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ABSTRACT. We prove that residually finite mapping tori of polynomi-
ally growing automorphisms of hyperbolic groups, groups hyperbolic
relative to finitely many virtually polycyclic groups, right-angled Artin
groups (when the automorphism is untwisted), and right-angled Coxeter
groups have the cheap rebuilding property of Abert, Bergeron, Fraczyk,
and Gaboriau. In particular, their torsion homology growth vanishes for
every Farber sequence in every degree.

1. INTRODUCTION

Let I be a residually finite group of type F. By Liick’s celebrated approx-
imation theorem, the i*® ¢2-Betti number bl(?) (T') of T is a measure of the
growth of the i* homology of I' with rational coefficients [Liic94]. More pre-

cisely, if (I'x)ken is a descending sequence of finite index normal subgroups
of " such that (), ey Ik = 1, then

. dimgH;(I'y, Q
b’@)(r) - kh—{lgo ?F: é]j !

The ¢2-Betti numbers are important group invariants which have found many
applications in topology and group theory (see [Liic02] and the references
therein for a comprehensive account). It is thus natural to study the growth
of other homology groups associated to I, as well as the growth of the torsion
part |H;(Tk, Z)tors| of the homology.

This paper is concerned with the growth of the mod-p Betti numbers of
certain groups I', as well as the homology torsion growth, which is defined to
be

log |H; (I, Z)tor
tj(F;Fk) _ ligl_igp g| [%( llik] )to S‘ :
where (' )ken is a Farber sequence of T'.

These invariants have been computed in right-angled Artin groups and
certain graph products [AOS21, OS24 (see also [FHL24| where non-vanishing
is proven for certain Bestvina—Brady groups). Moreover, there exist results
proving vanishing of homology growth in various instances [BV13, Saul6,
KKN17, ABFG24]. We also mention the work of Bader-Gelander-Sauer
which gives an upper bound for the homology torsion of negatively curved
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Riemannian manifolds of dimension at least four in terms of their volume

[BGS20).

The main aim of this paper is to calculate homology growth for certain
classes of group extensions of the form G x4 Z where ¢ € Aut(G) is polyno-
mially growing (see Section 2.1 for the precise definition). We prove:

Theorem A. Let T' be a group isomorphic to one of

o G Xy Z with G residually finite and hyperbolic;

o G %y Z with G residually finite and hyperbolic relative to a finite
collection of virtually polycyclic groups;

o A x4 Z where Ar is a right-angled Artin group and ¢ € Aut(Apr) is
untwisted (see Section 5); or

o Wi xg Z where Wy, is a right-angled Coxeter group.

If ¢ is polynomially growing, then for every Farber sequence (I'y)ren of T,
every j = 0 and every field K, we have
1 I~ d 1
P T W e T DTy
We note that in the case where G is a finite rank free group and ¢ €

Aut(G) a polynomially-growing automorphism, the result was already known
by previous work of the first, third and fourth author [AHK22].

log |Hj(rka Z)tors‘ -0

The key tool in proving Theorem A is the cheap rebuilding property de-
veloped by Abert-Bergeron-Fraczyk—Gaboriau in [ABFG24|, which implies
vanishing of homology torsion growth in residually finite groups. Crucially
for us, a group I' has the cheap rebuilding property whenever it acts co-
compactly on a contractible CW-complex with stabilisers which satisfy the
cheap rebuilding property (see Section 2.3 for more details, and specifically
Theorem 2.14).

We prove that the groups considered in Theorem A all satisfy the cheap
rebuilding property. We do so by finding ¢-invariant splittings of GG, which
induce splittings of the extension G x4 Z. In the one-ended relatively hy-
perbolic case, we deploy the theory of JSJ decompositions [GL17| following
Guirardel-Levitt. In the case of right-angled Artin and Coxeter groups, we
use the work of Fioravanti on coarse median preserving automorphisms of
those groups |Fio21].

For the case when the group G is infinitely ended, we prove a combination
theorem for the cheap rebuilding property of the mapping torus G x4 Z of a
polynomially-growing automorphism ¢ € Aut(G):

Theorem 3.1. Let G = G * ... Gy * Fiy be a free product of residually
finite groups. Fiz o € N. Let ¢ be a polynomially-growing automorphism of
G which preserves the conjugacy classes of the factors G;. Suppose that for
every i € {1,...,k}, the group G; Xl Z has the cheap a-rebuilding property.
Then the group G x4 Z has the cheap a-rebuilding property.

We note that Theorem 3.1 recovers the main theorem from [AHK22| on
the cheap rebuilding property for mapping tori of polynomially-growing outer
automorphisms of finite rank free groups.

The key observation in the proof of Theorem 3.1 is that if a polynomially-
growing automorphism preserves a free product decomposition, then after
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possibly passing to a power it preserves a sporadic free factor system (see
Proposition 2.11). Hence, it preserves a G-tree T which is the Bass—Serre
tree corresponding to the sporadic free factor system.

1.1. The ¢%-torsion conjecture. The integral torsion p”(I') of a group I
is defined to be the sum of the homology torsion gradients,

pPT) =) t5(T5T).

j=0

An important conjecture of Liick relates the integral torsion pZ(I") with its
2-torsion p)(T):

Conjecture 1.1 (|Liic13, Conjecture 1.11(3)]). Let I' be an infinite residu-
ally finite (2-acyclic group of type VF. Then, p®(T') = p%(T).

The conjecture is known to hold for some classes of groups, including
amenable groups by the work of Kar—Kropholler—Nikolov [KKN17| and Li-
Thom |[LT14], and fundamental groups of closed aspherical manifolds which
admit a non-trivial S'-action, or contain a nontrivial elementary amenable
normal subgroup, by the work of Liick [Liic13]. Okun—Schreve showed that
the conjecture is also true in the case of right-angled Artin groups, where
the torsion does not vanish in general [0S24].

The work of Clay [Clal7], combined with the results mentioned above,
confirms the conjecture in the case of mapping tori of polynomially-growing
outer automorphisms of finite rank free groups. Hence, our work leads to
the following natural question:

Question 1.2. Let I' be the mapping torus of a polynomially-growing auto-
morphism ¢ € Aut(G) as in Theorem A. Is it true that the £%-torsion p®)(T')
of I' vanishes?
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2. BACKGROUND

2.1. Growth of automorphisms. Fix a finite generating set S of a group
G. For any g € G, let |[g]|s denote the length of the shortest word in
the conjugacy class [g] of g, and |g|s the length of the shortest word in
the generators S representing the element g in G. An outer automorphism
® € Out(G) is said to grow polynomially, if for every conjugacy class ¢ in
G, there exists some integer d > 0 and real number C' > 0 such that for all
n €N,
@™ (c)|ls < Cn® + C.
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An automorphism ¢ € Aut(G) is said to grow polynomially, if for every
element g € G, there exists some integer d > 0 and C' > 0 such that for all
neN,

6"(9)ls < Cn? + C.

Note that for any two finite generating sets S and S’, the corresponding
word metrics on G are bi-Lipschitz equivalent. In particular, the definitions
of growth are independent of the choice of a finite generating set.

Remark 2.1. Many naturally-occurring groups, including torsion-free hy-
perbolic groups and abelian groups, experience a growth rate dichotomy:
for every ¢ € Aut(G), each g € G admits either polynomial or exponen-
tial growth under the iterations of ¢ (see [Cou22, Theorem 1.1]). In the
case of free groups, Levitt [Lev09| gave complete classification of all possible
types of growth for automorphisms of free groups. However, as shown by
Coulon [Cou22], there exist groups with automorphisms which exhibit more
exotic types of growth.

2.2. Free products, free factor systems and the graph of free factors.
Let G1,..., G be a finite collection of non-trivial finitely generated groups,
let Fiy be a free group of rank N and let

G=G1*...xGp*Fy.

We denote by F the set of conjugacy classes of the groups G; with i €
{1,...,k}. We refer to the pair (G, F) as a free product.

Definition 2.2. The pair (G,F) is a sporadic free product if one of the
following holds:

(1) we have k = 0 and G = Z;
(2) we have k =1 and G = G or G = Gy = Z;
(3) we have k = 2 and G = G; * Ga.

Otherwise, the pair (G, F) is a nonsporadic free product.

Given a free product (G, F), an element g € G is peripheral if there exists
[A] € F with g € A. Otherwise, we say that g is nonperipheral.
A free factor system of (G, F) is a finite collection F' = {[A1], ..., [A¢]} of
conjugacy classes of non-trivial finitely generated subgroups of GG such that:
(1) for every i € {1,...,k}, the group G; is contained in some subgroup
A of G with [A] € F;
(2) there exists a subgroup B of G such that G = Ay # ... Ay = B.

A free factor system of (G, F) is proper if it is distinct from F and {[G]}.

There is a natural partial order on the set of free factor systems of (G, F),
where Fi < Fj if, for every [A] € Fi, there exists [B] € F» with A < B.
Note that F is minimal for this partial order. A free factor of (G, F) is an
element of a free factor system.

Definition 2.3. Let (G,F) be a free product. The free factor graph of
(G, F), denoted by FF(G, F), is the graph whose vertices are the proper free
factors of (G, F), two free factors F; and Fy being adjacent if F; < Fy or
.7:2 < .7:1.
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By results of Guirardel and Horbez [GH22, Proposition 2.11] (see also the
work of Bestvina and Feighn [BF14] and Handel and Mosher [HM14] for the
case G = Fy), the graph FF(G, F) is Gromov hyperbolic.

We say that an outer automorphism ® € Out(G) preserves a free factor
system F if ® fixes each conjugacy class in F. We write Out(G, F) to denote
the subgroup of Out(G) which consists of the outer automorphisms which
preserve F. The group Out(G, F) has a natural action by isometries on the
graph FF (G, F) induced by its action on the set of free factors of (G, F). The
next result describes the loxodromic elements of FF(G, F). We say that an
element ® € Out(G, F) is fully irreducible if no positive power of ® preserves
a proper free factor system of (G,F). When (G, F) is a free product and
F = &, this reduces to the usual notion of being fully irreducible for elements
of Out(Fy), where Fly is a free group of rank N.

Theorem 2.4. [GH22, Theorem 4.1 Let (G, F) be a nonsporadic free prod-
uct. An element ® € Out(G, F) is a lozodromic element of FF(G,F) if and
only if ® is fully irreducible.

The next theorem gives an existence condition of fully irreducible elements
in subgroups of Out(G, F).

Theorem 2.5. [GH22, Theorem 7.1] Let (G, F) be a nonsporadic free prod-
uct and let H be a finitely generated subgroup of Out(G,F). If H does not
virtually preserve a proper (G, F)-free factor system then H contains a fully
wrreducible outer automorphism.

We now describe the Gromov boundary of FF(G, F). A (G, F)-tree is an
R-tree T equipped with an action of G by isometries such that, for every
i€ {l,...,k}, the group G; fixes a point in 7. Given a (G, F)-tree T and a
point x € T', we denote by Stab(z) the stabiliser of x.

A (G, F)-tree is very small if tripod stabilisers are trivial and arc stabilis-
ers are cyclic (maybe trivial), nonperipheral and root-closed.

A Grushko (G, F)-tree is a (G, F)-tree T' such that T' is simplicial, the
action of G is minimal, edge stabilisers are trivial and, for every vertex v,
either Stab(v) is trivial or [Stab(v)] € F. Recall that minimal means that G
does not preserve a proper subtree of T

Note that, if [A] is a free factor of (G, F), the free factor system F induces
a free factor system F|4 of A. A (G, F)-arational tree is a very small (G, F)-
tree T' which is not a Grushko tree and such that, for every free factor [A]
of (G, F) the action of (A, F|4) on its minimal tree in 7" induces a Grushko
(A, F|a)-tree.

The following theorem relates the Gromov boundary of FF(G,F) with
the (G, F)-arational trees.

Proposition 2.6. [GH22, Theorem 3.4| Let (G,F) be a nonsporadic free
product and let H be a finitely generated subgroup of Out(G,F). If H has
a finite orbit in 0, FF(G,F), then H has a finite index subgroup which fizes
the homothety class of a (G, F)-arational tree.

Remark 2.7. Note that [GH22, Theorem 3.4| only shows that H has a
finite index subgroup preserving the G-equivariant homeomorphism class (for
the observers’ topology) of a (G, F)-arational tree T. However, by [GH19,
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Proposition 13.5], the set of projective classes of (G, F)-arational trees which
are equivalent to T is a finite dimensional simplex. Therefore, the group
H has a finite index subgroup preserving the homothety class of a (G, F)-
arational tree equivalent to T corresponding to an extremal point of the
simplex.

If T is a (G, F)-arational tree, we denote by [T'] its homothety class and
by SE: Stab([7]) — R% the stretching factor homomorphism.

Lemma 2.8. [GH22, Proposition 6.3, Corollary 6.12] Let T be a (G, F)-
arational tree. For every ® € Stab([T]), we have SF(®) # 1 if and only if ®
1s fully irreducible.

Lemma 2.9. Let (G, F) be a nonsporadic free product and let ® € Out(G, F)
be polynomially growing. Then ® is not fully irreducible.

Proof. Suppose towards a contradiction that @ is fully irreducible. By The-
orem 2.4, the element @ is a loxodromic element of FF(G, F). In particular,
® acts on FF(G, F) with North-South dynamics and has exactly two finite
orbits in 0, FF(G, F) consisting of its attracting and repelling fixed points.
Let &, be the attracting fixed point of ®. By Proposition 2.6, up to taking
a power of ®, we may suppose that ® fixes the homothety class of a (G, F)-
arational tree T associated with £,. By Lemma 2.8, the stretching factor
SF7(®) of @ is distinct from 1. Since SFr: (®) — R¥ is a homomorphism,
either SF7(®) > 1 or SFr(®~!) > 1. Up to replacing ® by ®~!, we may
assume that A = SFp(®) > 1. Note that we have only possibly replaced ®
by ®~! without changing the tree 7. In particular, we are not considering
the repelling fixed point £ of ®. This is why SF7(®) o SF7(®71) = 1.

Let g € G and let £([g]) be the translation length of the conjugacy class
of g in T. Since ® preserves the homothety class of T, for every m € N,
we have £(®™([g])) = A"™([g]). But £(®™([g])) is bounded from above
by a multiple of [®™([g])| (see for instance [CM87, Propositions 1.5, 1.8]).
As @ is polynomially growing, this implies that, for every g € GG, we have
¢([g]) = 0. Since G is finitely generated, the group G fixes a point in T
(see for instance |CM87, Section 3|), a contradiction. Thus, ® is not fully
irreducible. (]

Remark 2.10. Another proof of the fact that SF7(®) > 1 is the following.
We follow the notations of the above proof.

Suppose that ® is fully irreducible and let U be a relative train track asso-
ciated with @, which exists by [FM15, Theorem 8.24|, [Lym22, Theorem A].
Let A(®) be the Perron—Frobenius eigenvalue of the associated transition
matrix. A consequence of [FMS21la, Theorem 3.9] is that, since (G, F) is
nonsporadic and @ is fully irreducible, we have A(®) > 1.

Let Ty = lim, o %. By [FMS21b, Lemma 2.14.1|, the space T'" is
an R-tree in the boundary of the outer space PO of (G, F). Thus, T ¢ =
ANP)Ty.

Since @ is fully irreducible, by [FMS21b, Theorem 5.1.2], it acts with a
North-South dynamics on the outer space of (G, F). By [GH22, Theorem 3],
there exists a ®-equivariant map ¢: PO — FF(G, F) with a ®-equivariant
extension 0y from the set of (G, F)-arational trees to o FF(G,F). Since ®
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also acts with a North-South dynamics on FF(G, F), we see that d¢» sends
T, to &1, so that we can choose T in the proof of Lemma 2.9 to be T'y. In
particular, we have SEp(®) = A(®) > 1. O

Bass—Serre theory implies that for any free product (G, F), Grushko (G, F)-
trees exist. In general there are many of these trees, even working up to
equivariant homothety: they form a deformation space which is invariant
under an action of Aut(G,F), as studied in [GL07|. However, if (G,F) is
sporadic, then by [For02] and [Lev05] there is a fixed point for this action
— a (G, F)-tree preserved by all of Aut(G,F). The tree in question has a
single orbit of edges, and either one or two orbits of vertices (depending on
the size of F). A more elementary proof of the same fact using translation
length functions is in [And21, Proposition 4.8|: while the statement concerns
indecomposable factors and the whole automorphism group, the argument
applies just as well restricted to any sporadic free factor system and the
subgroup Aut(G, F).

The sporadic splittings obtained in the following propostion will be of the
form G *7Z or G1 *G4 rather than the degenerate case G = Z. However, note
that the free Z action on a line is invariant under the (finite) automorphism
group, so the statement holds even in this case.

Proposition 2.11. Let (G, F) be a free product and let ® € Out(G, F) be
polynomially growing. There is a free factor system F' of (G, F) and k € N
such that ®* preserves F' and (G, F') is sporadic. In particular, ®* preserves
a Bass—Serre tree associated to F'.

Proof. If (G, F) is sporadic then the first claim is immediate. Otherwise, let
F’ be a maximal ®-periodic proper free factor system. It suffices to prove
that (G, F’) is sporadic. Up to taking a power of @, we may suppose that
F' is ®-invariant. Thus, we may view ® as an element of Out(G, F’). By
maximality of 7' and Theorem 2.5, the element @ is fully irreducible. Then,
since ® is polynomially growing, by Lemma 2.9 it must be the case that
(G, F") is sporadic.

Now suppose that (G, F) is sporadic and that ® preserves F. Since there
is a fixed point for the action of Aut(G,F) on its deformation space, this
(G, F)-tree is preserved by ®. O

2.3. The cheap rebuilding property. Let a € N. In this section, we give
the relevant background regarding the cheap a-rebuilding property, which was
introduced by Abert, Bergeron, Fraczyk and Gaboriau [ABFG24| to prove
that certain groups have vanishing (torsion) homology growth. Although we
will not state the complete definition of this property, we list in the following
propositions the properties which we will use in the rest of the paper. This
property is relevant for our considerations by the following theorem.

Theorem 2.12. [ABFG24, Theorem 10.20] Let v € N and let ' be a resid-
ually finite group of type Foi1. Suppose that I' has the cheap a-rebuilding
property. For every Farber sequence (U'y)ken of T', each j < « and every
coefficient field K, we have

1 PGk 0 and 1
P T e T DTy

log |Hj(rka Z)tors‘ -0
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We refer to [ABFG24| for the definition of a Farber sequence. Examples
include decreasing sequences of finite index normal subgroups with trivial
intersection.

Proposition 2.13. [ABFG24, Corollary 10.13] Let T be a residually finite
countable group and let o € N. The following statements hold.

(1) Let T/ < T be a finite index subgroup. Then T' has the cheap a-
rebuilding property if and only if I does.

(2) If T' has an infinite normal subgroup N such that T'/N is of type
F, and N has the cheap a-rebuilding property, then I' has the cheap
a-rebuilding property.

(8) For every m € N* and every a € N, the group Z™ has the cheap
a-rebuilding property.

(4) IfT is infinite and virtually polycyclic then it has the cheap a-rebuilding
property.

Note that the “infinite” assumption at various points in this proposition
was necessary: finite groups do not have the cheap a-rebuilding property for
any o.

Theorem 2.14. [ABFG24, Theorem 10.9] Let T' be a residually finite group
acting on a CW-complex € in such a way that any element stabilising a cell
fizes it pointwise. Let oo € N. Suppose that the following conditions hold:
(1) T\Q has finite a-skeleton;
(2) Qis (o — 1)-connected;
(8) for each cell w € Q) of dimension j < « the stabiliser Stabr(w) has
the cheap (o — j)-rebuilding property.
Then I itself has the cheap a-rebuilding property.

3. A COMBINATION THEOREM FOR THE CHEAP REBUILDING PROPERTY
OF MAPPING TORI

Let (G,F) be a free product. Recall that each element [G;] € F corre-
sponds to the conjugacy class of a non-trivial finitely generated subgroup
G; of G, with the possibility that F = ¢#. The main result of this section,
Theorem 3.1, is a combination theorem which allows us to deduce the cheap
rebuilding property for some mapping tori of G, assuming that it holds for
the mapping tori of the factors F. We will use the combination theorem
in subsequent sections to prove the cheap a-rebuilding property for a large
family of mapping tori with polynomially-growing monodromy.

Theorem 3.1. Let G = Gy # ...+ G * Fy be a free product of residually
finite groups. Fiz o € N. Let ¢ be a polynomially-growing automorphism of
G which preserves the conjugacy classes of the factors G;. Suppose that for
every i € {1,...,k}, the group G; Xl Z has the cheap a-rebuilding property.
Then the group G x4 Z has the cheap a-rebuilding property.

We note that the groups G; in the free product are not required to be
freely irreducible.

Proof. The proof is by induction on the Grushko rank k+ N of G. If k =1
and N = 0, then the group G x4 Z has the cheap a-rebuilding property
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by the hypothesis. If Kk = 0 and N = 1, then G x4 Z is virtually Z?. By
Proposition 2.13 (1) (3), for every o € N, the group G x4 Z has the cheap
a-rebuilding property.

Suppose now that k+ N > 2. Let ® be the outer class of ¢ and let F be a
sporadic free factor system given by Proposition 2.11. Let T" be the canonical
Bass—Serre tree of G associated to F. The tree T' has a unique orbit of edges
and its edge stabilisers in G are trivial. In particular, vertex stabilisers in G
of T are proper free factors of G, hence have a smaller Grushko rank than
the one of G. Since T is canonical, it is preserved by ®. Up to taking a
power of ® we may suppose that ® acts trivially on the underlying graph of
G\T.

The actions of G and ® on 7' induce an action of G x4 Z on T. Edge
stabilisers in G x4 Z are infinite cyclic and the stabiliser of a vertex v of
T is isomorphic to Stab(v) x4, Z, where Stab(v) is the vertex stabiliser of
vin G and ¢y = @|stab(v) 1S the automorphism of Stab(v) induced by a
representative of ® preserving Stab(v).

We now prove that G x4Z has the cheap a-rebuilding property by applying
Theorem 2.14 to the action of G x4 Z on T'. Since the action is cocompact
and since T is a tree, it suffices to prove that the stabiliser of any vertex of
T has the cheap a-rebuilding property and that the stabiliser of any edge of
T has the cheap (o — 1)-rebuilding property.

Since edge stabilisers in G x4 Z are infinite cyclic, they have the cheap
(o — 1)-rebuilding property by Proposition 2.13 (3). Let v be a vertex of
T. Note that, since ¢ is a polynomially-growing automorphism, so is ¢, €
Aut(Stab(v)). Since the Grushko rank of Stab(v) is smaller than the one
of G, by induction hypothesis, the group Stab(v) x4, Z has the cheap a-
rebuilding property. Thus, by Theorem 2.14, the group G x4 Z has the
cheap a-rebuilding property, which concludes the proof. O

Remark 3.2. Theorem 3.1 recovers the main result of [AHK22| which states
that any free-by-cyclic group F, x4Z with polynomially-growing monodromy
¢ € Aut(F},) has the cheap a-rebuilding property for every o € N.

Remark 3.3. If GG is infinitely-ended, residually finite and accessible then
G admits a finite index subgroup H which is a free product of one-ended
groups and a finitely generated free group, and the suspension G x4 Z has
a finite index subgroup H x4 Z. Hence, by Proposition 2.13 (1), one can
apply Theorem 3.1 in the setting of infinitely-ended, accessible groups which
perhaps have torsion.

4. THE CHEAP REBUILDING PROPERTY FOR RESIDUALLY FINITE
(RELATIVELY) HYPERBOLIC GROUPS

In this section,we prove the cheap rebuilding property for mapping tori of
residually finite (relatively) hyperbolic groups. Theorem 3.1 is the main step
in order to prove the cheap rebuilding property for infinitely-ended hyper-
bolic groups. The one-ended case requires the use of the JSJ decomposition
of the group, whose properties are presented after Lemma 4.1, following
Guirardel-Levitt [GL17].
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Lemma 4.1. Let S be a compact, connected hyperbolic surface and let G =
m1(S). Let D € MCG(S) be a Dehn multi-twist. For every o € N, the group
G X p Z has the cheap a-rebuilding property.

Proof. Let 8 = (f1,...,Bk) be the collection of pairwise non-isotopic simple
closed curves in S associated to the multi-twist D. Then D preserves each
connected component of the complement S — Ule B;. Hence, the natural
action of G on the simplicial tree T" dual to the collection of lifts of the loops 5;
in the universal cover of S, extends to an action of the extension G x pZ. The
edge stabilisers of the action are isomorphic to Z? and the vertex stabilisers
are isomorphic to 71(Sp) X Z, where Sy is a connected component of the
closure of S — Ule B;. In particular, by Proposition 2.13 (2) and (3), the
edge and vertex stabilisers satisfy the cheap a-rebuilding property for every
. Thus, by Theorem 2.14, the group G xp Z has the cheap a-rebuilding
property for every a € N. O

Let G be the family of groups which are hyperbolic relative to a finite fam-
ily of virtually polycyclic groups. For each G € G we may assume that the
peripheral family P does not contain virtually cyclic groups, since remov-
ing them does not destroy relative hyperbolicity (see [GL17, Section 9.3]).
The family G includes the class of toral relatively hyperbolic groups, which
are torsion-free groups hyperbolic relative to a finite collection P of finitely
generated abelian subgroups.

We say a group G is one-ended relative to a collection of subgroups P if
there does not exist a splitting of G over finite subgroups such that each group
in P is conjugate into some vertex group. Note that a one-ended group is
automatically one-ended relative to every collection of subgroups. We write
Aut(G; P) to denote the group of automorphisms of G which preserve P.

Let G € G and suppose that G is one-ended relative to P. By the work of
Guirardel and Levitt [GL17, Corollary 9.20] (see also |GL15, Section 3.3|),
there is a canonical JSJ tree T for G, that is, a simplicial tree equipped with
an action of G which is preserved by the elements of Aut(G;P). The group
Aut(G;P) has a finite index subgroup K(T;) which acts as the identity on
the underlying graph of G\Ti. Edge stabilisers of T in G are virtually
polycyclic. If we further assume that G is torsion free then the stabiliser
Stabg(v) of a vertex v in T satisfies one of the following:

(1) the group Stabg(v) is isomorphic to the fundamental group of a
compact hyperbolic surface S and the image of the natural homo-
morphism K(Tg) — Out(Stabg(v)) is contained in the mapping class
group MCG(S) of S;

(2) there exists [P] € P with Stabg(v) = P. In particular, the group
Stabg(v) is virtually polycyclic;

(3) the image of the natural homomorphism K(Tg) — Out(Stabg(v)) is
finite.

Recall that G denotes the family of groups which are hyperbolic relative
to a finite family of virtually polycyclic groups, and we assume with no loss
of generality that the peripheral subgroup are not virtually cyclic. Let G,
denote the subset of the groups in G which are residually finite.
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Lemma 4.2. For any group G € Gy, there exists a finite-index subgroup
G' < G such that G' € G,y and G’ is torsion free.

Proof. 1Tt is well known, using for instance the action of G on a relative Rips
complex (see [Dah03]), that for a relatively hyperbolic group G, there exists
a finite number of finite subgroups Fi, ..., Fy of G, such that any finite-order
element g € G can be conjugated into some Fj, or into a peripheral subgroup
of GG. Since polycyclic groups contain finitely many conjugacy classes of finite
order elements by [BCRS91, Theorem 7.1|, it follows that G also has finitely
many conjugacy classes of finite order elements. Now since G is residually
finite, there exists a finite index normal subgroup G’ of G which does not
contain any of the finite conjugacy classes, and thus is torsion free. Moreover,
G’ is clearly also residually finite and hyperbolic relative to a finite collection
of virtually polycyclic subgroups. O

Theorem 4.3. Let G € G,y and let & = [¢] € Out(G) be a polynomially-
growing outer automorphism. Then G x4 Z has the cheap a-rebuilding prop-
erty for all a.

Proof. By Lemma 4.2, we may assume that G is torsion free. By Theo-
rem 3.1, it suffices to prove the result when G is one ended. Let T be the
JSJ tree associated to G described above. By [MO12, Lemma 3.2|, we may
pass to a power of ® which fixes the conjugacy class of each group in the pe-
ripheral system P. That is, up to finite index (applying Proposition 2.13 (1))
we can assume ¢ is an element of Aut(G;P).

Since T is preserved by Aut(G;P), the action of G and ¢ on T induces
an action of G x4 Z on Tg. Up to taking a power of ¢, we may suppose that
¢ K(1a).

We prove Theorem 4.3 by applying Theorem 2.14 to the action of G x4 Z
on Tg. As in the proof of Theorem 3.1, it suffices to prove that, for every
cell w € T, the group Stab(w) has the cheap a-rebuilding property for every
aeN.

Edge stabilisers in G x4 Z are virtually polycyclic and infinite since G' x4 Z
is one-ended. Thus, by Proposition 2.13 (4), they have the cheap a-rebuilding
property for every a € N.

Let v € Tz. There are three cases for the vertex stabilisers.

Case 1:. Stabg(v) is the fundamental group of a compact hyperbolic surface
S and K(Tg) — Out(Stabg(v)) has image contained in MCG(S).

Since ¢ is polynomially growing, its image in MCG(S) is in fact a Dehn
multi-twist D. Thus, the stabiliser in G'x4Z of v is isomorphic to 7 (S) x p Z.
By Lemma 4.1, it has the cheap a-rebuilding property for every a € N. o
Case 2:. Stabg(v) is virtually polycyclic.

Here the stabiliser of v in G' x4 Z is virtually polycyclic-by-Z (hence,
polycyclic). Thus, it has the cheap a-rebuilding property for every o € N by
Proposition 2.13 (4). .
Case 3:. The image of the natural homomorphism K(T) — Out(Stabg(v))
is finite.

Up to taking a power of ¢, we may suppose that the stabiliser of v in G x4Z
is isomorphic to Stabg(v) x Z. By for instance [GL15, Lemma 3.8]|, the group
Stabg(v) belongs to G. By results of Dahmani [Dah03, Theorem 0.1], the
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group Stabg(v) is of type Fi,. By Proposition 2.13 (2), for every a € N, the

group Stabg(v) x Z has the cheap a-rebuilding property. .
Thus, Theorem 2.14 implies that G' x4 Z has the cheap a-rebuilding prop-
erty for every a € N. O

Remark 4.4. The restriction to virtually polycyclic subgroups is also used
in Case (3); to deduce that Stabg(v) is of type Fi, requires that arbitrary
subgroups in P themselves are of finite type.

5. RIGHT ANGLED ARTIN AND COXETER GROUPS

Let L be a flag complex and recall that Ay, and Wy, respectively, denote
the right-angled Artin and right-angled Coxeter groups on L. The following
maps induce automorphisms of both the right-angled Artin group A(L) and
the right-angled Coxter group W (L):

(1) graph automorphisms, which are the automorphisms induced by au-
tomorphisms of L;

(2) inversions, which send v — v~! and u +> u for u # v and u,v € Lo,

(3) partial conjugations, labelled by k, ¢ for w e L and a connected
component C of L\st(w), and defined as ky, c(u) = wluw if u €
O and ky,c(u) = v if ue LO\C; and

(4) folds, labelled by 7, ., for any v, w € L) with Ikv  lkw, and defined
by Ty.w(v) = vw and 7, (u) = u for all u e LO\{v}.

We say an automorphism of Ay, is untwisted if it is contained in the subgroup
U(L) < Aut(Ar) which is generated by graph automorphisms, inversions,
partial conjugations and folds. We define the subgroup of untwisted auto-
morphisms of the right angled Coxeter groups analogously. Note that by
[Fio21, Proposition A(3)] untwisted automorphisms of Ay, are exactly the
automorphisms which preserve the standard coarse median structure on Ay,.
We will not use this fact or any results about coarse medians explicitly but
we note that it underpins much of our work in this section.

Theorem 5.1. Let L be a flag complex on [m] and let T' = Ap, x4 Z. If ¢
is an untwisted and polynomially-growing automorphism of Ar, then I' has
the cheap a-rebuilding property for all c.

Proof. We proceed by induction on m, the number of vertices of L. When
m = 1 we have that Ay, is isomorphic to Z. In this case I is virtually Z? and
so the result follows from Proposition 2.13. We now suppose m > 1. Note
that if K < L is a full subcomplex then any untwisted automorphism of Ay,
preserving Ay restricts to an untwisted automorphism of Agx. To prove the
inductive step there are three cases to consider.

Case 1:. Ay, is freely reducible. In this case Ay admits a Grushko split-
ting Ay, * -+ % Ak, = F,, where each K; and [n] is a full subcomplex of L.
In particular, each subcomplex K; contains at least one vertex but strictly
less than m vertices. We replace ¢ by a sufficiently high power which pre-
serves the conjugacy class of every factor Ag,. By the inductive hypothesis
each Ak, xg Ar, Z has the cheap a-rebuilding property for all & € N. The

conclusion follows from Theorem 3.1. .
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Case 2:. Ay, is freely and directly irreducible. By |Fio21, Proposition D]
the group Az, splits as an amalgamated free product Ay #*4, . Ax with each
J, K, Jn K < L non-empty and such that, possibly after replacing ¢ by a high
enough power, the corresponding Bass—Serre tree T is ¢-invariant. Moreover,
for X e {J,K,J n K} we see p(Ax) = Ax (see |[Fio2l, Lemma 5.3]). It fol-
lows I' acts on T" with stabilisers conjugate to Ax x4 Ay 7Z.. By the inductive
hypothesis, the subgroups Ax g A 7 satisfy the cheap a-rebuilding prop-
erty for all &« € N. The conclusion follows from Theorem 2.14. .
Case 3:. Ay, is directly reducible.

Now, Ay, splits as a direct product [ [, Ax, X 7ZF for some k > 0, where
each Ak, is non cyclic and directly irreducible. If k£ > 0 then since [ [, A,
is of type F for every a € N, we have that Ay, has the cheap a-rebuilding
property for every a by Proposition 2.13 (2). Another application of Propo-
sition 2.13 (2) gives us that the mapping torus Ay, x4 Z has the cheap a-
rebuilding property for every o € N and ¢ € Aut(Ayz).

Hence, we may assume that & = 0. Thus, Ay acts on the product X =
[ [, 7i where each T; is a tree which arises from Proposition 2.11 if Ag,
is freely reducible, and from the amalgamated product splitting given by
[Fio21, Proposition D] as in Case 2 when Ay, is both directly and freely
irreducible.

As in the previous two cases, up to passing to a power we may assume
that ¢ fixes the quotient Ar\X pointwise, and that ¢ Ak, breserves the
stabilisers of A, acting on T; for each 7. Since the stabilisers of Ay, acting
on X are products of the stabilisers of the A, acting on T; we see that
¢(Staby, (o)) = Staby, (o) for each cell 0 € X. Thus, Ay, x4 Z acts on X
with the stabiliser of a cell o isomorphic to A, x4 Ay, Z for some RAAG A,

where J, is non-empty and has strictly less vertices than L. The conclusion
follows from Theorem 2.14. .
This completes the proof of the inductive step and the theorem. O

Theorem 5.2. Let L be a flag complex on [m] and letT' = Wy, x4 Z. If ¢ is
polynomially growing, then I' has the cheap a-rebuilding property for all a.

Proof. The proof is entirely analogous to Theorem 5.1 with the following
modifications. First, we note that the subgroup of untwisted automorphisms
of W7, has finite index in the automorphism group Aut(Wp,) by [SS19]. Thus,
we may pass to a power of ¢ which is untwisted.

In the case where m = 1 we have that I' = Z/2 x Z which has the cheap
a-rebuilding property for all « € N by Proposition 2.13. The three cases are
now identical, taking into account the remarks after Theorem E and at the
start of Section 5 of [Fio21], since the results we use for Ay, also hold for
Wr. O

Remark 5.3. We can actually say more regarding the cheap a-rebuilding
property for mapping tori of automorphisms of RAAGs. Indeed, if L is
(o — 1)-connected, then Ay, has the cheap a-rebuilding property [ABFG24,
Theorem I]. In particular, if L is contractible then for any automorphism ¢
of Ay, the group Ay, x4 Z has the cheap a-rebuilding property for all a.
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