

This completes the proof of the inductive step and the theorem. �

Theorem 6.2. Let L be a flag complex on rms and let Γ “WL¸φZ. If φ is
polynomially growing, then Γ has the cheap α-rebuilding property for all α.
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Proof. The proof is entirely analogous to Theorem 6.1 with the following
modifications. In the case where m “ 1 we have that Γ “ Z{2 ˆ Z which
has the cheap α-rebuilding property for all α P N by Proposition 2.9. By
[Fio21, Proposition A(2)] the group U0pWLq “ Aut0pWLq has finite index in
AutpWLq. The three cases are now identical, taking into account the remarks
after Theorem E and at the start of Section 5 of [Fio21], since the results we
use for AL also hold for WL. �

We can actually say more regarding the cheap α-rebuilding property for
mapping tori of automorphisms of RAAGs. Indeed, if L is pα´1q-connected,
then AL has the cheap α-rebuilding property [ABFG21, Theorem I]. In par-
ticular, if L is contractible then for any automorphism φ of AL, the group
AL ¸φ Z has the cheap α-rebuilding property for all α. On the other hand,
by [AOS21, OS21], the mod-p torsion homology growth of AL equals the
reduced mod-p Betti numbers of L shifted by a degree. In turn, by [FHL22,
Theorem B], this is equal to the dimension of the homology of AL with coef-
ficients in a certain universal division ring DFpAL (sometimes called agrarian
homology). Suppose rH˚pL;Qq “ 0 and rH˚pL;Fpq ‰ 0. Let Γ “ AL ¸φ Z
and suppose DFpΓ exists (this will be true if Γ is residually finite rationally
solvable for instance). In this case the `2-torsion of Γ will vanish by [DL03]
and [Lüc02, Theorem 7.27(7)]. But, in [HK21, Section 4] the authors intro-
duce agrarian torsion τDFpΓpΓq taking values in pDFpΓq

ˆ
ab{t˘1u. In light of

this we raise the following question.

Question 6.3. Let L be a flag complex on rms such that rH˚pL;Qq “ 0 and
rH˚pL;Fpq ‰ 0 for some prime p. Let Γ “ AL ¸φ Z where φ is exponentially
growing. Does DFpΓ exist and if so is τDFpΓpΓq ‰ 0?
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