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Abstract
Weprove that amongst the class of free-by-cyclic groups,
Gromov hyperbolicity is an invariant of the profinite
completion.We show that whenever𝐺 is a free-by-cyclic
group with first Betti number equal to one, and 𝐻 is a
free-by-cyclic group which is profinitely isomorphic to
𝐺, the ranks of the fibres and the characteristic poly-
nomials associated to the monodromies of 𝐺 and 𝐻 are
equal.We further show that for hyperbolic free-by-cyclic
groups with first Betti number equal to one, the stretch
factors of the associated monodromy and its inverse is
an invariant of the profinite completion. We deduce that
irreducible free-by-cyclic groups with first Betti number
equal to one are almost profinitely rigid amongst irre-
ducible free-by-cyclic groups. We use this to prove that
generic free-by-cyclic groups are almost profinitely rigid
amongst free-by-cyclic groups. We also show similar
results for {universal Coxeter}-by-cyclic groups.
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1 INTRODUCTION

Two finitely generated groups 𝐺 and𝐻 are said to be profinitely isomorphic if they share the same
isomorphism types of finite quotient groups. It is a classical result that if two groups are profinitely
isomorphic, then they have the same profinite completion [18]. For a class  of finitely generated
residually finite groups, a group 𝐺 ∈  is profinitely rigid in  if any group 𝐻 in  profinitely iso-
morphic to 𝐺 is in fact isomorphic to 𝐺. Similarly, we say 𝐺 is almost profinitely rigid in  if there
are at most finitely isomorphism types of groups 𝐻 in  profinitely isomorphic to 𝐺.
There exists a large body ofwork investigating profinite rigidity of 3-manifold groups. For exam-

ple, deep work of Bridson–McReynolds–Reid–Spitler shows that there are hyperbolic 3-manifolds
which are profinitely rigid amongst all finitely generated residually finite groups [9], with more
examples constructed in [15] and [11]. On the other hand, there exist Anosov torus bundles and
periodic closed surface bundles with non-isomorphic but profinitely isomorphic fundamental
groups [26, 31, 52].
Significant progress has been made on the problem of profinite rigidity within the class of 3-

manifolds. A key step in showing that various classes and properties of 3-manifolds are invariants
of the profinite completion is to establish the profinite invariance of fibring. In this vein, and
in order to deduce results about the profinite completion of knot groups, Bridson–Reid studied
profinite invariants of compact 3-manifolds with boundary and first Betti number equal to one, in
particular showing that fibring and the rank of the fibre is a profinite invariant of such 3-manifolds
[10]. At the same time, Boileau–Friedl tackled the problem of profinite invariants of knot groups
by showing that fibring is an invariant of 3-manifolds whose profinite completions are related by a
particular type of isomorphism, called a regular isomorphism [4]. Finally, Jaikin–Zapirain showed
that being fibred is a profinite invariant of all 3-manifold groups [34], and this was generalised to
all locally extended residually finite (LERF) groups in [33].
Another crucial element is the work of Wilton–Zalesskii on profinite detection of Thurston

geometries [61] and ofWilkes andWilton–Zalesskii on profinite invariance of various decomposi-
tions of 3-manifolds [56, 57, 63]. The case of Seifert fibredmanifolds was entirely solved byWilkes,
who proved that these are almost profinitely rigid in the class of all 3-manifold groups [55]. Graph
manifolds have receivedmuch attention too [57, 58, 60]. Most recently, Liu proved the spectacular
theorem that finite volume hyperbolic 3-manifold groups are almost profinitely rigid [39]. Other
results have also been obtained, for example, [4, 12, 40, 62, 64].
We say a group 𝐺 is free-by-cyclic if it contains a normal subgroup 𝑁 ⊴ 𝐺 which is isomorphic

to a non-trivial free group of finite rank 𝐹𝑛, and such that 𝐺∕𝑁 ≅ ℤ. We will almost always think
of a free-by-cyclic group as a pair (𝐺, 𝜑), where 𝜑 ∈ Hom(𝐺;ℤ) is an epimorphism which gives
rise to a short exact sequence

1 → 𝐹𝑛 → 𝐺
𝜑
�→ ℤ → 1.

Since any such short exact sequence splits, one can realise a free-by-cyclic group as the semi-
direct product 𝐺 ≅ 𝐹𝑛 ⋊Φ ℤ, for some Φ ∈ Out(𝐹𝑛) which we refer to as the monodromy of the
splitting. Conversely, given a semi-direct splitting 𝐺 ≅ 𝐹𝑛 ⋊Φ ℤ, there is an associated character
𝜑∶ 𝐺 → ℤ which maps the normal free factor to zero, and the stable letter (with respect to any
choice of representative of Φ) to the generator 1 of ℤ. We call this the induced character of the
splitting 𝐹𝑛 ⋊Φ ℤ.
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Free-by-cyclic groups form a well-studied class which has been shown to exhibit many key
properties; these include residual finiteness [1], quadratic isoperimetric inequality [8] and the
property of being large [14]. Further, it is known that hyperbolic free-by-cyclic groups are cubula-
ble [29] and thus virtually compact special in the sense of Haglund–Wise [30], andmore generally
that all free-by-cyclic groupswhich do not virtually split as a direct product admit non-elementary
acylindrical actions on hyperbolic spaces [27]. Despite this, there are still many open questions in
this area, most notably on the subject of rigidity, even when one considers only rigidity amongst
the class of free-by-cyclic groups.
Our goal in writing this paper is to investigate profinite rigidity amongst free-by-cyclic groups.

The study of profinite invariants of free-by-cyclic groups saw its inception in the work of Bridson–
Reid [10]. Although the aim of their work was to prove results about fibred knot complements,
their methods apply more generally and are later used by Bridson–Reid–Wilton [12] to show
profinite rigidity amongst the groups of the form 𝐹2 ⋊ ℤ.
Whilst we draw inspiration from the results in the 3-manifold setting, the problem for free-by-

cyclic groups is significantly more subtle. This stems in part from the lack of a sufficientOut(𝐹𝑛)-
analogue of the Nielsen–Thurston decomposition for homeomorphisms of finite-type surfaces.
One artefact of this is thatwe frequently have to restrict our attention to the class of irreducible free-
by-cyclic groups, that is free-by-cyclic groups which admit irreducible monodromy. Recall that an
outer automorphism Φ ∈ Out(𝐹𝑛) is irreducible if there does not exist a free splitting 𝐹𝑛 = 𝐴1 ∗

… ∗ 𝐴𝑘 ∗ 𝐵, where 𝐴1 ∗ … ∗ 𝐴𝑘 is non-trivial, and such that Φ permutes the conjugacy classes of
the factors 𝐴𝑖 . By the work of Mutanguha [47], for any two realisations of 𝐺 as a free-by-cyclic
group, 𝐺 ≅ 𝐹𝑛 ⋊Φ ℤ ≅ 𝐹𝑚 ⋊Ψ ℤ, the monodromy Φ is irreducible if and only if Ψ is.
Our first result is analogous to Liu’s theorem with the additional hypotheses that 𝑏1(𝐺) = 1

and restricting to the class of irreducible free-by-cyclic groups. The first hypothesis is due to the
fact that we do not have a method to establish ℤ̂-regularity (see Section 4 for a definition) without
an analogous result to the main theorems in [23, 25] — this is one of the main technical steps
in Jaikin–Zapirain’s and Liu’s results. The second hypothesis arises since, although we can show
that hyperbolicity of free-by-cyclic groups is a profinite invariant, we are currently unable to show
the same holds true for irreducibility.

Theorem A. Let 𝐺 be an irreducible free-by-cyclic group. If 𝑏1(𝐺) = 1, then 𝐺 is almost profinitely
rigid amongst irreducible free-by-cyclic groups.

1.1 Profinite invariants

The next theorem is somewhatmore technical. Wewill not include definitions of the invariants in
the introduction, but many of them will be familiar to experts and they are scattered throughout
the paper. Note that the result actually holds in the more general setting of a ℤ̂-regular isomor-
phism (the specific results stated throughout the paper comprising Theorem B are stated in this
generality, in fact we provide a restatement of Theorem B later in the text in this generality).
We point out the general fact that the first Betti number of any finitely generated discrete group

is an invariant of its profinite completion.

Theorem B. Let 𝐺 = 𝐹 ⋊Φ ℤ be a free-by-cyclic group with induced character 𝜑∶ 𝐺 → ℤ. If
𝑏1(𝐺) = 1, then the following properties are determined by the profinite completion 𝐺 of 𝐺:
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4 of 43 HUGHES and KUDLINSKA

(1) the rank of 𝐹;
(2) the homological stretch factors {𝜈+

𝐺
, 𝜈−

𝐺
};

(3) the characteristic polynomials {CharΦ+, CharΦ−} of the action of Φ on𝐻1(𝐹;ℚ);
(4) for each representation 𝜌∶ 𝐺 → GL(𝑛,ℚ) factoring through a finite quotient, the twisted

Alexander polynomials {Δ𝜑,𝜌
𝑛 , Δ

−𝜑,𝜌
𝑛 } and the twisted Reidemeister torsions {𝜏𝜑,𝜌, 𝜏−𝜑,𝜌} over ℚ.

Moreover, if 𝐺 is conjugacy separable (e.g. if 𝐺 is hyperbolic), then 𝐺 also determines the Nielsen
numbers and the homotopical stretch factors {𝜆+

𝐺
, 𝜆−

𝐺
}.

We note that our Theorem B(1) was already known by the work of Bridson–Reid [10, Lemma
3.1].
The reason for obtaining a set of invariants corresponding to Φ and Φ−1 is that the dynamics

of Φ and Φ−1 can be different. Indeed, this is somewhat a feature of free-by-cyclic groups rather
than a bug. A large technical hurdle in this work was overcoming this phenomenonwhich cannot
occur for 3-manifolds.
We also obtain a complete geometric picture à la Wilton–Zalesskii in the case of hyperbolic

free-by-cyclic groups.

Theorem C. Let 𝐺𝐴 and 𝐺𝐵 be profinitely isomorphic free-by-cyclic groups. Then 𝐺𝐴 is Gromov
hyperbolic if and only if 𝐺𝐵 is Gromov hyperbolic.

1.2 Almost profinite rigidity and applications

We will now explain how to apply Theorem A, Theorem B and Theorem C to various classes of
free-by-cyclic groups to obtain strong profinite rigidity phenomena.

1.2.1 Super irreducible free-by-cyclic groups

We say that a free-by-cyclic group 𝐺 is super irreducible, if 𝐺 ≅ 𝐹𝑛 ⋊Φ ℤ and the integral matrix
𝑀∶ 𝐻1(𝐹𝑛; ℚ) → 𝐻1(𝐹𝑛; ℚ) representing the action of Φ on 𝐻1(𝐹𝑛; ℚ) satisfies the property that
no positive power of𝑀maps a proper subspace of𝐻1(𝐹𝑛; ℚ) into itself. Note that this immediately
implies 𝑏1(𝐺) = 1 because

𝐻1(𝐺;ℚ) ≅ (𝐻1(𝐹𝑛; ℚ)∕Im(𝑀 − Id)) ⊕ ℚ,

and since 𝑀 is super irreducible, ker(𝑀 − Id) = {0}. Super irreducibility also implies 𝐺 is
irreducible by [28, Theorem 2.5].
An example of a super irreducible free-by-cyclic group is whenever the characteristic poly-

nomial of 𝑀 is a Pisot–Vijayaraghavan polynomial, namely, it is monic, it has exactly one root
(counted with multiplicity) with absolute value strictly greater than one, and all other roots have
absolute value strictly less than one [28].

Corollary D. Let 𝐺 be a super irreducible free-by-cyclic group. Then every free-by-cyclic group
profinitely isomorphic to 𝐺 is super irreducible. In particular, 𝐺 is almost profinitely rigid amongst
free-by-cyclic groups.
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 5 of 43

1.2.2 Random free-by-cyclic groups

Fix 𝑛 ⩾ 2 and let 𝑆 be a finite generating set of Out(𝐹𝑛). For any 𝑙 ⩾ 1, define𝑙,𝑛 to be the set of
all free-by-cyclic groups 𝐺 which admit a splitting 𝐺 ≅ 𝐹𝑛 ⋊Φ ℤ, where Φ can be expressed as a
word of length at most 𝑙 in 𝑆. We say that for a random free-by-cyclic group, the property 𝑃 holds
asymptotically almost surely, or that a generic free-by-cyclic group satisfies property 𝑃, if

#{𝐺 ∈ 𝑙,𝑛 ∣ 𝐺 satisfies property 𝑃}
#𝑙,𝑛

→ 1 as 𝑙 → ∞.

We now state the result alluded to in the title of the paper.

Corollary E. Let𝐺 be a random free-by-cyclic group. Then, asymptotically almost surely𝐺 is almost
profinitely rigid amongst free-by-cyclic groups.

1.2.3 Low rank fibres

When the fibre of the free-by-cyclic group has rank two or three, we are able to obtain rigidity
statements within the class of all free-by-cyclic groups.

Corollary F. Let 𝐺 = 𝐹3 ⋊ ℤ. If 𝐺 is hyperbolic and 𝑏1(𝐺) = 1, then 𝐺 is almost profinitely rigid
amongst free-by-cyclic groups.

Note in the next statement we see that 𝐺 is uniquely determined.

CorollaryG. Let𝐺 = 𝐹2 ⋊ ℤ. If 𝑏1(𝐺) = 1, then𝐺 is profinitely rigid amongst free-by-cyclic groups.

1.2.4 Profinite conjugacy

Ournext result investigates conjugacy inOut(𝐹𝑛) and is somewhat analogous to [40, Theorem 1.2].
We say two outer automorphismsΨ andΦ of𝐹𝑛 are profinitely conjugate if they induce a conjugate
pair of outer automorphisms in Out(𝐹𝑛). In this setting, we have no assumption on the action of
Ψ or Φ on the homology of 𝐹𝑛.

Theorem H. Let Ψ ∈ Out(𝐹𝑛) be atoroidal. If Φ ∈ Out(𝐹𝑛) is profinitely conjugate to Ψ, then Φ

is atoroidal and {𝜆Ψ, 𝜆Ψ−1} = {𝜆Φ, 𝜆Φ−1}. In particular, if Ψ is additionally irreducible, then there
are only finitely manyOut(𝐹𝑛)-conjugacy classes of irreducible automorphisms which are conjugate
with Ψ in Out(𝐹𝑛).

1.2.5 Automorphisms of universal Coxeter groups

Finally, we extend our results to the setting of universal Coxeter groups. A group 𝐺 is {universal
Coxeter}-by-cyclic if it splits as a semi-direct product 𝑊𝑛 ⋊ ℤ where 𝑊𝑛 = ✽𝑛

𝑖=1
ℤ∕2 is the free

product of 𝑛 copies of ℤ∕2. A free basis of𝑊𝑛 is a generating set for𝑊𝑛 such that each element
has order 2.
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6 of 43 HUGHES and KUDLINSKA

Let𝐾 ⩽ 𝑊𝑛 be the unique torsion-free subgroup of index 2. For any choice of free basis for𝑊𝑛,
𝐾 is the kernel of the homomorphism𝑊𝑛 → ℤ∕2whichmaps every free generator of𝑊𝑛 to 1. We
note that 𝐾 is characteristic and it is isomorphic to the free group of rank 𝑛 − 1.
Fix a free basis of the free group 𝐹𝑛 of rank 𝑛, and let 𝜄 ∈ Aut(𝐹𝑛), denote the automorphism

which inverts each basis element. Let [𝜄] be the image of 𝜄 in Out(𝐹𝑛). Following [6], we define
the group of hyperelliptic outer automorphisms of 𝐹𝑛, denoted by HOut(𝐹𝑛), to be the centraliser
of [𝜄] in Out(𝐹𝑛).

Theorem I. Let 𝐺 = 𝑊 ⋊ ℤ be a {universal Coxeter}-by-cyclic group. Then the rank of the fibre𝑊
is an invariant of 𝐺.
Suppose that all free-by-cyclic groups with monodromy in HOut(𝐹𝑛) for some 𝑛 are conjugacy

separable. Then 𝐺 determines the the stretch factors {𝜆+, 𝜆−} associated to the monodromy of the
splitting𝑊 ⋊ ℤ.

1.3 Some unanswered questions

While we began in earnest to transport the programme of profinite rigidity amongst 3-manifold
groups to free-by-cyclic groups, we have perhaps raised as many questions as answers. We will
highlight some key questions that we have encountered and hope to answer in the future. Perhaps
the most pressing issue is that of ℤ̂-regularity.

Question 1.1. Is every profinite isomorphism of free-by-cyclic groups ℤ̂-regular?

One may hope to answer the previous question as in [39], but using the agrarian polytope [32,
37] in place of the Thurston polytope. The key issue is that we do not have the 𝖳𝖠𝖯1 property for
free-by-cyclic groups (for 3-manifolds this is a deep result of Friedl–Vidussi [23, 25]). The reader
is referred to [33, Definition 3.1] for the definition due to its technical nature.

Question 1.2. Is every free-by-cyclic group 𝐺 in 𝖳𝖠𝖯1(𝔽) for 𝔽 ∈ {ℚ, 𝔽𝑝} with 𝑝 prime?

The other somewhat obvious question is whether irreducibility is a profinite invariant. We
expect this to be the case (at least amongst hyperbolic free-by-cyclic groups).

Question 1.3. Is being irreducible a profinite invariant amongst free-by-cyclic groups?

Our final question is motivated by Theorem I.

Question 1.4. Is it true that for every hyperelliptic outer automorphism Φ ∈ HOut(𝐹𝑛), the
mapping torus 𝐺 = 𝐹𝑛 ⋊Φ ℤ is conjugacy separable?

1.4 Structure of the paper

In Section 2, we recall the necessary background on free group automorphisms and free-by-cyclic
groups and prove a number of results we will need throughout the paper.
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 7 of 43

In Section 2.1, we recall the definition of a topological representative of a free group automor-
phism, its stretch factor and the various definitions of irreducibility we will need. We include a
proof that there are at most finitely many equivalence classes of irreducible topological represen-
tatives such that the graph has rank 𝑛 and the stretch factor is at most some positive real number
𝐶 > 1 (Lemma 2.1).
In Section 2.2, we study generic outer automorphisms of free groups and prove that a generic

free-by-cyclic group has first Betti number equal to one and is super irreducible (Proposition 2.4).
In Section 2.3, we relate the Nielsen numbers of an outer automorphism of a free group to the

stretch factor of the outer automorphism.
In Section 2.4, we study certain subgroup separability properties of free-by-cyclic groups. In

particular, we show that every abelian and every free-by-cyclic subgroup is separable (Corol-
lary 2.10). We combine this with results of Wilton–Zalesskii [61] to prove Theorem C from the
introduction.
In Section 3, we recall the definitions of twisted Alexander polynomials and twisted Reide-

meister torsions. We establish a number of facts about twisted Alexander polynomials which we
will use later in the paper. Our main new contribution is a complete calculation of the zeroth
twisted Alexander polynomials over ℚ for any finitely generated group (Lemma 3.5), as well as
a formula for the twisted Reidemeister torsion of a free-by-cyclic group in terms of the twisted
Alexander polynomials.
In Section 4, we recall the notion of a matrix coefficient module and a ℤ̂-regular isomorphism.

The main reason for this section is to allow us to work in the generality of a ℤ̂-regular isomor-
phism. This means that if one established a positive answer to Question 1.1, then one could apply
the results in this paper without any further modifications.
At this stage, we establish some notation. Let𝐺𝐴 be a free-by-cyclic group with character 𝜓 and

fibre subgroup 𝐹𝐴. Also let 𝐺𝐵 be a free-by-cyclic group with character 𝜑 and fibre subgroup 𝐹𝐵.
LetΘ∶ 𝐺𝐴 → 𝐺𝐵 be a ℤ̂-regular isomorphism (see Definition 4.3). Our final result of the section is
that 𝐹𝐴 ≅ 𝐹𝐵 (Proposition 4.6).
In Section 5, we set out to prove profinite invariance of Reidemeister torsion over ℚ twisted

by representations of finite quotients for 𝐺𝐴 and 𝐺𝐵. Our strategy is parallel to that of Liu [39,
section 7], however due to the extra complexity of free-by-cyclic groups, we have to invoke extra
results about twisted Alexander polynomials of free-by-cyclic groups established in Section 3. In
Section 5.1, we prove profinite invariance of the twisted Alexander polynomials althoughwework
in the more general setting of {good type 𝖥}-by-ℤ groups and ℤ̂-regular isomorphisms. In Sec-
tion 5.2, we establish the profinite invariance of twisted Reidemeister torsion for 𝐺𝐴 and 𝐺𝐵. In
Section 5.3, we prove that the homological stretch factors {𝜈+

𝐴
, 𝜈−

𝐴
} and {𝜈+

𝐵
, 𝜈−

𝐵
} are equal.

In Section 6, under the assumption of conjugacy separability of 𝐺𝐴 and 𝐺𝐵, we prove that the
homotopical stretch factors {𝜆+

𝐴
, 𝜆−

𝐴
} and {𝜆+

𝐵
, 𝜆−

𝐵
} are equal. Again our strategy is largelymotivated

by [39, section 8]. The key difference is that for a fibred character 𝜒 on a finite volume hyperbolic
3-manifold the stretch factors of the monodromies associated to 𝜒 and 𝜒−1 are the same. This
is not true for free-by-cyclic groups where we must deal with both directions at once† and so our
main work is resolving this issue.
Combining the major results up to this point proves Theorem B.
In Section 7, we prove Theorem A. In the hyperbolic case, this is a corollary of Theorem B and

the fact that hyperbolic free-by-cyclic groups are virtually special and hence conjugacy separable.

† John Coltrane — The Lost Album.
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8 of 43 HUGHES and KUDLINSKA

In the general case, we apply a result of Mutanguha [47] and train track theory to deduce the
conjugacy separability we require. We then go on to deduce Corollaries D–G.
In Section 8, we prove Theorem H. This is really an easy consequence of Theorem B once we

transport a result of Liu [40, Proposition 3.7] on profinite conjugacy of mapping class groups to
the Out(𝐹𝑛) setting.
Finally, in Section 9, we prove results on profinite invariants and profinite almost rigidity of

{universal Coxeter}-by-cyclic groups. To do so,we start by establishing notation and recalling back-
ground onmorphisms of graphs of groups in Section 9.1. The purpose of Section 9.2 is to relate the
theory of train track representatives of elements in Out(𝑊𝑛) with Nielsen fixed point theory. We
also prove a lemma on irreducibility of covers of directed graphs and use this to relate the stretch
factor of an outer automorphism Φ ∈ Out(𝑊𝑛) with the stretch factor of the free group automor-
phism obtained by restricting Φ to a free characteristic subgroup of𝑊𝑛. In the final Section 9.3,
we combine results from previous sections to prove Theorem I.

1.5 Notation

We include a table of notation for the aid of the reader (Table 1).

2 PRELIMINARIES ON FREE GROUP AUTOMORPHISMS

2.1 Topological representatives

The contents of this subsection largely derive from the work of Bestvina–Handel in [3]. Let 𝑛 ⩾ 2

and Φ ∈ Out(𝐹𝑛) be an outer automorphism of 𝐹𝑛. A topological representative of Φ is a tuple
(𝑓, Γ), where Γ is a connected graph with 𝜋1(Γ) ≅ 𝐹𝑛, and 𝑓∶ Γ → Γ is a homotopy equivalence
which induces the outer automorphism Φ. Furthermore, 𝑓 preserves the set of vertices of Γ and
it is locally injective on the interiors of the edges of Γ. A topological representative 𝑓 is said to be
a train track if every positive power of 𝑓 is locally injective on the interiors of edges.
Fix an ordering of the edges of Γ. The incidence matrix 𝐴 of 𝑓 is the matrix with entries 𝑎𝑖𝑗 ,

where 𝑎𝑖𝑗 is the number of occurrences of the unoriented edge 𝑒𝑗 in the edge-path 𝑓(𝑒𝑖).
Recall that a non-negative integral 𝑛-by-𝑛 square matrix 𝑀 is said to be irreducible, if for any

𝑖, 𝑗 ⩽ 𝑛, there exists some 𝑘 ⩾ 1 such that the (𝑖, 𝑗)th entry of𝑀𝑘 is positive.
Let (𝑓, Γ) be a topological representative. A filtration of length l of (𝑓, Γ) is a sequence of

subgraphs

∅ = Γ0 ⊆ Γ1 ⊆ … ⊆ Γ𝑙 = Γ, (1)

so that 𝑓(Γ𝑖) ⊆ Γ𝑖 for all 𝑖. The closure 𝑆𝑖 = Cl(Γ𝑖 ⧵ Γ𝑖−1) is called the ith stratum of the filtration.
Re-order the edges of Γ so that whenever 𝑖 < 𝑗, the edges in Γ𝑖 precede the edges in Γ𝑗 . The filtra-
tion is said to bemaximal if the square submatrix𝐴𝑖 of the incidencematrix𝐴which corresponds
to the 𝑖th stratum is either the zero matrix, or it is irreducible. It is a standard fact that any topo-
logical representative admits a maximal filtration which is unique up to reordering of the strata.
If (𝑓, Γ) admits a maximal filtration of length one, then we say that (𝑓, Γ) is irreducible.
By the Perron–Frobenius theorem (see [50, Chapter 2]), if 𝐴𝑖 is the submatrix of the incidence

matrix 𝐴 of (𝑓, Γ) which corresponds to an irreducible stratum 𝑆𝑖 , then the spectral radius

 1460244x, 2025, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70059 by H

sc R
esearch &

 D
evelopm

ent, W
iley O

nline L
ibrary on [02/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 9 of 43

TABLE 1 Table of notation.

Symbol Definition
𝐹𝑛 Free group of rank 𝑛
𝑊𝑛 Universal Coxeter group of rank 𝑛, that is, *𝑛

𝑖=1
ℤ∕2

Γ Graph
(Γ,),  Graph of groups
𝑋 Graph of spaces
(𝑓, 𝑓𝑋), 𝑓 Morphism of graphs of groups
𝜓, 𝜑, 𝜓𝐴, 𝜑𝐵 Character of a free-by-cyclic group
(𝐺𝐴, 𝜓), (𝐺𝐵, 𝜑) Free-by-cyclic group
𝐹, 𝐹𝐴, 𝐹𝐵 Fibre subgroup
Ψ, Φ Outer automorphisms (of 𝐹𝑛 or𝑊𝑛)
𝑓, 𝑓𝐴, 𝑓𝐵 Train track
Orb𝑚(𝑓) Set of𝑚-periodic orbits of 𝑓
𝑁𝑚(𝑓) 𝑚th Nielsen number of 𝑓
𝜆, 𝜆𝑓 , 𝜆Ψ Homotopical stretch factor (of 𝑓 or Ψ)
𝜈, 𝜈𝑓 , 𝜈Ψ Homological stretch factor (of 𝑓 or Ψ)
𝑅 Unique factorisation domain
𝑅× Units of 𝑅
Δ
𝜑,𝛼

𝑅,𝑛
𝑛th Alexander polynomial of 𝜑 twisted by 𝛼 over 𝑅

𝜏
𝜑,𝛼

𝑅
Reidemeister torsion of 𝜑 twisted by 𝛼 over 𝑅

In some contexts, we will drop the 𝑅 from the previous notations and replace it with a group 𝐺 for clarity, that
is, Δ𝜑,𝛼

𝐺,𝑛
and 𝜏𝜑,𝛼

𝐺
or even 𝜏

𝜑,𝛼

𝐺,𝑅

𝛼, 𝛽, 𝛾 Finite quotients
𝑄 Image of a finite quotient
𝜌, 𝜎 Representation of a group
𝜒𝜌 Character of the representation 𝜌
𝛾∗(𝜎) Pullback representation of 𝜎 along 𝛾
𝟏 The trivial representation
Θ Profinite isomorphism
MC(Θ) Mapping coefficient module
Θ𝜖

∗
, Θ∗

𝜖
𝜖-specialisation of Θ

𝜇 Unit of ℤ̂

𝜌(𝐴𝑖) of 𝐴𝑖 is an eigenvalue of 𝐴𝑖 , which is known as the Perron–Frobenius eigenvalue of 𝐴𝑖 .
Furthermore, 𝜌(𝐴𝑖) ⩾ 1 and equality holds exactly when 𝐴𝑖 is a permutation matrix. We call
𝑆𝑖 an exponentially growing stratum if its Perron–Frobenius eigenvalue is strictly greater than
one. An edge 𝑒 of Γ is said to be exponentially growing if it is contained in some exponentially
growing stratum. For a topological representative (𝑓, Γ), we write 𝜆𝑓 , (or 𝜆 if there is no potential
for confusion), to denote the maximal Perron–Frobenius eigenvalue taken over all the non-zero
strata of the maximal filtration of (𝑓, Γ), and we call it the (homotopical) stretch factor of 𝑓.
A subgraph is non-trivial if it has a component which is not a vertex. An outer automorphism

Φ ∈ Out(𝐹𝑛) is irreducible, if every topological representative (𝑓, Γ) ofΦ, where Γ has no valence-
one vertices and no non-trivial 𝑓-invariant forests, is irreducible. A free-by-cyclic group 𝐺 is
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10 of 43 HUGHES and KUDLINSKA

irreducible, if 𝐺 admits a splitting 𝐺 ≅ 𝐹𝑛 ⋊Φ ℤ, with Φ ∈ Out(𝐹𝑛) irreducible. Note that by [47],
if 𝐺 is irreducible, then the monodromy associated to every fibred splitting of 𝐺 is an irreducible
outer automorphism.
The stretch factor of an irreducible outer automorphism Φ is the infimum of the stretch factors

of the irreducible topological representatives ofΦ. By the proof of Theorem 1.7 in [3], the infimum
is realised. We will write 𝜆(Φ) to denote the stretch factor of Φ.

Lemma 2.1. Let 𝑛 ⩾ 2 and 𝐶 > 1. There exist at most finitely many conjugacy classes of irreducible
elements in Out(𝐹𝑛) with stretch factor at most 𝐶.

Proof. Let CV𝑛 denote the Culler–Vogtmann Outer space. For 𝜖 > 0, write CV𝑛(𝜖) to denote the
thick part of CV𝑛, which is defined as the set of all metric graphs Γ in CV𝑛 such that the length of
every loop 𝛼 in Γ satisfies 𝓁Γ(𝛼) ⩾ 𝜖. We considerCV𝑛 as a metric space with the Lipschitz metric.
Let {Φ𝑖}𝑖∈𝐼 be a collection of irreducible elements inOut(𝐹𝑛)which are non-pairwise conjugate,

and such that 𝜆(Φ𝑖) ⩽ 𝐶 for each 𝑖 ∈ 𝐼. Suppose first that 𝜆(Φ𝑖) = 1 for all 𝑖 ∈ 𝐼. Then eachΦ𝑖 has
finite order in Out(𝐹𝑛). Every finite-order element in Out(𝐹𝑛) is induced by a periodic automor-
phism of a graph with no valence-one and valence-two vertices. In particular, there are finitely
many finite-order elements in Out(𝐹𝑛) and hence 𝐼 is finite.
Suppose now that some Φ𝑖 has infinite order. Without loss of generality, we may assume that

every Φ𝑖 has infinite order. Let 𝜖 = 1∕((3𝑛 − 3)(𝐶 + 1)3𝑛−2). By [22, Proposition 2.14], each axis of
Φ𝑖 is contained in the 𝜖-thick part CV𝑛(𝜖).
Since action ofOut(𝐹𝑛) on the thick part CV𝑛(𝜖) is cocompact, there exists some compact sub-

set 𝐾 ⊆ CV𝑛(𝜖) such that
⋃

g∈Out(𝐹𝑛)
g ⋅ 𝐾 = CV𝑛(𝜖). Thus, for each 𝑖 ∈ 𝐼, there is an element

Ψ𝑖 ∈ Out(𝐹𝑛) which is conjugate to Φ𝑖 and such that Axis(Ψ𝑖) ∩ 𝐾 ≠ ∅. Let 𝑁log𝐶(𝐾) denote the
(log 𝐶)-neighbourhood of𝐾 inCV𝑛(𝜖). Then,Ψ𝑖 ⋅𝑁log𝐶(𝐾) ∩ 𝑁log𝐶(𝐾) ≠ ∅ for all 𝑖 ∈ 𝐼. Since the
thick part CV𝑛(𝜖) is proper, we have that𝑁log𝐶(𝐾) is a compact subset. Hence, since the action of
Out(𝐹𝑛) on CV𝑛(𝜖) is proper, it must be the case that 𝐼 is finite. □

A bounded topological representative (𝑓, Γ) of Φ ∈ Out(𝐹𝑛) is such that the number of expo-
nentially growing strata is bounded by 3𝑛 − 3, and each exponential stratum stretch factor which
is the Perron–Frobenius eigenvalue of an irreducible square matrix of dimensions bounded above
by 3𝑛 − 3. For a general outer automorphism Φ, we define the stretch factor 𝜆(Φ) of Φ to be the
infimum, taken over all the bounded topological representatives (𝑓, Γ) of Φ, of 𝜆max , where 𝜆max

denotes the maximum stretch factor of the non-zero strata in a maximal filtration of (𝑓, Γ). The
infimum Λ(Φ) is realised by a bounded relative train track representative (𝑓, Γ) (see [3, p. 37]).

2.2 Generic elements of 𝐀𝐮𝐭(𝑭𝒏)

Fix a finite generating set 𝑆 of Aut(𝐹𝑛). For each 𝑙 ⩾ 1, let𝑙,𝑛 denote the set of reduced words of
length 𝑙 in 𝑆. We say that a random element of Aut(𝐹𝑛) satisfies property 𝑃 with probability 𝑝, if

#{𝑤 ∈ 𝑙,𝑛 ∣ 𝑤 satisfies 𝑃}
#𝑙,𝑛

→ 𝑝 as 𝑙 → ∞.

We say that a generic element in Aut(𝐹𝑛) has property 𝑃, if a random element satisfies property 𝑃
with probability 𝑝 = 1.
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 11 of 43

An automorphism𝜙 ∈ Aut(𝐹𝑛) is said to be super irreducible if no positive power of the induced
map 𝜙ab ∈ GL(𝑛, ℚ) maps a proper subspace of 𝐻1(𝐹𝑛; ℚ) into itself. A free-by-cyclic group 𝐺 is
super irreducible if there exists some splitting 𝐺 ≅ 𝐹𝑛 ⋊𝜙 ℤ such that 𝜙 is super irreducible.
The following theorem is a consequence of the results in [49, section 7], which hold verbatim

after replacing SL(𝑛, ℤ) by GL(𝑛, ℤ) in all the statements.

Theorem 2.2 [49]. A generic element in Aut(𝐹𝑛) is super irreducible.

Proposition 2.3. For a generic element in Aut(𝐹𝑛), the first Betti number of its mapping torus is
equal to one.

Proof. Write 𝜙ab to denote the image of 𝜙 under the natural map induced by the action on the
abelianisation of 𝐹𝑛,

Aut(𝐹𝑛) → GL(𝑛, ℤ)

𝜙 ↦ Φab.

The free abelianisation of 𝐹𝑛 ⋊𝜙 ℤ is isomorphic to ℤ if and only if 𝜙ab has no eigenvalue equal
to 1 [5, Theorem 2.4]. By Theorem 2.2, for a generic element in Aut(𝐹𝑛) which represents the
automorphism 𝜙, the characteristic polynomial of 𝜙ab is irreducible over ℚ. Hence the result
follows. □

Write𝑙,𝑛 to denote the set of free-by-cyclic presentations

 = ⟨𝑥1, … , 𝑥𝑛, 𝑡 ∣ 𝑡
−1𝑥𝑖𝑡 = Φ(𝑥𝑖), 1 ⩽ 𝑖 ⩽ 𝑛⟩ for all Φ ∈ 𝑙,𝑛.

We say that a generic 𝐹𝑛-by-cyclic group satisfies property 𝑃 with probability 𝑝, if

#{𝐺 ∈ 𝑙,𝑛 ∣ 𝐺 satisfies 𝑃}
#𝑙,𝑛

→ 1 as 𝑙 → ∞.

Proposition 2.4. A generic 𝐹𝑛-by-cyclic group has first Betti number equal to one and is
super irreducible.

2.3 Nielsen fixed point theory

Let 𝑋 be a connected compact polyhedral complex and 𝑓∶ 𝑋 → 𝑋 a continuous self-map. Anm-
periodic point 𝑝 ∈ 𝑋 is a fixed point of themap 𝑓𝑚. A path 𝛾 between two𝑚-periodic points 𝑥 and
𝑦 is anm-periodic Nielsen path if 𝑓𝑚(𝛾) is homotopic to 𝛾. An indivisible𝑚-periodic Nielsen path
is such that 𝛾 cannot be expressed as the concatenation 𝛾 = 𝛼 ⋅ 𝛽, where 𝛼 and 𝛽 are non-trivial
𝑚-periodic Nielsen paths. We will call a 1-periodic Nielsen path simply a Nielsen path.
We can define an equivalence relation on the set of𝑚-periodic points so that𝑥 ∼ 𝑦 if there exists

an𝑚-periodicNielsen path from 𝑥 to 𝑦.We call the equivalence classes under this relationm-point
classes. Each 𝑚-point class forms a so-called isolated subset of Fix(𝑓𝑚) and thus it is possible to
define its index (see [36, Section 1.3] for the definition of fixed point index).
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12 of 43 HUGHES and KUDLINSKA

The map 𝑓 acts on the set of𝑚-point classes and the action preserves index. We letOrb𝑚(𝑓) be
the set of orbits of𝑚-periodic classes under this action. Each orbit ∈ Orb𝑚(𝑓) determines a free
homotopy class of loops in the mapping torus𝑀𝑓 , and thus a conjugacy class in 𝜋1(𝑀𝑓), which
we denote by cd(). Furthermore, every  ∈ Orb𝑚(𝑓) admits an index ind𝑚(𝑓;) ∈ ℤ, defined
to be the index of any 𝑚-point class in the orbit. An 𝑚-periodic orbit  ∈ Orb𝑚(𝑓) is said to be
essential if it has non-zero index.

Definition 2.5. The 𝑚th Nielsen number of 𝑓, denoted by 𝑁𝑚(𝑓), is the number of essential
𝑚-periodic orbits  ∈ Orb𝑚(𝑓).

It is a standard fact fromNielsen fixed point theory (see, e.g. [35, Chapter 1] and [36]), that each
Nielsen number is independent of the choice of topological representative of Φ ∈ Out(𝜋1(𝑋)).
Hence, we may write 𝑁∞(Φ) to denote

𝑁∞(Φ) = lim sup𝑚→∞𝑁𝑚(𝑓)
1∕𝑚,

where (𝑓, Γ) is any topological representative of Φ.

Lemma 2.6. If (𝑓, Γ) is an improved relative train track, then there exists a positive constant𝐾 such
that

𝐹(𝑚) − 𝐾 ⩽ 𝑁𝑚(𝑓) ⩽ 𝐹(𝑚) + 𝐾,

where 𝐹(𝑚) is the number of 𝑓𝑚-fixed points in the interior of exponentially growing edges.

Proof. Fix a maximal 𝑓-invariant filtration of Γ,

∅ = Γ0 ⊆ Γ1 ⊆ … ⊆ Γ𝑙 = Γ,

with 𝑆𝑖 = Cl(Γ𝑖 ⧵ Γ𝑖−1) for each 1 ⩽ 𝑖 ⩽ 𝑙.
Suppose first that 𝑒 ∈ 𝐸(Γ) is a polynomially growing edge. Then there exists a polynomially

growing stratum 𝑆𝑖 such that 𝑆𝑖 = {𝑒} and the edge 𝑒 is either fixed by 𝑓, or 𝑓(𝑒) = 𝑒𝛾 where 𝛾
is an immersed loop in Γ𝑖−1. Hence 𝑓𝑚(𝑒) = 𝑒𝛾′ for some loop 𝛾′ ∈ Γ𝑖−1. Thus, the interior of 𝑒
contributes at most one 𝑓𝑚-fixed point class. Moreover, each vertex of Γ contributes at most one
𝑓𝑚-fixed class. Hence, 𝑁𝑓(𝑚) ⩽ 𝐹(𝑚) + 𝐾1, where 𝐾1 is the number of polynomially growing
edges plus the number of vertices in Γ.
We now consider fixed points contained in the interiors of exponentially growing edges. By [2,

Theorem 5.1.5], each periodic Nielsen path in Γ has period one. Moreover, for each exponentially
growing stratum 𝑆𝑖 , there exists at most one indivisible Nielsen path 𝛾 that intersects 𝑆𝑖 non-
trivially, and the initial (partial) edges of 𝛾 and 𝛾−1 are contained in 𝑆𝑖 . Also, it is clear that all
the fixed point classes contained in the interior of exponentially growing strata are essential. It
follows that𝑁𝑚(𝑓) is bounded below by 𝐹(𝑚)minus the number of exponentially growing strata
in Γ, which we denote by 𝐾2. Hence, for every𝑚 ∈ ℕ,

𝐹(𝑚) − 𝐾2 ⩽ 𝑁𝑚(𝑓) ⩽ 𝐹(𝑚) + 𝐾1.

The result follows by setting 𝐾 = max{𝐾1, 𝐾2}. □
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 13 of 43

Proposition 2.7. Let Φ ∈ Out(𝐹𝑛) be an outer automorphism with stretch factor 𝜆 > 1. Then
𝑁∞(Φ) is equal to 𝜆.

Proof. By [2], there exists a positive integer 𝑘 such thatΦ𝑘 admits an improved relative train track
representative (𝑓, Γ). Let 𝜆 be the stretch factor of Φ𝑘. We will start by proving that

𝑁∞(Φ𝑘) = 𝜆.

Let 𝐴 be the incidence matrix corresponding to (𝑓, Γ) and fix a maximal 𝑓-invariant filtration
of Γ. Let {𝑆𝑖}𝑖∈𝐼 be the set of exponentially growing strata of Γ and let 𝜆𝑖 be the stretch factor of 𝑆𝑖 .
Let 𝐴𝑖 denote the sub-matrix of 𝐴 corresponding to the edges in 𝑆𝑖 .
By Lemma 2.6, there exists a constant 𝐾 such that for every𝑚 ∈ ℕ,

𝐹(𝑚) − 𝐾 ⩽ 𝑁𝑚(𝑓) ⩽ 𝐹(𝑚) + 𝐾, (2)

where 𝐹(𝑚) is the number of 𝑓𝑚-fixed points in the interior of the exponentially growing edges.
Fix an exponentially growing edge 𝑒 in Γ. The number of fixed points of 𝑓𝑚 contained in the

interior of 𝑒 is exactly the number of times the edge-path 𝑓𝑚(𝑒) crosses the edge 𝑒 in either direc-
tion minus a constant 𝐶𝑚,𝑒 ∈ {0, 1, 2}. Indeed, if the edge-path 𝑓𝑚(𝑒) traverse at least two edges
and begins or ends with the edge 𝑒, then the fixed point corresponding to 𝑒 will not be in the inte-
rior of 𝑒. Note also that the number of times 𝑓𝑚(𝑒) crosses the edge in either direction is given by
the element on the diagonal of 𝐴𝑚 corresponding to 𝑒.
Combining the argument in the previous paragraph with (2), we obtain

𝑁𝑚(𝑓) ≍
∑
𝑖∈𝐼

tr(𝐴𝑚
𝑖
),

where for any two functions g1, g2 ∶ ℕ → ℝ, we write g1 ≍ g2 if there exists a constant 𝐾 > 0 such
that for all𝑚 ∈ ℕ,

g2(𝑚) − 𝐾 ⩽ g1(𝑚) ⩽ g2(𝑚) + 𝐾.

For each matrix 𝐴𝑖 , let 𝑛𝑖 denote the order of 𝐴𝑖 and let 𝜆𝑖,𝑗 be its eigenvalues, for 1 ⩽ 𝑗 ⩽ 𝑛𝑖 .
Then

tr(𝐴𝑚
𝑖
) =

∑
1⩽𝑗⩽𝑛𝑖

𝜆𝑚
𝑖,𝑗
.

Since 𝜆 is the maximal stretch factor, have that |||𝜆𝑖,𝑗∕𝜆|||𝑚 ⩽ 1 for each 𝑖 ∈ 𝐼 and 𝑗 ⩽ 𝑛𝑖 , with
equality for some 𝑖, 𝑗. Hence,

lim sup𝑚→∞𝑁𝑚(𝑓)
1∕𝑚 = 𝜆 ⋅ lim sup

𝑚→∞

(∑
𝑖∈𝐼

∑
1⩽𝑗⩽𝑛𝑖

(𝜆𝑖,𝑗∕𝜆)
𝑚

)1∕𝑚

= 𝜆.

Thus, 𝑁∞(Φ𝑘) is equal to the stretch factor of Φ𝑘.
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14 of 43 HUGHES and KUDLINSKA

By [21, Corollary 7.14], if 𝜆 is the maximal stretch factor of a relative train track representative
of Φ𝑘, then 𝜆1∕𝑘 is the maximal stretch factor associated to Φ. Note also that 𝑁∞(Φ𝑘) = 𝑁∞(Φ)𝑘.
The result follows by combining the arguments in the previous paragraphs. □

2.4 Detecting atoroidal monodromy

In this section, we will prove that hyperbolicity (equivalently the property of admitting atoroidal
monodromy) is determined by the profinite completion. The strategy is to show finitely generated
abelian subgroups of free-by-cyclic groups are fully separable and then use work of Brinkmann
[13] and Wilton–Zalesskii [61].
Recall a subgroup𝐻 ⩽ 𝐺 is separable if for every g ∈ 𝐺∖𝐻 there exists a finite quotient 𝜌∶ 𝐺 ↠

𝑄 such that 𝜌(g) ∉ 𝜌(𝐻). A subgroup𝐻 is fully separable in 𝐺, if every finite index subgroup of𝐻
is separable in 𝐺. We will need the following lemma:

Lemma 2.8 [48, Lemma 4.6]. Let 𝐺 and 𝐻 ⩽ 𝐺 be finitely generated. If 𝐻 is fully separable in 𝐺,
then the closure of𝐻 in 𝐺 is isomorphic to �̂�.

Proposition 2.9. Let 𝐺 be a free-by-cyclic group and let 𝐻 ⩽ 𝐺 be a finitely generated subgroup. If
𝐻 ⩽ 𝐺 is free-by-cyclic or abelian, then𝐻 is separable in 𝐺.

Proof. Fix a fibred character 𝜑∶ 𝐺 → ℤ of 𝐺. Let 𝐹 = ker𝜑 be the fibre, 𝑡 ∈ 𝜑−1(1) and let 𝜙 ∈

Aut(𝐹) be the automorphism corresponding to the conjugation action of 𝑡 on 𝐹 in 𝐺. Fix𝐻 ⩽ 𝐺 a
free-by-cyclic subgroup and g ∈ 𝐺 ⧵ 𝐻.
Suppose first that𝐻 is not contained in𝐹. By [19, Proposition 2.3], there exist a finitely generated

subgroup 𝐴 ⩽ 𝐹, an element 𝑦 ∈ 𝐹 and a positive integer 𝑘 such that 𝜙𝑘(𝐴) = 𝑦𝐴𝑦−1, and

𝐻 = ⟨𝐴, 𝑡𝑘𝑦⟩ ≃ 𝐴⋊ ⟨𝑡𝑘𝑦⟩.
Let g ∈ 𝐺 ⧵ 𝐻. Then g = 𝑏𝑡𝑚, for some 𝑏 ∈ 𝐹 and 𝑚 ∈ ℤ. Suppose that 𝑚 is not a multiple of 𝑘.
Consider the finite quotient 𝜌𝑘 ∶ 𝐺 → ℤ∕𝑘ℤ of 𝐺, which maps each element of 𝐹 to 0, and which
sends 𝑡 to a generator of the cyclic groupℤ∕𝑘ℤ of order 𝑘. It follows that 𝜌𝑘(𝐻) = 0 and 𝜌𝑘(g) ≠ 0.
Suppose now that𝑚 = 𝑘𝑙 for some 𝑙 ∈ ℤ. Then g = 𝑏′(𝑡𝑘𝑦)𝑙, for some 𝑏′ ∈ 𝐹, and since g ∉ 𝐻

it must be that 𝑏′ ∉ 𝐴. The usual Marshall–Hall argument gives a finite-index subgroup 𝐹′ ⩽ 𝐹

such that 𝑏′ ∉ 𝐹′ and 𝐴 ⩽ 𝐹′. Let 𝑁 = [𝐹 ∶ 𝐹′]. Let ad𝑦 denote the inner automorphism of 𝐹
which acts by conjugation with 𝑦. Note that ad𝑦 ⋅ 𝜙𝑘 ∶ 𝐹 → 𝐹 permutes the subgroups of 𝐹 of
index 𝑁. Hence there exists some positive integer 𝑀 such that (ad𝑦 ⋅ 𝜙𝑘)𝑀(𝐹′) = 𝐹′. Let 𝐹′′ =⋂𝑀−1

𝑖=0 (ad𝑦 ⋅ 𝜙
𝑘)𝑖(𝐹′). Then ad𝑦 ⋅ 𝜙𝑘(𝐹′′) = 𝐹′′ and 𝐴 ⩽ 𝐹′′. Furthermore, since 𝐹′′ ⩽ 𝐹′, we have

that 𝑏′ ∉ 𝐹′′. Thus 𝐺′ = ⟨𝐹′′, 𝑡𝑘𝑦⟩ ≅ 𝐹′′ ⋊ ⟨𝑡𝑘𝑦⟩ is a finite index subgroup of 𝐺, such that g ∉ 𝐺′

and𝐻 ⩽ 𝐺′.
Suppose now that𝐻 is contained in 𝐹. Since ker 𝜑 is free, it follows that𝐻 is infinite cyclic. Let

𝑎 ∈ 𝐹 be a generator of 𝐻. Let g = 𝑏𝑡𝑚 for some 𝑏 ∈ 𝐹 and 𝑚 ∈ ℤ. If 𝑚 ≠ 0, consider the finite
quotient 𝜌𝑚+1 ∶ 𝐺 → ℤ∕(𝑚 + 1)ℤ which sends 𝐹 → 0 and 𝑡 to a generator of the cyclic group
ℤ∕(𝑚 + 1)ℤ. Then 𝜌𝑚+1(𝐻) = 0 and 𝜌(g) ≠ 0.
Suppose finally that g ∈ 𝐹, Since g ∉ ⟨𝑎⟩ ⩽ 𝐹, by Marshall–Hall’s theorem, there exists a finite

index subgroup 𝐹′ ⩽ 𝐹 such that ⟨𝑎⟩ ⩽ 𝐹′ and 𝑏 ∉ 𝐹′. Moreover, there exists a positive integer𝑀
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 15 of 43

such that 𝜙𝑀(𝐹′) = 𝐹′ since 𝜙 permutes finite index subgroups of a given index in 𝐹. Hence,

𝐺′ ∶= ⟨𝐹′, 𝑡𝑀⟩ ≅ 𝐹′ ⋊ ⟨𝑡𝑀⟩.
We have that ⟨𝑎⟩ ⩽ 𝐹′ ⩽ 𝐺′ and since 𝑏 ∉ 𝐹′, it must be the case that 𝑏 ∉ 𝐺′. This completes the
proof. □

Corollary 2.10. Let𝐺 be a free-by-cyclic group. If𝐻 ⩽ 𝐺 is a free-by-cyclic or abelian subgroup, then
𝐻 is fully separable in 𝐺. In particular �̄�, the closure of𝐻 in 𝐺, is isomorphic to �̂�.

Proof. Every finite-index subgroup of𝐻 is free-by-cyclic or abelian. It follows from Proposition 2.9
that every finite-index subgroup of𝐻 is separable in 𝐺. The final part follows by Lemma 2.8. □

We have everything we need to prove Theorem C from the introduction.

Theorem C. Let 𝐺𝐴 and 𝐺𝐵 be profinitely isomorphic free-by-cyclic groups. Then 𝐺𝐴 is Gromov
hyperbolic if and only if 𝐺𝐵 is Gromov hyperbolic.

Proof. Let 𝐺𝐴 and 𝐺𝐵 be free-by-cyclic groups such that 𝐺𝐴 ≅ 𝐺𝐵. Suppose that 𝐺𝐴 is Gromov
hyperbolic. By [29],𝐺𝐴 is a cocompactly cubulated and thus virtually special. Hencewemay apply
[61, Theorem D] to deduce that ℤ̂2 is not a subgroup of 𝐺𝐴. By Corollary 2.10, the ℤ2 subgroups
of 𝐺𝐵 are fully separable and since 𝐺𝐵 contains no ℤ̂2 subgroups, it follows 𝐺𝐵 contains no ℤ2

subgroups. In particular, by [13, Theorem 1.2] 𝐺𝐵 is Gromov hyperbolic.
Suppose conversely that 𝐺𝐴 is not Gromov hyperbolic. Then by [13], 𝐺𝐴 has a ℤ2 subgroup and

so by Corollary 2.10,𝐺𝐴 contains a ℤ̂2 subgroup. Suppose now𝐺𝐵 is not Gromov hyperbolic. Then,
by the argument in the previous paragraph,𝐺𝐵 does not contain ℤ̂2 subgroups. This contradiction
completes the proof. □

We will need the following proposition later. It is proved in [10, Lemma 2.2] but we include a
proof for completeness.

Proposition 2.11 [10, Lemma 2.2]. Let 𝐺 be a group and 𝜑∶ 𝐺 → ℤ an epimorphism. If𝑁 = ker 𝜑

is finitely generated, then𝑁 is fully separable in 𝐺.

Proof. We show that every finite index subgroup𝐻 ⩽𝑓 𝑁 of 𝑁 is separable in 𝐺.
Pick an element 𝑡 ∈ 𝜑−1(1) and an automorphism 𝜙 ∈ Aut(𝑁) induced by the conjugation

action of 𝑡. Let g ∈ 𝐺 ⧵ 𝐻. Then g = 𝑏𝑡𝑚, for some 𝑏 ∈ 𝑁 and𝑚 ∈ ℤ. If𝑚 ≠ 0, consider the finite
quotient 𝜌𝑚+1 ∶ 𝐺 → ℤ∕(𝑚 + 1)ℤ which sends 𝑁 ↦ 0 and 𝑡 to a generator of the cyclic group
ℤ∕(𝑚 + 1)ℤ. Then 𝜌𝑚+1(𝐻) = 0 and 𝜌𝑚+1(g) ≠ 0. Suppose now that g ∈ 𝑁. Since g ∉ 𝐻 ⩽ 𝑁,
and since 𝐻 ⩽𝑓 𝑁 is finite index and thus separable, there exists a finite index subgroup 𝑁′ ⩽ 𝑁

such that𝐻 ⩽ 𝑁′ and 𝑏 ∉ 𝑁′. Moreover, since 𝜙 permutes finite index subgroups of a given index
in 𝑁, there exists a positive integer𝑀 such that 𝜙𝑀(𝑁′) = 𝑁′. Hence,

𝐺′ ∶= ⟨𝑁′, 𝑡𝑀⟩ ≅ 𝑁′ ⋊ ⟨𝑡𝑀⟩.
We have that 𝐻 ⩽ 𝑁′ ⩽ 𝐺′ and since 𝑏 ∉ 𝑁′, it must be the case that 𝑏 ∉ 𝐺′. This completes the
proof. □

 1460244x, 2025, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.70059 by H

sc R
esearch &

 D
evelopm

ent, W
iley O

nline L
ibrary on [02/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 of 43 HUGHES and KUDLINSKA

3 SOME PROPERTIES OF TWISTED ALEXANDER POLYNOMIALS
AND REIDEMEISTER TORSION

In this section, we will collect a number of facts about twisted Alexander polynomials and twisted
Reidemeister torsion that we will use later on. For a survey on twisted invariants (in the context of
3-manifolds), see [24]. Our main contribution is a complete computation of the zeroth Alexander
polynomials twisted by representations factoring through finite groups over characteristic zero
fields (Lemma 3.5).

Definition 3.1 (Alexander modules and polynomials). Let 𝑅 be a unique factorisation domain
(UFD) and let 𝐺 be a finitely generated group. Let 𝜑 be a non-trivial primitive class in 𝐻1(𝐺; ℤ)

considered as a homomorphism 𝐺 ↠ ℤ and let 𝜌∶ 𝐺 → GL𝑛(𝑅) be a representation. Consider
𝑅𝑛[𝑡±1] equipped with the 𝑅𝐺-bimodule structure given by

g .𝑥 = 𝑡𝜑(g)𝜌(g)𝑥, 𝑥.g = 𝑥𝑡𝜑(g)𝜌(g),

for g ∈ 𝐺, 𝑥 ∈ 𝑅𝑛[𝑡±1]. For 𝑛 ∈ ℤ, we define the 𝑘th twisted Alexander module of 𝜑 and 𝜌 to be
𝐻𝑘(𝐺; 𝑅

𝑛[𝑡±1]), where 𝑅𝑛[𝑡±1] has the right 𝑅𝐺-module structure described above. Observe that
𝐻𝑘(𝐺; 𝑅

𝑛[𝑡±1]) is a left 𝑅[𝑡±1]-module. If𝐺 is of type 𝖥𝖯𝑘(𝑅), then the 𝑘th twisted Alexander mod-
ule is a finitely generated 𝑅[𝑡±1]-module. Moreover, it is zero whenever 𝑘 < 0 or 𝑘 is greater than
the cohomological dimension of 𝐺 over 𝑅.
Since𝑅 is aUFD so is𝑅[𝑡±1]. Let𝑀 be an𝑅[𝑡±1]-module. The order of𝑀 is the greatest common

divisor of allmaximalminors in a presentationmatrix of𝑀with finitelymany columns. The order
of𝑀 is well defined up to a unit of 𝑅[𝑡±1] and depends only on the isomorphism type of𝑀.
Suppose that 𝐺 is of type 𝖥𝖯𝑘(𝑅). The 𝑘th twisted Alexander polynomial Δ𝜑,𝜌

𝑘,𝑅
(𝑡) over 𝑅 with

respect to 𝜑 and 𝜌 is defined to be the order of the 𝑘th twisted (homological) Alexander module
of 𝜑 and 𝜌, treated as a left 𝑅[𝑡±1]-module.

We will now collect a number of facts about twisted Alexander polynomials. Let 𝑅 be a unique
factorisation domain. Given any polynomial 𝑐(𝑡) ∈ 𝑅[𝑡±1] where 𝑐(𝑡) =

∑𝑟
𝑖=0 𝑐𝑖𝑡

𝑖 we write 𝑐★(𝑡)
for the polynomial

∑𝑟
𝑖=0 𝑐𝑟−𝑖𝑡

𝑖 . For 𝑝(𝑡), 𝑞(𝑡) ∈ 𝑅[𝑡±1], we write 𝑝(𝑡) ≐ 𝑞(𝑡) if 𝑝(𝑡) = 𝑢𝑞(𝑡) where
𝑢 ∈ 𝑅[𝑡±1] is a unit. The following lemma is a triviality.

Lemma 3.2. Let 𝐺 be a group of type 𝖥𝖯𝑛(𝑅), let 𝜑∶ 𝐺 ↠ ℤ and let 𝜌, 𝜎∶ 𝐺 → GL𝑛(𝑅) be
representations of 𝐺 over a UFD 𝑅. If 𝜌 and 𝜎 are conjugate representations, then

Δ
𝜑,𝜌
𝑛 (𝑡) ≐ Δ

𝜑,𝜎
𝑛 (𝑡).

Lemma 3.3. Let 𝐺 be a group of type 𝖥𝖯𝑛(𝑅), let 𝜑∶ 𝐺 ↠ ℤ, and let 𝜌, 𝜎∶ 𝐺 → GL𝑛(𝑅) be
representations of 𝐺 over a UFD 𝑅. Then,

Δ
𝜑,𝜌⊕𝜎
𝑛 (𝑡) ≐ Δ

𝜑,𝜌
𝑛 (𝑡) × Δ

𝜑,𝜎
𝑛 (𝑡).

Proof. This follows from the fact that homology commutes with taking direct sums of coefficient
modules. □

The following lemma is a triviality
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 17 of 43

Lemma 3.4. Let 𝑅 be a UFD. Let 𝐺 be a group, let 𝜑∶ 𝐺 ↠ ℤ and let 𝜌∶ 𝐺 → GL𝑘(𝑅) be a
representation. Then,

(Δ
𝜑,𝜌
𝑛 )★(𝑡) ≐ Δ

−𝜑,𝜌
𝑛 (𝑡) ≐ Δ

𝜑,𝜌
𝑛 (𝑡−1)

up to monomial factors with coefficients in 𝑅×.

The next lemma will be a key step in proving profinite rigidity of twisted Reidemeister torsion
for our class of free-by-cyclic groups. For a 𝐺-module𝑀 being acted on via 𝛼∶ 𝐺 ×𝑀 → 𝑀, we
write𝑀𝛼 when we wish to make clear the 𝐺-module structure.

Lemma 3.5. Let 𝐺 be a finitely generated group, let 𝜑∶ 𝐺 ↠ ℤ be algebraically fibred and let
𝜌∶ 𝐺 ↠ 𝑄 → GL𝑘(ℚ) be a representation factoring through a finite group. Then,

Δ
𝜑,𝜌
0

(𝑡) ≐ (1 − 𝑡)𝑚𝑃(𝑡),

where 𝑚 ⩾ 0 and 𝑃(𝑡) is a product of cyclotomic polynomials, up to multiplication by monomials
with coefficients in ℚ×. In particular,

Δ
𝜑,𝜌
0

(𝑡) ≐ Δ
𝜑,𝜌
0

(𝑡−1).

Proof. Let 𝐹 denote the kernel of 𝜑. We need to compute𝑀 ≔ 𝐻0(𝐺;ℚ
𝑘[𝑡±1]) which is naturally

isomorphic to the coinvariants (ℚ𝑘[𝑡±1])𝐺 .
By Maschke’s Theorem, we may write the representation 𝜌 of 𝑄 as a sum ⊕𝓁

𝑖=1
𝜌𝑖 ∶ 𝑄 →∏𝓁

𝑖=1 GL𝑘𝑖 (ℚ), where
∑𝓁

𝑖=1 𝑘𝑖 = 𝑘, of irreducible ℚ-representations of 𝐿. We may now write

𝑀 =

𝓁⨁
𝑖=1

(ℚ𝑘𝑖 [𝑡±1])𝐺.

For each 𝑖, there are three possibilities:
Case 1: 𝜌𝑖(𝑄) ≠ {1} but 𝜌𝑖(𝐹) = {1}.
In this case, 𝜌𝑖 has image a non-trivial finite cyclic group 𝐿. We quickly recap the ℚ-

representation theory of ℤ∕𝑛 for 𝑛 ⩾ 2. Recall that ℚ[ℤ∕𝑛] = ℚ[𝑋]∕(𝑋𝑛 − 1) so the irreducible
representations of ℤ∕𝑛 are exactly the cyclotomic fields ℚ(𝜒𝑑) for each 𝑑 dividing 𝑛. These repre-
sentations are exactly given by the quotient map 𝜋𝑑 ∶ ℚ[ℤ∕𝑛] → ℚ(𝜒𝑑). Note that in this case for
a generator g of ℤ∕𝑛 the characteristic polynomial of 𝜋𝑑(g) is the cyclotomic polynomial 𝜒𝑑.
Since 𝜌𝑖 is irreducible, it follows that we are in the situation of a cyclotomic representation.

Consider the tail end of the standard resolution for ℤ over ℤ𝐺

where 𝑎0, … , 𝑎𝑚−1 is a generating set for 𝐹, where 𝑡 is the generator of ℤ viewing 𝐺 = 𝐹 ⋊ ℤ and
where

𝜕 =
[
1 − 𝑎0, … , 1 − 𝑎𝑚−1, 1 − 𝑡

]
. (3)
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18 of 43 HUGHES and KUDLINSKA

We need to compute the order of the presentation matrix

𝜕 ⊗ℤ𝐺 idℚ[Φ𝑑][𝑡
±1] =

[
0, … , 0, id−𝜌𝑖(𝑡)𝑡

]
.

But this is the same as computing an order of the square matrix id−𝜌𝑖(𝑡)𝑡. Now,

ord(id−𝜌𝑖(𝑡)𝑡) ≐ det(id 𝑡−1 − 𝜌𝑖(𝑡)𝑡 ⋅ 𝑡
−1)𝑡𝑝−1 ≐ det(id 𝑡−1 − 𝜌𝑖(𝑡)) (4)

but this is exactly the characteristic polynomial of 𝜌𝑖(𝑡)with respect to 𝑡−1. Namely, it is the cyclo-
tomic polynomial 𝜒𝑑(𝑡

−1) but this is palindromic of even degree, 𝑡 − 1, or 𝑡 + 1 so we have that
Δ
𝜑,𝜌𝑖
0

(𝑡) ≐ 𝜒𝑑(𝑡). ⬥

Case 2: 𝜌𝑖(𝐹) ≠ {1}.
We start by again by viewing 𝐺 as 𝐹 ⋊ ℤ. In particular, we have a differential 𝜕 as in (3) such

that Δ𝜑,𝜌𝑖
0

is given by an order of

𝐷𝑖 ≔ 𝜕 ⊗ℤ𝐺 idℚ𝑘𝑖 [𝑡±1] = [id−𝜌𝑖(𝑎0), … , id−𝜌𝑖(𝑎𝑚−1), id−𝜌𝑖(𝑡)].

To this end, we define 𝐷 to be the set of cofactors of 𝐷𝑖 . So Δ
𝜑,𝜌𝑖
0

≐ gcd𝐷.
We first conjugate 𝜌𝑖 so that 𝜌𝑖(𝑡) is in block diagonal form. Since the image of 𝑡 is cyclic, say of

order 𝑛, we obtain a block structure where the non-identity blocks are matrices corresponding to
non-trivial ℚ-representations of various subgroups𝐻 ⩽ ℤ∕𝑛. Thus, arguing as in (4) we see that

(1 − 𝑡)𝑛
′
⋅

𝓁∏
𝑗=1

𝜒𝑛𝑗
(𝑡) ∈ 𝐷,

where 𝑛′ is dimension of the fixed subspace of 𝜌𝑖(𝑡) and 𝜒𝑛𝑗
(𝑡) is the cyclotomic polynomial of

order 𝑛𝑗 such that 𝑛𝑗 divides 𝑛.
Now, Δ𝜑,𝜌𝑖

0
divides every element of 𝐷 and is a polynomial defined over ℚ[𝑡] (up to multipli-

cation by 𝑡𝓁 for some 𝓁 ⩾ 0) and 𝜒𝑛𝑗
(𝑡) is the minimal polynomial for all primitive 𝑛𝑗th roots of

unity. In particular, any non-trivial polynomial dividing and not equal to𝜒𝑛𝑗
(𝑡) is not defined over

ℚ[𝑡±1]. It follows that Δ𝜑,𝜌𝑖
0

= 𝑃𝑖(𝑡) ⋅ (1 − 𝑡)𝑛
′′ where 𝑃𝑖(𝑡) is a product of cyclotomic polynomials

and 𝑛′′ is a non-negative integer less than or equal to 𝑘𝑖 . ⬥

Case 3: 𝜌𝑖(𝐺) = {1}.
In this case, we are computing (ℚ[𝑡±1])𝐺 where𝐺 acts trivially onℚ. Clearly, this is isomorphic

to ℚ[𝑡±1]∕(1 − 𝑡) which is additively isomorphic to ℚ. ⬥

By Lemma 3.3, we have that Δ𝜑,𝜌
0

(𝑡) ≐
∏𝓁

𝑖=1 Δ
𝜑,𝜌𝑖
0

(𝑡) ≐ (1 − 𝑡)𝑛𝑃(𝑡) where 𝑛 is some non-
negative integer and 𝑃(𝑡) is a product of cyclotomic polynomials.
The ‘in particular’ now follows from the fact cyclotomic polynomials are palindromic (provided

𝑑 ≠ 2) or equal to 𝑡 − 1 and an easy computation: Write 𝑃(𝑡) = (𝑡 − 1)𝑚
′
𝑃′(𝑡) where 𝑚′ is the

number of (𝑡 − 1) factors of 𝑃(𝑡). Let 𝛿 denote the degree of 𝑃(𝑡), let 𝜖 = 1 if exactly one of𝑚 and
𝑚′ are non-zero and let 𝜖 = 0 otherwise. Now,

Δ
𝜑,𝜌
0

(𝑡−1) ≐ (−1)𝜖𝑡𝑚+𝑚′+𝛿(1 − 𝑡−1)𝑚(𝑡−1 − 1)𝑚
′
𝑃′(𝑡−1)

≐ (1 − 𝑡)𝑚(𝑡 − 1)𝑚
′
𝑃′(𝑡)

≐ Δ
𝜑,𝜌
0

(𝑡). □
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 19 of 43

Remark 3.6. The previous lemma easily generalises to any field 𝔽 of characteristic zero with the
modified conclusion thatΔ𝜑,𝜌

0
(𝑡) ≐ 𝑄(𝑡)𝑃(𝑡), where𝑄(𝑡) is a product of polynomials (1 − 𝜁𝑖𝑡) such

that 𝜁𝑖 is some root of unity in 𝔽, and where 𝑃(𝑡) is a product of cyclotomic polynomials whose
roots do not lie in 𝔽.

Let 𝑅 be a unique factorisation domain. A polynomial 𝑐(𝑡) ∈ 𝑅[𝑡±1] is palindromic if 𝑐(𝑡) =∑𝑟
𝑖=0 𝑐𝑖𝑡

𝑖 and 𝑐𝑖 = 𝑐𝑟−𝑖 . Given any polynomial 𝑐(𝑡) ∈ 𝑅[𝑡±1] where 𝑐(𝑡) =
∑𝑟

𝑖=0 𝑐𝑖𝑡
𝑖 recall that we

write 𝑐★(𝑡) for the polynomial
∑𝑟

𝑖=0 𝑐𝑟−𝑖𝑡
𝑖 . Note that 𝑐(𝑡) ⋅ 𝑐★(𝑡) is palindromic.

For a group 𝐺, we let 𝟏 denote the trivial homomorphism 𝐺 ↠ {1}.
The following lemma is well known to experts. We include a proof for completeness.

Lemma 3.7. Let 𝔽 be a field. Let 𝐺 be a group of type 𝖥𝖯𝑛(𝔽). If 𝜑∶ 𝐺 → ℤ is an 𝖥𝖯𝑛(𝔽)-fibring,
then

degΔ
𝜑,𝟏

𝐺,𝑛
(𝑡) = 𝑏𝑛(ker 𝜑; 𝔽),

where the Alexander polynomial is taken over 𝔽.

Proof. We may write 𝐺 as ker 𝜑⋊ ⟨𝑡⟩ and Δ𝜑,𝟏

𝐺,𝑛
(𝑡) as the characteristic polynomial of the 𝔽-linear

transformation 𝑇𝑛 ∶ 𝐻𝑛(ker 𝜑; 𝔽) → 𝐻𝑛(ker 𝜑; 𝔽) and 𝑇𝑛 ∶ 𝐻𝑛(ker 𝜑; 𝔽) → 𝐻𝑛(ker 𝜑; 𝔽), where 𝑇
is the induced map of 𝑡 on (co)homology. Hence,

𝐻𝑛(ker 𝜑; 𝔽) ≅ 𝔽[𝑡±1]∕(Δ
𝜑,𝟏

𝐺,𝑛
(𝑡)). □

Lemma 3.8. Let 𝑅 be a UFD. Let 𝐺 be a group of type 𝖥 admitting a compact 𝐾(𝐺, 1) of dimension
𝑛, let 𝜑∶ 𝐺 ↠ ℤ and let 𝜌∶ 𝐺 → GL𝑘(𝑅) be a representation. If Δ

𝜑,𝜌
𝑛 ≠ 0 over 𝑅, then Δ𝜑,𝜌

𝑛 ≐ 1.

Proof. Consider the head end of the cellular chain complex for 𝐺, namely,

tensoring with 𝑅𝑘[𝑡±1] and taking homology we see that 𝐻𝑛(𝐺; 𝑅
𝑘[𝑡±1]) = ker 𝜕𝑛−1 ⊗ id𝑅𝑘[𝑡±1].

In particular, it is a submodule of a free 𝑅[𝑡±1]-module and so cannot be 𝑅[𝑡±1]-torsion unless it
is 0. But since Δ𝜑,𝜌

𝑛 ≠ 0 by assumption, we have that 𝐻𝑛(𝐺; 𝑅
𝑘[𝑡±1]) is 𝑅[𝑡±1]-torsion. The result

follows. □

We now wish to define the twisted Reidemeister torsion 𝜏
𝜑,𝜌

𝐺,𝑅
(𝑡) of 𝜑 twisted by 𝜌 over 𝑅. Rather

than give the original definition which we will not need, we instead use the following lemma
which recasts the invariant in terms of twisted Alexander polynomials as our definition. The
lemma can be deduced by standard methods, for example, it is an immediate corollary of [53,
Lemma 2.1.1].

Lemma 3.9. Let 𝑅 be a UFD. Let 𝐺 be a group of type 𝖥, let 𝜑∶ 𝐺 ↠ ℤ have kernel of type 𝖥 and let
𝜌∶ 𝐺 → GL𝑘(𝑅) be a representation. Then,

𝜏
𝜑,𝜌

𝐺,𝑅
(𝑡) ≐

∏
𝑛⩾0

(
Δ
𝜑,𝜌

𝐺,𝑛
(𝑡)

)(−1)𝑛+1
up to monomial factors with coefficients in Frac(𝑅)×.
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20 of 43 HUGHES and KUDLINSKA

This allows us to easily compute the Reidemeister torsion of free-by-cyclic groups.

Proposition 3.10. Let 𝑅 be a UFD. Let 𝐺 = 𝐹𝑛 ⋊𝜑 ℤ be a free-by-cyclic group and let 𝜌∶ 𝐺 →

GL𝑘(𝑅) be a representation. Then,

𝜏
𝜑,𝜌

𝐺,𝑅
(𝑡) =

Δ
𝜑,𝜌

𝐺,1
(𝑡)

Δ
𝜑,𝜌

𝐺,0
(𝑡)

up to monomial factors with coefficients in Frac(𝑅)×.

Proof. This follows from Lemma 3.8 and Lemma 3.9. □

The final well-known lemma is elementary.

Lemma 3.11. Let𝑅 be aUFD. Let𝐺 be a group of type 𝖥 admitting a character𝜑∶ 𝐺 ↠ ℤwhich has
kernel of type 𝖥. If 𝜌1 and 𝜌2 are conjugate representations of𝐺 intoGL𝑘(𝑅), then 𝜏

𝜑,𝜌1
𝐺,𝑅

(𝑡) ≐ 𝜏
𝜑,𝜌2
𝐺,𝑅

(𝑡).

4 REGULARITY

In this section, we will introduce the definition of a ℤ̂-regular isomorphism. We will prove that
in the case where 𝐺 has 𝑏1(𝐺) = 1 every profinite isomorphism is ℤ̂-regular and deduce some
consequences.

Definition 4.1 (Corresponding quotients). Let 𝐺𝐴 and 𝐺𝐵 be residually finite groups. Suppose
there exists an isomorphism Θ∶ 𝐺𝐴 → 𝐺𝐵. Let 𝑄 be a finite group. A pair of quotient maps
𝛾𝐴 ∶ 𝐺𝐴 ↠ 𝑄 and 𝛾𝐵 ∶ 𝐺𝐵 → 𝑄 is said to be Θ-corresponding, if 𝛾𝐴 is given by the composite

(5)

Here, 𝑖 ∶ 𝐺𝐴 → 𝐺𝐴 denotes the natural inclusion and 𝛾𝐵 denotes the (profinite) completion of 𝛾𝐵.

Definition 4.2 (Matrix coefficient modules). Let 𝐻𝐴 and 𝐻𝐵 be a pair of finitely generated ℤ-
modules. Let Θ∶ 𝐻𝐴 → 𝐻𝐵 be a continuous homomorphism of the profinite completions. We
define thematrix coefficient module

MC(Θ;𝐻𝐴,𝐻𝐵)

(or simply MC(Θ) if there is no chance of confusion) for Θ with respect to 𝐻𝐴 and 𝐻𝐵 to be the
smallest ℤ-submodule 𝐿 of ℤ̂ such that Θ(𝐻𝐴) lies in the submodule 𝐻𝐵 ⊗ℤ 𝐿 of 𝐻𝐵. We denote
by

ΘMC∶ 𝐻𝐴 → 𝐻𝐵 ⊗ℤ MC(Θ)

the homomorphism uniquely determined by the restriction of Θ to𝐻𝐴.
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 21 of 43

For a finitely generated group 𝐺, let 𝐺fab denote the free part of the abelianisation 𝐺ab. That is,
the quotient of the abelianisation of 𝐺 by its torsion elements.
Given groups 𝐺𝐴 and 𝐺𝐵 and a continuous homomorphismΘ∶ 𝐺𝐴 → 𝐺𝐵, we have an induced

continuous homomorphism Θ∗∶ 𝐺fab
𝐴

→ 𝐺fab
𝐵
. We defineMC(Θ) ≔ MC(Θ∗, 𝐺

fab
𝐴

, 𝐺fab
𝐵

).

Definition 4.3 (ℤ̂-regular isomorphism). The isomorphism Θ∶ 𝐺𝐴 → 𝐺𝐵 is ℤ̂-regular, if there
exists a unit 𝜇 ∈ ℤ̂× and an isomorphismΞ∶ 𝐺fab

𝐴
→ 𝐺fab

𝐵
such thatΘ∗ is the profinite completion

of the map given by the composite

(6)

We sometimes write Θ
1∕𝜇
∗ ∶ 𝐺fab

𝐴
→ 𝐺fab

𝐵
to denote the map Ξ in (6) and Θ∗

1∕𝜇
∶ 𝐻1(𝐺𝐵, ℤ) →

𝐻1(𝐺𝐴, ℤ) to denote its dual.
For any 𝜑 ∈ 𝐻1(𝐺𝐵; ℤ) and 𝜓 ∈ 𝐻1(𝐺𝐴; ℤ), we say 𝜓 is the pullback of 𝜑 via Θ, if 𝜓 = Θ∗

1∕𝜇
(𝜑).

We extend this definition to finite index subgroups as it will be useful later on. Suppose 𝐿𝐴 is a
finite index normal subgroup of𝐺𝐴 and let 𝐿𝐵 be the corresponding normal subgroup of𝐺𝐵 under
Θ. If 𝜓 ∈ 𝐻1(𝐺𝐴; ℤ) is the pullback of 𝜑 via Θ, then we say 𝜓|𝐿𝐴 is the pullback of 𝜑|𝐿𝐵 via Θ|�̂�𝐴 .
We say a pair (𝐺, 𝜓) is a -by-ℤ group for some group property  if 𝐺 admits an epimorphism

𝜓∶ 𝐺 → ℤ such that the kernel has property  .

Proposition 4.4 (ℤ̂-regularity). Let 𝐺𝐴 and 𝐺𝐵 be { type 𝖥𝖯∞}-by-ℤ groups satisfying 𝑏1(𝐺𝐴) =

𝑏1(𝐺𝐵) = 1. IfΘ∶ 𝐺𝐴 → 𝐺𝐵 is an isomorphism, then there exists a unit 𝜇 ∈ ℤ̂× such thatMC(Θ) =

𝜇ℤ.

Proof. By [39, Proposition 3.2(1)], the ℤ-module MC(Θ) is a non-zero finitely generated free ℤ-
module spanned by the single entry of the 1 × 1matrix (𝜇) over ℤ̂. By [39, Proposition 3.2(2)], we
obtain a homomorphism Ξ∶ 𝐺fab

𝐴
→ 𝐺fab

𝐵
such that Ψ∗ = 𝜇Ξ̂. Moreover, 𝜇 is a unit because Θ is

an isomorphism. Hence,MC(Θ∗) = 𝜇ℤ. □

Proposition 4.5 (Fibre closure isomorphisms). Let (𝐿𝐴, 𝜓) and (𝐿𝐵, 𝜑) be { type 𝖥𝖯∞}-by-ℤ groups.
Suppose Θ∶ �̂�𝐴 → �̂�𝐵 is an isomorphism and 𝜓 is the pullback of 𝜑 via Θ with unit 𝜇. If 𝐹𝐴 is the
fibre subgroup of 𝐿𝐴, then 𝐹𝐴 projects isomorphically onto 𝐹𝐵, the closure of the fibre subgroup of
𝐿𝐵, under Θ.

Proof. By our definition of a pullback (Definition 4.3), there are two cases to consider: The first
case is whenΘ is a ℤ̂-regular isomorphism; the second case is when we are given (by the pullback
hypothesis) the following situation: 𝐿𝐴 and 𝐿𝐵 are finite index subgroups of groups 𝐺𝐴 and 𝐺𝐵,
respectively such that there is ℤ̂-regular isomorphism Θ̃∶ 𝐺𝐴 → 𝐺𝐵 and 𝜓 is the pullback of 𝜑
via Θ̃.
We first prove the casewhereΘ is ℤ̂-regular. Our proof in this case essentially follows [39, Corol-

lary 6.2]. Write 𝐿𝐴 = 𝐹𝐴 ⋊Ψ 𝑍𝐴 and 𝐺𝐵 = 𝐹𝐵 ⋊Φ 𝑍𝐵 with 𝑍𝐴 ≅ 𝑍𝐵 ≅ ℤ. Identify, 𝐻𝐴 with 𝐺f𝑎𝑏
𝐴

and𝐻𝐵 with𝐺f𝑎𝑏
𝐵

. By hypothesis themapΘ∗ is the completion of an isomorphismΘ𝜇 ∶ 𝐻𝐴 → 𝐻𝐵
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22 of 43 HUGHES and KUDLINSKA

followed by multiplication by 𝜇 in �̂�𝐵 = 𝐻𝐵 ⊗𝑍 ℤ̂. Thus, 𝜓 is the composite

We obtain that Θ∗(ker 𝜓∗) = 𝜇𝐹𝜇(ker 𝜑∗) = 𝜇 ker(𝜑∗) in �̂�𝐵. Since ker 𝜑∗ is a ℤ-submodule of
𝐻𝐵, the closure of �̂�𝐵 is invariant under multiplication by a unit. Hence, Θ∗ker 𝜓∗ = 𝜇 ker 𝜑∗ =

𝜇ker 𝜑∗ = ker 𝜑∗. This completes the proof of the first case.
We now prove the second case. We may assume 𝐺𝐴 is a finite index overgroup of𝐻𝐴 admitting

a finite quotient 𝛼 such that ker 𝛼 = 𝐻𝐴. Note that 𝐹𝐴 is equal to the intersection of a finite index
normal subgroup ker �̂� with ker ˆ̃𝜓 in 𝐺𝐴, where �̃� is the lift of 𝜓 to 𝐺𝐴. Similarly, 𝐹𝐵 = ker �̂� ∩

ker ˆ̃𝜑. The result now follows from the ℤ̂-regular case applied to Θ̃∶ 𝐺𝐴 → 𝐺𝐵. □

Note that following propositionwould be trivial if the unit 𝜇 equalled 1. However, the definition
of pullback we are using (Definition 4.3) only assumes the existence of a unit.

Proposition4.6 (Isomorphismof fibre subgroups).Let (𝐺𝐴, 𝜓)and (𝐺𝐵, 𝜑) be free-by-cyclic groups.
SupposeΘ∶ 𝐺𝐴 → 𝐺𝐵 is an isomorphism. If 𝜓 is the pullback of 𝜑 viaΘ, then the fibre subgroup 𝐹𝐴
of 𝐺𝐴 and the fibre subgroup 𝐹𝐵 of 𝐺𝐵 are isomorphic.

Proof. We will show that the degree of the first Alexander polynomials of 𝐺𝐴 and 𝐺𝐵 are equal.
By Lemma 3.7 this computes the rank of the 𝔽𝑝-homology of 𝐹𝐴 and 𝐹𝐵 which determines their
rank. Since 𝐹𝐴 and 𝐹𝐵 are free groups, this determines them up to isomorphism.
Let 𝜓𝑛 and 𝜑𝑛 denote the modulo 𝑛 reduction of 𝜓∶ 𝐺𝐴 ↠ ℤ and 𝜑∶ 𝐺𝐵 ↠ ℤ, respectively,

namely the composites

We endow𝑀𝐴,𝑛 ≔ 𝔽𝑝[ℤ∕𝑛]with the𝐺𝐴-module structure given by 𝜓𝑛 and𝑀𝐵,𝑛 ≔ 𝔽𝑝[ℤ∕𝑛]with
the𝐺𝐵-module given by 𝜑𝑛. Since𝐺𝐴 and𝐺𝐵 are cohomologically good (Lemma 5.1), by [4, Propo-
sition 4.2] we have isomorphisms 𝐻𝑘(𝐺𝐴;𝑀𝐴,𝑛) ≅ 𝐻𝑘(𝐺𝐵;𝑀𝐵,𝑛) for all 𝑘, 𝑛 ⩾ 0. In particular,
dim𝔽𝑝

𝐻𝑘(𝐺𝐴;𝑀𝐴,𝑛) = dim𝔽𝑝
𝐻𝑘(𝐺𝐵;𝑀𝐵,𝑛). Now, by applying [4, Proposition 3.4] twice, we get

degΔ
𝜓,𝟏

𝐺𝐴,1
(𝑡) = max

𝑛∈ℕ

{
dim𝔽𝑝

𝐻1(𝐺𝐴;𝑀𝐴,𝑛) − dim𝔽𝑝
𝐻0(𝐺𝐴;𝑀𝐴,𝑛),

}
= max

𝑛∈ℕ

{
dim𝔽𝑝

𝐻1(𝐺𝐵;𝑀𝐵,𝑛) − dim𝔽𝑝
𝐻0(𝐺𝐵;𝑀𝐵,𝑛),

}
= degΔ

𝜑,𝟏

𝐺𝐵,1
(𝑡). □

5 PROFINITE INVARIANCE OF TWISTED REIDEMEISTER
TORSION

The goal of this section is to establish profinite invariance of twisted Reidemeister torsion (Corol-
lary 5.9) for free-by-cyclic groups with first Betti number equal to one. We do this by first
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 23 of 43

establishing invariance of the twisted Alexander polynomials in a more general setting. Finally,
in Section 5.3, we establish profinite invariance of homological stretch factors.
We record the following lemma to show the reader that in the case of free-by-cyclic, the

assumption of good is satisfied. Note that it is a special case of [41, Corollary 2.9].

Lemma 5.1. Let 𝐺 be a free-by-cyclic group. Then 𝐺 is cohomologically good.

5.1 Twisted Alexander polynomials

Proposition 5.2 (Profinite invariance of twisted Alexander polynomials). Let (𝐺𝐴, 𝜓𝐴) and
(𝐺𝐵, 𝜑𝐵) be residually finite {good type 𝖥}-by-ℤ groups. Let Θ∶ 𝐺𝐴 → 𝐺𝐵 be an isomorphism and
suppose𝜓𝐴 is the pullback of𝜑𝐵 viaΘwith unit𝜇. Let𝜓𝐵 ∈ 𝐻1(𝐺𝐵, ℤ) be a primitive fibred class. Let
𝜓𝐴 ∈ 𝐻1(𝐺𝐴, ℤ) be the fibred classΘ∗

𝜇(𝜓𝐵). Fix aΘ-corresponding pair of finite quotients 𝛾𝐴 ∶ 𝐺𝐴 →

𝑄 and 𝛾𝐵 ∶ 𝐺𝐵 → 𝑄. Suppose 𝜌∶ 𝑄 → GL(𝑘, ℚ) is a representation and 𝜌𝐴 ∶ 𝐺𝐴 → GL(𝑘, ℚ) and
𝜌𝐵 ∶ 𝐺𝐵 → GL(𝑘, ℚ) the pullbacks. Then,

Δ
𝜓𝐴,𝜌𝐴
𝐺𝐴,𝑛

(𝑡) ⋅ Δ𝜓𝐴,𝜌𝐴
𝐺𝐴,𝑛

(𝑡−1) ≐ Δ
𝜑𝐵,𝜌𝐵
𝐺𝐵,𝑛

(𝑡) ⋅ Δ𝜑𝐵,𝜌𝐵
𝐺𝐵,𝑛

(𝑡−1)

holds in ℚ[𝑡±1] up to monomial factors with coefficients in ℚ×.

Before proving Proposition 5.2, we will collect a number of facts. The following criterion is due
to Ueki [54, Lemma 3.6].

Theorem 5.3 (Ueki). Let 𝑎(𝑡), 𝑏(𝑡) ∈ ℤ[𝑡] be a pair of palindromic polynomials and 𝜇 ∈ ℤ̂ be a
unit. If the principal ideals (𝑎(𝑡𝜇)) and (𝑏(𝑡)) of the completed group algebra ℤ̂⟦𝑡ℤ̂⟧ are equal, then
𝑎(𝑡) ≐ 𝑏(𝑡) holds in ℤ[𝑡±1].

Definition 5.4 (𝜇-powers). Let 𝐺 be a profinite group, let g ∈ 𝐺 and let 𝜇 ∈ ℤ̂. We define the
𝜇-power of g to be g𝜇 = lim

←��𝑁
g𝑛 mod 𝑁 where𝑁 ranges over the inverse system of open normal

subgroups of 𝐺 and 𝑛 ∈ ℤ is congruent to 𝜇modulo |𝐺∕𝑁|. Note that ℎg𝜇ℎ−1 = (ℎgℎ−1)𝜇 for all
ℎ ∈ 𝐺.

The following fact is classical, for convenience we cite Liu.

Lemma 5.5 [39, Lemma 7.6]. Let 𝐿 be a finite group. If 𝜌∶ 𝐿 → GL𝑘(ℚ) is a representation, then
𝜌 is conjugate to the representation 𝜎ℚ over ℚ given by extension of scalars of some representation
𝜎∶ 𝐿 → GL𝑘(ℤ).

Remark 5.6. Combining Lemma 5.5 and Lemma 3.2, we may assume without loss of general-
ity that the representation 𝜌 is equal to the extension of scalars of some integral representation
𝜎∶ 𝑄 → GL𝑘(ℤ). We denote by 𝜎𝐴 ∶ 𝐺𝐴 → GL𝑘(ℤ) the pullback 𝛾∗𝐴(𝜎) and similarly write 𝜎𝐵 for
𝛾∗
𝐵
(𝜎).
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24 of 43 HUGHES and KUDLINSKA

By Proposition 4.5 and Proposition 2.11, we have a commutative diagram with exact rows

(7)

where Θ𝐹 = Θ|
𝐹𝐴

and Θ𝐹 , Θ and 𝜇 are isomorphisms.
We now write 𝐺𝐴 = 𝐹𝐴 ⋊ ⟨𝑡𝐴⟩ with 𝜓𝐴(𝑡𝐴) = 1 and 𝐺𝐵 = 𝐹𝐵 ⋊ ⟨𝑡𝐵⟩ with 𝜑𝐵(𝑡𝐵) = 1. Now (7)

implies that Θ(𝑡𝐴) is conjugate to the 𝜇-power 𝑡
𝜇
𝐵
of 𝑡𝐵 in 𝐺𝐵, up to multiplication by an element

of 𝐹𝐵. That is, there exists ℎ ∈ 𝐺𝐴 and 𝑘 ∈ 𝐹𝐵 such that Θ(𝑡𝐴)ℎ = 𝑘𝑡
𝜇
𝐵
. In particular, 𝜑𝐵(Θ(𝑡𝐴)) =

𝜑𝐵(𝑡
𝜇
𝐵
).

Let𝑀𝐴 beℤ𝑘 equippedwith the𝐹𝐴-module structure given by𝜎𝐴|𝐹𝐴 and similarly for𝑀𝐵. Note
that 𝜓𝐴 and 𝜑𝐵 induce automorphisms Ψ𝐴 of 𝐹𝐴 and Φ𝐵 of 𝐹𝐵 (up to choosing an inner auto-
morphism). Moreover, Ψ𝐴 induces a ℤ-linear isomorphism 𝜓𝐴,𝑛 ∶ 𝐻𝑛(𝐹𝐴;𝑀𝐴) → 𝐻𝑛(𝐹𝐴;𝑀𝐴).
We note that the choices made here for picking group automorphisms Ψ𝐴 and Φ𝐵 only depend
on the outer automorphism class. This is sufficient for us since these induce the same action
on 𝐻𝑛(𝐹𝐴;−) resp. 𝐻𝑛(𝐹𝐵; −). It follows that 𝜓𝐴,𝑛 only depends on 𝜎 and 𝜓𝐴. We obtain a
commutative diagram of ℤ-modules with exact rows

(8)

Note that after fixing bases, we may consider 𝜓free
𝐴,𝑛

as a matrix in GL(𝐻𝑛(𝐹𝐴;𝑀𝐴)free). Define

𝑃𝐴,𝑛(𝑡) ≔ det
ℤ[𝑡±1]

(
𝟏 − 𝑡 ⋅ 𝜓free

𝐴,𝑛

)
(9)

and

𝑃𝐵,𝑛(𝑡) ≔ det
ℤ[𝑡±1]

(
𝟏 − 𝑡 ⋅ 𝜑free𝐵,𝑛

)
. (10)

The following lemma is [39, Lemma 7.7]. The proof goes through verbatim once one assumes
the kernels of 𝜓𝐴 and 𝜑𝐵 are type 𝖥.

Lemma 5.7 [39, Lemma 7.7]. Adopt the notation from Proposition 5.2, Remark 5.6, (9) and (10). We
have Δ𝜓𝐴,𝜌𝐵

𝐺𝐴,𝑛
(𝑡) ≐ 𝑃𝐴,𝑛(𝑡) and Δ

𝜑𝐵,𝜌𝐵
𝐺𝐵,𝑛

(𝑡) ≐ 𝑃𝐵,𝑛(𝑡) inℚ[𝑡±1] up to monomials with coefficients inℚ×.
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 25 of 43

The following lemma is [39, Lemma 7.8]. The proof goes through verbatim once one assumes
that the kernels of 𝜓𝐴 and 𝜑𝐵 are type 𝖥, that 𝐹𝐴 and 𝐹𝐵 are fully separable in 𝐺𝐴 and 𝐺𝐵,
respectively (this is given by Proposition 2.11), and that 𝐹𝐴 and 𝐹𝐵 are good.

Lemma 5.8 [39, Lemma 7.8].Adopt the notation from Proposition 5.2, Remark 5.6, (9) and (10). For
all 𝑛 we have an equality of principal ideals (𝑃𝐴,𝑛(𝑡𝜇)) = (𝑃𝐵,𝑛(𝑡)) in ℤ̂⟦𝑡ℤ̂⟧.
Proof of Proposition 5.2. This follows from5.7, 5.8 and Theorem 5.3 after observing that the poly-
nomials Δ𝜓𝐴,𝜌𝐴

𝐺𝐴,𝑛
(𝑡) ⋅ Δ𝜓𝐴,𝜌𝐴

𝐺𝐴,𝑛
(𝑡−1) and Δ𝜑𝐴,𝜌𝐵

𝐺𝐵,𝑛
(𝑡) ⋅ Δ𝜑𝐵,𝜌𝐵

𝐺𝐵,𝑛
(𝑡−1) are palindromic by Lemma 3.4. □

5.2 Twisted Reidemeister torsion

We now prove profinite invariance of twisted Reidemeister torsion for free-by-cyclic groups with
first Betti number equal to one.

Corollary 5.9 (Profinite invariance of twisted Reidemeister torsion). Let (𝐺𝐴, 𝜓𝐴) and (𝐺𝐵, 𝜑𝐵) be
free-by-cyclic groups. LetΘ∶ 𝐺𝐴 → 𝐺𝐵 be an isomorphism. Let𝜑𝐵 ∈ 𝐻1(𝐺𝐵; ℤ) be a primitive fibred
class and suppose 𝜓𝐴 is the pullback of 𝜑𝐵 via Θ. Fix a Θ-corresponding pair of finite quotients
𝛾𝐴 ∶ 𝐺𝐴 → 𝑄 and 𝛾𝐵 ∶ 𝐺𝐵 → 𝑄. Suppose 𝜌∶ 𝑄 → GL(𝑘, ℚ) is a representation and 𝜌𝐴 ∶ 𝐺𝐴 →

GL(𝑘, ℚ) and 𝜌𝐵 ∶ 𝐺𝐵 → GL(𝑘, ℚ) the pullbacks. Then,

{𝜏
𝜓𝐴,𝜌𝐴
𝐺𝐴

(𝑡), 𝜏
−𝜓𝐴,𝜌𝐴
𝐺𝐵

} = {𝜏
𝜑𝐵,𝜌𝐵
𝐺𝐵

(𝑡), 𝜏
−𝜑𝐵,𝜌𝐵
𝐺𝐵

}.

Proof. By Proposition 5.2, unique factorisation in ℚ[𝑡±1] and Lemma 3.4, we obtain

𝑆𝐴,𝑛 = {Δ
𝜓𝐴,𝜌𝐴
𝐺𝐴,𝑛

(𝑡), Δ
−𝜓𝐴,𝜌𝐴
𝐺𝐴,𝑛

(𝑡)} = {Δ
𝜑𝐴,𝜌𝐵
𝐺𝐵,𝑛

(𝑡), Δ
−𝜑𝐵,𝜌𝐵
𝐺𝐵,𝑛

(𝑡)} = 𝑆𝐵,𝑛.

By Proposition 3.10, the relevant Alexander polynomials are concentrated in degrees 0 and 1. By
Lemma 3.5 the sets 𝑆𝐴,0 and 𝑆𝐵,0 contain exactly one element up to ≐-equivalence. Finally, the
result follows from Proposition 3.10. □

5.3 Profinite invariance of homological stretch factors

Theorem 5.10 (Profinite invariance of homological stretch factors). Let (𝐺𝐴, 𝜓) and (𝐺𝐵, 𝜑) be
free-by-cyclic groups. If Θ∶ 𝐺𝐴 → 𝐺𝐵 is an isomorphism and 𝜓 is the pullback of 𝜑 via Θ, then
{𝜈+

𝜓
, 𝜈−

𝜓
} = {𝜈+𝜑 , 𝜈

−
𝜑 }.

Proof. Denote the non-trivial primitive characters of 𝐺𝐴 by 𝜓±
𝐴
and the non-trivial primitive

characters of 𝐺𝐵 by 𝜑
±
𝐵
. By Proposition 5.2, we have

Δ
𝜓+
𝐴
,𝟏

𝐺𝐴,1
(𝑡) ⋅ Δ

𝜓−
𝐴
,𝟏

𝐺𝐴,1
(𝑡) ≐ Δ

𝜑+
𝐴
,𝟏

𝐺𝐵,1
(𝑡) ⋅ Δ

𝜑−
𝐵
,𝟏

𝐺𝐵,1
(𝑡)
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26 of 43 HUGHES and KUDLINSKA

over ℚ[𝑡±1]. Normalise the polynomials so that every term is a non-negative power of 𝑡 and the
lowest term is 1, and note that each of the four terms has the same degree. Now, by unique
factorisation in ℚ[𝑡±1] we obtain the equality of sets

𝑆𝐴 = {Δ
𝜓+
𝐴
,𝟏

𝐺𝐴,1
(𝑡), Δ

𝜓−
𝐴
,𝟏

𝐺𝐴,1
(𝑡)} = {Δ

𝜑+
𝐴
,𝟏

𝐺𝐵,1
(𝑡), Δ

𝜑−
𝐵
,𝟏

𝐺𝐵,1
(𝑡)} = 𝑆𝐵.

Now, since we are working overℚ, the set 𝑆𝐴 [resp. 𝑆𝐵] is the set of characteristic polynomials for
(𝜓±

𝐴
)1 [resp. (𝜑

±
𝐵
)1], that is, the set of characteristic polynomials for the induced maps on degree 1

homology of the respective fibres. In particular, the sets

{𝜈+
𝜓
, 𝜈−

𝜓
} and {𝜈+𝜑 , 𝜈

−
𝜑 }

can be computed by taking the modulus of the largest root of the Alexander polynomials in 𝑆𝐴
and 𝑆𝐵. The desired equality follows. □

6 PROFINITE INVARIANCE OF NIELSEN NUMBERS

Let 𝑋 be a connected, compact topological space that is homeomorphic to a finite-dimensional
cellular complex, with a finite number of cells in each dimension, and let 𝑓∶ 𝑋 → 𝑋 be a self-
map. Recall from Section 2.3 the definitions of the fixed point index ind𝑚(𝑓;) of 𝑓𝑚 at any point
𝑝 ∈ , and the𝑚th Nielsen number 𝑁𝑚(𝑓) of 𝑓.
We will write𝑀𝑓 to denote the mapping torus

𝑀𝑓 =
𝑋 × [0, 1]

(𝑓(𝑥), 0) ∼ (𝑥, 1)
.

Let 𝑥0 ∈ 𝑋. We fix a path 𝛼∶ 𝐼 → 𝑋 such that 𝛼(0) = 𝑓(𝑥0) and 𝛼(1) = 𝑥0. We identify 𝑋 with
the fibre 𝑋 × {0} in𝑀𝑓 and write �̄�0 to denote the image of 𝑥0 in𝑀𝑓 . We define 𝑡 ∈ 𝜋1(𝑀𝑓, �̄�0) to
be the loop obtained by concatenation of paths 𝜂 ⋅ 𝛼, where 𝜂𝑠 = (𝑥0, 𝑠) for 𝑠 ∈ [0, 1]. The induced
character 𝜑∶ 𝜋1(𝑀𝑓) → ℤmaps every loop in 𝑋 based at 𝑥0 to zero, and 𝜑(𝑡) = 1.
Let 𝜁 ∶ 𝜋1(𝑀𝑓) → ℚ be any map that is constant on conjugacy classes. Then the 𝑚th twisted

Lefschetz number of 𝑓 with respect to 𝜁 is

𝐿𝑚(𝑓; 𝜁) =
∑

∈Orb𝑚(𝑓)

𝜁(cd()) ⋅ ind𝑚(𝑓;). (11)

For a finite-dimensional representation 𝜌∶ 𝜋1(𝑀𝑓) → GL(𝑘, 𝑅) of 𝜋1(𝑀𝑓), let 𝜒𝜌 ∶ 𝜋1(𝑀𝑓) →

𝑅 denote the trace map. We write exp(⋅) to denote the formal power series,

exp(𝑥) =

∞∑
𝑘=0

𝑥𝑘

𝑘!
.

Theorem 6.1 [36, 39, Lemma 8.2]. Let 𝜑∶ 𝜋1(𝑀𝑓) → ℤ denote the induced character. Suppose that
𝔽 is a commutative field of characteristic 0 and that 𝜌∶ 𝜋1(𝑀𝑓) → GL(𝑘, 𝔽) is a finite-dimensional
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 27 of 43

linear representation of 𝜋1(𝑀𝑓). Then

𝜏
𝜌,𝜑

𝜋1(𝑀𝑓),𝔽[𝑡
±1]𝑘

≐ exp
∑
𝑚⩾1

𝐿𝑚(𝑓; 𝜒𝜌)
𝑡𝑚

𝑚
,

where the equality holds as rational functions in 𝑡 over 𝔽, up to multiplication by monomial factors
with coefficients in 𝔽×.

Let 𝑄 be a finite group. We say two elements g1 and g2 in 𝑄 are ℤ̂-conjugate if the cyclic groups⟨g1⟩ and ⟨g2⟩ are conjugate in 𝑄 (note that this is equivalent to the notion of ℤ̂-conjugacy defined
in [39]). This gives rise to an equivalence relation on the set Orb(𝑄) of conjugacy classes of 𝑄. We
writeΩ(𝑄) to denote the resulting set of equivalence classes. For𝜔 ∈ Ω(𝑄), we let 𝜒𝜔 ∶ Orb(𝑄) →

ℚ denote the characteristic function of 𝜔.

Lemma 6.2 [39, Lemma 8.5]. Fix𝑚 ∈ ℕ. Let 𝛾∶ 𝜋1(𝑀𝑓) → 𝑄 be a quotient of 𝜋1(𝑀𝑓) onto a finite
group 𝑄. Then,

𝑁𝑚(𝑓) ⩾ #{𝜔 ∈ Ω(𝑄) ∣ 𝐿𝑚(𝑓; 𝛾
∗𝜒𝜔) ≠ 0}.

Note that by (11), for every𝜔 ∈ Ω(𝑄) such that 𝐿𝑚(𝑓, 𝛾∗𝜒𝜔) ≠ 0, there exists some ∈ Orb𝑚(𝑓)

such that ind𝑚(𝑓,) ≠ 0 and

𝛾∗𝜒𝜔(cd()) = 𝜒𝜔◦𝛾(cd())

≠ 0,

which holds if and only if 𝛾(cd()) ∈ 𝜔. Hence the number of such elements inΩ(𝑄) is bounded
above by the number of essential𝑚-periodic orbits of 𝑓, which is exactly 𝑁𝑚(𝑓).
The following lemma is a strengthening of [39, Lemma 8.6], however the proof follows from

Liu’s proof with only a slight modification. We provide a sketch for the convenience of the reader.

Lemma 6.3. Suppose that 𝜋1(𝑀𝑓) is conjugacy separable. Then, for any𝑚 ∈ ℕ there exists a finite
quotient 𝑄𝑚 of 𝜋1(𝑀𝑓) such that

𝑁𝑚(𝑓) = {𝜔 ∈ Ω(𝑄𝑚) ∣ 𝐿𝑚(𝑓; 𝛾
∗𝜒𝜔) ≠ 0}, and

𝑁𝑚(𝑓
−1) = {𝜔 ∈ Ω(𝑄𝑚) ∣ 𝐿𝑚(𝑓

−1; 𝛾∗𝜒𝜔) ≠ 0}.
(12)

Proof. Let 𝐺 = 𝜋1(𝑀𝑓) and write 𝜑∶ 𝐺 → ℤ to denote the induced character, 𝑡 ∈ 𝐺 the stable
letter and 𝐾 = ker𝜑 the fibre subgroup as before. Since 𝐺 is conjugacy separable, for each 𝑚 ⩾ 1

there exists a finite quotient �̃�𝑚 ∶ 𝐺 → �̃�𝑚, such that for all 𝑚-periodic orbits of 𝑓 and 𝑓−1, the
corresponding distinct conjugacy classes in 𝐺 are mapped to distinct conjugacy classes in �̃�𝑚.
By the discussion directly following the statement of Lemma 6.2, the inequality provided by

Lemma 6.2 is achieved when the conjugacy classes corresponding to the essential 𝑚-periodic
orbits of 𝑓 are mapped to distinct ℤ̂-conjugacy classes in the finite quotient. Hence, it suffices
to find a finite quotient 𝜋𝑚 ∶ 𝐺 → 𝑄𝑚 such that �̃�𝑚 factors through 𝜋𝑚, and which satisfies the
following property. If 𝑥1 and 𝑥2 are two elements of 𝐺 which correspond to 𝑚-periodic orbits of
𝑓, or of 𝑓−1, and if ⟨𝜋𝑚(𝑥1)⟩ and ⟨𝜋𝑚(𝑥2)⟩ are conjugate in 𝑄𝑚, then in fact the elements 𝜋𝑚(𝑥1)
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28 of 43 HUGHES and KUDLINSKA

and 𝜋𝑚(𝑥2) are conjugate in 𝑄𝑚. This will then imply that �̃�𝑚(𝑥1) and �̃�𝑚(𝑥2) are conjugate in
�̃�𝑚, since �̃�𝑚 factors through 𝜋𝑚. Hence 𝑥1 and 𝑥2 are conjugate in 𝐺, showing that the required
property holds for 𝜋𝑚.
To construct 𝑄𝑚, note that the𝑚-periodic orbits of 𝑓 correspond to elements in the coset 𝐾𝑡𝑚

of 𝐺, and the𝑚-periodic orbits of 𝑓−1 to the elements in the coset𝐾𝑡−𝑚. If �̄� and 𝑡 are the images
of𝐾 and 𝑡 in a finite quotient of 𝐺, then the coset �̄�𝑡𝑚 is invariant under conjugation by elements
in the quotient group. Hence, it suffices to find𝑄𝑚 such that the cyclic subgroups generated by �̄�1
and �̄�2, for any 𝑥1, 𝑥2 ∈ 𝐾𝑡𝑚, intersect �̄�𝑡𝑚 exactly at �̄�1 and �̄�2, respectively. It will then follow
that if ⟨�̄�1⟩ and ⟨�̄�2⟩ are conjugate, then �̄�1 and �̄�2 are conjugate. The details of this construction
are spelled out in the proof of Lemma 8.6 in [39]. □

We will also need the following proposition from representation theory of finite groups (see,
e.g. [51, section 12.4]). We refer the reader to [39, Lemma 8.4] for the proof of this result rephrased
in the language of ℤ̂-conjugacy classes.

Proposition 6.4. Let 𝐾 be a finite group. The set of irreducible finite-dimensional characters of 𝐾
over ℚ forms a basis for the space of maps Orb(𝐾) → ℚ which are constant on ℤ̂-conjugacy classes
of 𝐾.

Let 𝑋𝐴 and 𝑋𝐵 be topological spaces as before, with self-maps 𝑓𝐴 ∶ 𝑋𝐴 → 𝑋𝐴 and 𝑓𝐵 ∶ 𝑋𝐵 →

𝑋𝐵. We write 𝐺𝐴 = 𝜋1(𝑀𝑓𝐴
) and 𝐺𝐵 = 𝜋1(𝑀𝑓𝐵

), and let 𝜓𝐴 ∶ 𝐺𝐴 → ℤ and 𝜑𝐵 ∶ 𝐺𝐵 → ℤ be the
induced characters.

Lemma 6.5. Suppose that 𝐺𝐴 and 𝐺𝐵 are conjugacy separable. Let Θ∶ 𝐺𝐴 → 𝐺𝐵 be an isomor-
phism such that for every Θ-corresponding pair of finite quotients 𝛾𝐵 ∶ 𝐺𝐵 ↠ 𝑄 and 𝛾𝐴 ∶ 𝐺𝐴 ↠ 𝑄

(see Definition 4.1), and all representations 𝜌∶ 𝑄 → GL(𝑘, ℚ), we have

{𝜏
𝜓𝐴,𝜌𝛾𝐴
𝐺𝐴

, 𝜏
−𝜓𝐴,𝜌𝛾𝐴
𝐺𝐵

} = {𝜏
𝜑𝐵,𝜌𝛾𝐵
𝐺𝐵

, 𝜏
−𝜑𝐵,𝜌𝛾𝐵
𝐺𝐵

}.

Then, for every𝑚 ∈ ℕ,

{𝑁𝑚(𝑓𝐴),𝑁𝑚(𝑓
−1
𝐴 )} = {𝑁𝑚(𝑓𝐵),𝑁𝑚(𝑓

−1
𝐵 )}.

Proof. Let𝑚 ∈ ℕ. Invoke Lemma 6.3 to obtain a finite quotient 𝛾𝐵 ∶ 𝐺𝐵 → 𝑄𝑚 such that

𝑁𝑚(𝑓
±
𝐵
) = #{𝜔 ∈ Ω(𝑄𝑚) ∣ 𝐿𝑚(𝑓

±
𝐵
; 𝛾∗𝐵𝜒𝜔) ≠ 0}.

By Proposition 6.4, for every 𝜔 ∈ Ω(𝑄𝑚), 𝜒𝜔 can be expressed uniquely as a ℚ-linear combina-
tion 𝜒𝜔 =

∑
𝑖 𝜆𝑖𝜒𝜌𝑖

, where each 𝜌𝑖 ∶ 𝑄𝑚 → GL(𝑘𝑖, ℚ) is an irreducible representation, and 𝜆𝑖 ∈ ℚ.
Hence

𝐿𝑚(𝑓𝐵; 𝛾
∗
𝐵𝜒𝜔) =

∑
𝑖

𝜆𝑖𝐿𝑚(𝑓𝐵; 𝛾
∗
𝐵𝜒𝜌𝑖

).

Let 𝛾𝐴 be the map obtained by composing

𝐺𝐴

𝜄
�→ 𝐺𝐴

𝛾𝐵
��→ 𝑄,
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 29 of 43

where 𝜄 ∶ 𝐺𝐴 → 𝐺𝐴 is the natural inclusion. In particular, 𝛾𝐴 and 𝛾𝐵 are Θ-corresponding, and
thus by our assumption, for every representation 𝜌𝑖 ∶ 𝑄𝑚 → GL(𝑘𝑖, ℚ), we have

{𝜏
𝜓𝐴,𝜌𝑖𝛾𝐴
𝐺𝐴

, 𝜏
−𝜓𝐴,𝜌𝑖𝛾𝐴
𝐺𝐴

} = {𝜏
𝜑𝐵,𝜌𝑖𝛾𝐵
𝐺𝐵

, 𝜏
−𝜑𝐵,𝜌𝑖𝛾𝐵
𝐺𝐵

}.

By Theorem 6.1 it follows that, up to multiplication by monomials in 𝑡,

𝜏
𝜓𝐴,𝜌𝑖𝛾𝐴
𝐺𝐴

(𝑡) ≐ 1 + 𝐿1(𝑓𝐴; 𝛾
∗
𝐴𝜒𝜔)𝑡 +

∞∑
𝑖=2

𝑎𝑖𝑡
𝑖,

where for every 𝑖 ⩾ 2, the coefficient 𝑎𝑖 is of the form

𝑎𝑖 =
1

𝑖
𝐿𝑖(𝑓𝐴; 𝛾

∗
𝐴𝜒𝜔) + 𝐶𝑖,

with 𝐶𝑖 a constant term obtained from the numbers 𝐿𝑘(𝑓𝐴; 𝛾∗𝐴𝜒𝜔), 𝑘 < 𝑖. Similarly,

𝜏
−𝜓𝐴,𝜌𝑖𝛾𝐴
𝐺𝐴

(𝑡) ≐ 1 + 𝐿1(𝑓
−1
𝐴 ; 𝛾∗𝐴𝜒𝜔)𝑡 +

∞∑
𝑖=2

𝑏𝑖𝑡
𝑖,

𝑏𝑖 =
1

𝑖
𝐿𝑖(𝑓

−1
𝐴 ; 𝛾∗𝐴𝜒𝜔) + 𝐷𝑖,

and each 𝐷𝑖 is a constant term which only depends on the numbers 𝐿𝑘(𝑓−1
𝐴
; 𝛾∗

𝐴
𝜒𝜔), 𝑘 < 𝑖. Note

that the coefficients 𝑎𝑖 and 𝑏𝑗 are non-zero for only finitely many values of 𝑖 and 𝑗. Furthermore,
the analogous equalities hold true for 𝜏𝜑𝐵,𝜌𝑖𝛾𝐵

𝐺𝐵
and 𝜏−𝜑𝐵,𝜌𝑖𝛾𝐵

𝐺𝐵
.

Hence, by comparing the coefficients of the powers of 𝑡 in the expansions of the Redemeister
torsions, it follows that for each 𝜌𝑖 ,

{𝐿𝑚(𝑓𝐵; 𝛾
∗
𝐵𝜒𝜌𝑖

), 𝐿𝑚(𝑓
−1
𝐵 ; 𝛾∗𝐵𝜒𝜌𝑖

)} = {𝐿𝑚(𝑓𝐴; 𝛾
∗
𝐴𝜒𝜌𝑖

), 𝐿𝑚(𝑓
−1
𝐴 ; 𝛾∗𝐴𝜒𝜌𝑖

)}.

Thus,

𝐿𝑚(𝑓𝐵; 𝛾
∗
𝐵𝜒𝜔) + 𝐿𝑚(𝑓

−1
𝐵 ; 𝛾∗𝐵𝜒𝜔) = 𝐿𝑚(𝑓𝐴; 𝛾

∗
𝐴𝜒𝜔) + 𝐿𝑚(𝑓

−1
𝐴 ; 𝛾∗𝐴𝜒𝜔) and

𝐿𝑚(𝑓𝐵; 𝛾
∗
𝐵𝜒𝜔)𝐿𝑚(𝑓

−1
𝐵 ; 𝛾∗𝐵𝜒𝜔) = 𝐿𝑚(𝑓𝐴; 𝛾

∗
𝐴𝜒𝜔)𝐿𝑚(𝑓

−1
𝐴 ; 𝛾∗𝐴𝜒𝜔).

Solving the above equations, we obtain

{𝐿𝑚(𝑓𝐵; 𝛾
∗
𝐵𝜒𝜔), 𝐿𝑚(𝑓𝐵; 𝛾

∗
𝐵𝜒𝜔)} = {𝐿𝑚(𝑓𝐴; 𝛾

∗
𝐴𝜒𝜔), 𝐿𝑚(𝑓

−1
𝐴 ; 𝛾∗𝐴𝜒𝜔)}.

Now,

𝑁𝑚(𝑓𝐵) + 𝑁𝑚(𝑓
−1
𝐵 ) = #{𝜔 ∈ Ω(𝑄𝑚) ∶ 𝐿𝑚(𝑓𝐵, 𝛾

∗
𝐵𝜒𝜔) ≠ 0}

+ #{𝜔 ∈ Ω(𝑄𝑚) ∶ 𝐿𝑚(𝑓
−1
𝐵 , 𝛾∗𝐵𝜒𝜔) ≠ 0}

= #{𝜔 ∈ Ω(𝑄𝑚) ∶ 𝐿𝑚(𝑓𝐴, 𝛾
∗
𝐴𝜒𝜔) ≠ 0}
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30 of 43 HUGHES and KUDLINSKA

+ #{𝜔 ∈ Ω(𝑄𝑚) ∶ 𝐿𝑚(𝑓
−1
𝐴 , 𝛾∗𝐴𝜒𝜔) ≠ 0}

⩽ 𝑁𝑚(𝑓𝐴) + 𝑁𝑚(𝑓
−1
𝐴 ),

where the last inequality follows from Lemma 6.2. The same argument shows 𝑁𝑚(𝑓𝐴) +

𝑁𝑚(𝑓
−1
𝐴
) ⩽ 𝑁𝑚(𝑓𝐵) + 𝑁𝑚(𝑓

−1
𝐵
). Hence 𝑁𝑚(𝑓𝐴) + 𝑁𝑚(𝑓

−1
𝐴
) = 𝑁𝑚(𝑓𝐵) + 𝑁𝑚(𝑓

−1
𝐵
). Similarly, we

get 𝑁𝑚(𝑓𝐵) ⋅𝑁𝑚(𝑓
−1
𝐵
) = 𝑁𝑚(𝑓𝐴) ⋅𝑁𝑚(𝑓

−1
𝐴
). It follows that

{𝑁𝑚(𝑓𝐴),𝑁𝑚(𝑓
−1
𝐴 )} = {𝑁𝑚(𝑓𝐵),𝑁𝑚(𝑓

−1
𝐵 )}. □

Combining Corollary 5.9 with Lemma 6.5 and Proposition 2.7, we obtain the following theorem.

Theorem 6.6 (Profinite invariance of Nielsen numbers and stretch factors). Let 𝐺𝐴 and 𝐺𝐵 be
conjugacy separable free-by-cyclic groups with an isomorphism Θ∶ 𝐺𝐴 → 𝐺𝐵. Let 𝜑𝐵 ∈ 𝐻1(𝐺𝐵, ℤ)

be primitive and fibred, and let 𝜓𝐴 ∈ 𝐻1(𝐺𝐴, ℤ) be the primitive fibred class which is the pullback
of 𝜑𝐵 via Θ. Let (𝑓

±
𝐴
, Γ𝐴) and (𝑓

±
𝐵
, Γ𝐵) be the corresponding relative train track representatives with

stretch factors 𝜆𝑓±
𝐴
and 𝜆𝑓±

𝐵
, respectively. Then, for all𝑚 ∈ ℕ,

{𝑁𝑚(𝑓𝐴),𝑁𝑚(𝑓
−1
𝐴 )} = {𝑁𝑚(𝑓𝐵),𝑁𝑚(𝑓

−1
𝐵 )}, and

{𝜆𝑓𝐴 , 𝜆𝑓−1𝐴
} = {𝜆𝑓𝐵 , 𝜆𝑓−1𝐵

}.

We now have everything we need to prove Theorem B. Note this is a slightly more gen-
eral formulation than in the introduction and this introduction version follows from below and
Proposition 4.4.

Theorem B. Let 𝐺𝐴 and 𝐺𝐵 be free-by-cyclic groups with a ℤ̂-regular isomorphism Θ∶ 𝐺𝐴 → 𝐺𝐵.
Let 𝜑𝐵 ∈ 𝐻1(𝐺𝐵, ℤ) be primitive and fibred and let 𝜓𝐴 ∈ 𝐻1(𝐺𝐴, ℤ) be the primitive fibred class
which is the pullback of 𝜑𝐵 viaΘ. Let 𝐹𝐴 be the fibre of 𝜓𝐴 in 𝐺𝐴 and let 𝐹𝐵 be the fibre of 𝜑𝐵 in 𝐺𝐵.
Then,

(1) rank𝐹𝐴 = rank𝐹𝐵;
(2) the homological stretch factors are equal {𝜈+

𝜓𝐴
, 𝜈−

𝜓𝐴
} = {𝜈+𝜑𝐵

, 𝜈−𝜑𝐵
};

(3) the characteristic polynomials of the actions on the fibres are equal, {CharΨ+
𝐴
, CharΨ−

𝐴
} ≐

{CharΦ+
𝐵
, CharΦ−

𝐵
};

(4) for each representation 𝜌∶ 𝐺𝐴 → GL(𝑛,ℚ) factoring through a finite quotient, the twisted
Alexander polynomials {Δ𝜓𝐴,𝜌, Δ−𝜓𝐴,𝜌} ≐ {Δ

𝜑𝐵,𝜌
𝑛 , Δ

−𝜑𝐵,𝜌
𝑛 } and the twisted Reidemeister torsions

{𝜏𝜓𝐴,𝜌, 𝜏−𝜓𝐴,𝜌} = {𝜏𝜑𝐵,𝜌, 𝜏−𝜑𝐵,𝜌} over ℚ are equal.

Moreover, if 𝐺𝐴 and 𝐺𝐵 are conjugacy separable (e.g. if 𝐺𝐴 and 𝐺𝐵 are hyperbolic), then 𝐺 also
determines the Nielsen numbers of 𝜓𝐴 and 𝜑𝐵 and the homotopical stretch factors {𝜆+

𝜓𝐴
, 𝜆−

𝜓𝐴
} =

{𝜆+𝜑𝐵
, 𝜆−𝜑𝐵

}.

Proof. With this setup we have that Item 1 is given by Proposition 4.6; Item 2 is given by Theo-
rem 5.10; Item 3 follows from (4) and the fact that we can identify CharΦ± with Δ

±𝜑,𝟏
1

; Item 4 is
given by Proposition 5.2. The final statement follows by Theorem 6.6. □
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7 ALMOST PROFINITE RIGIDITY FOR FREE-BY-CYCLIC GROUPS

The aim of this section is to prove TheoremA.We reproduce the statement below. Beforewe prove
the theorem, we collect some facts.

Lemma 7.1. Let 𝐺𝐴 and 𝐺𝐵 be free-by-cyclic groups with finite- and infinite-order monodromies,
respectively. Then, 𝐺𝐴 is not isomorphic to 𝐺𝐵 .

Proof. Suppose for contradiction that such an isomorphism exists. Note that since themonodromy
of 𝐺𝐵 has infinite order, the centre 𝑍(𝐺𝐵) of 𝐺𝐵 is trivial. Let 𝐺𝐴 = 𝐹𝑚 ⋊𝜙 ℤ where 𝜙 represents
a finite-order outer automorphism. Clearly 𝑚 ⩾ 2, otherwise 𝐺𝐴 is virtually abelian and 𝐺𝐵 is a
virtually abelian free-by-cyclic group, which contradicts the fact that 𝐺𝐵 has trivial centre.
Let 𝐺′

𝐴
⩽ 𝐺𝐴 be a finite-index subgroup of 𝐺𝐴 so that 𝐺′

𝐴
≃ 𝐹𝑚 × ℤ. Then 𝐺′

𝐴
≃ 𝐹𝑚 × ℤ̂. Let𝐻

be the image of 𝐺′
𝐴
under the isomorphism 𝐺𝐴 ≃ 𝐺𝐵. Then, 𝐻 ≃ �̄�′

𝐵
≃ 𝐺′

𝐵
, for some finite-index

subgroup 𝐺′
𝐵
⩽ 𝐺𝐵. Since 𝑍(𝐺′

𝐵
) = {1} we have 𝑍(𝐺′

𝐵
)∕𝑍(𝐺′

𝐵
) = 𝑍(𝐺′

𝐴
) ≃ ℤ̂. By [42, Theorem 7.2]

we have 𝑏(2)
1
(𝐺′

𝐵
) = 𝑏(2)

1
(𝐺′

𝐴
) = 𝑏(2)

1
(𝐹𝑚 × ℤ) = 0, where 𝑏(2)

1
denotes the first 𝓁2-Betti number. It

follows that the dense projection 𝜋 of 𝐺′
𝐵
to 𝐹𝑚 ⩽ 𝐺′

𝐴
is not injective. Indeed, otherwise, by [7,

Corollary 3.3], we have

0 = 𝑏(2)
1
(𝐺′

𝐵) ⩾ 𝑏(2)
1
(𝐹𝑚) = 𝑚 − 1 ⩾ 1,

which is a contradiction. It follows that 𝐺′
𝐵
intersects ker 𝜋 ⩽ 𝑍(𝐺′

𝐵
) non-trivially. But then,

𝑍(𝐺′
𝐵
) ≠ {1} contradicting our original hypothesis. □

Proposition 7.2. Let 𝐺 be a free-by-cyclic group with finite-order monodromy and 𝑏1(𝐺) = 1.
Then, 𝐺 is almost profinitely rigid amongst free-by-cyclic groups and every free-by-cyclic group in
the profinite genus of 𝐺 has finite-order monodromy.

Proof. Let𝐺𝐴 be a free-by-cyclic group with finite-order monodromy and first Betti number equal
to one, and suppose 𝐺𝐵 is a free-by-cyclic group profinitely isomorphic to 𝐺𝐴. By Lemma 7.1, we
may assume 𝐺𝐵 has finite-order monodromy. Note 𝑏1(𝐺𝐵) = 1. Now, Theorem B(1) implies that
the (uniquely defined) fibre subgroups of 𝐺𝐴 and 𝐺𝐵 have the same rank — say 𝑛. Since, by [17],
Out(𝐹𝑛) has only finitely many conjugacy classes of torsion subgroups, there are only finitely
many possibilities for the isomorphism type of 𝐺𝐵. □

Recall that an outer automorphism Φ ∈ Out(𝐹𝑛) is said to be atoroidal if there does not exist a
non-trivial element 𝑥 ∈ 𝐹𝑛 and 𝑛 ⩾ 1 such that Φ𝑛 preserves the conjugacy class of 𝑥.
The following proposition is a folklore result which can be traced back to the work of Bestvina–

Handel, who proved it for fully irreducible elements of Out(𝐹𝑛) [3, Theorem 4.1]. A careful proof
in the more general setting of expanding free group endomorphisms can be found in the paper of
Mutanguha [47, Theorem A.4].

Proposition 7.3. Let Φ ∈ Out(𝐹𝑛) be an outer automorphism of 𝐹𝑛. Suppose that Φ is infinite-
order irreducible and not atoroidal. Then Φ is induced by a pseudo-Anosov homeomorphim of a
once-punctured surface.
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32 of 43 HUGHES and KUDLINSKA

Theorem A. Let 𝐺 be an irreducible free-by-cyclic group. If 𝑏1(𝐺) = 1, then 𝐺 is almost profinitely
rigid amongst irreducible free-by-cyclic groups.

Proof. Let 𝐺𝐴 be a free-by-cyclic group with 𝑏1(𝐺𝐴) = 1 and irreducible monodromy Φ. Let 𝐺𝐵

be another free-by-cyclic group with irreducible monodromy Ψ and suppose 𝐺𝐴 ≅ 𝐺𝐵. If the
monodromy Ψ has finite order, then we are done by Proposition 7.2.
AssumeΨ has infinite order. Note that by TheoremC,Φ is atoroidal if and only ifΨ is atoroidal.
If Ψ is not atoroidal, then by Proposition 7.3, both Φ and Ψ are induced by pseudo-Anosov

homeomorphisms of compact surfaces. Thus, 𝐺𝐴 and 𝐺𝐵 are fundamental groups of compact
hyperbolic 3-manifolds and the result holds by [39, Theorem 9.1].
Finally, suppose that Φ is atoroidal. Hence 𝐺𝐴 and 𝐺𝐵 are Gromov hyperbolic free-by-cyclic

groups. By [29], 𝐺𝐴 and 𝐺𝐵 are virtually compact special, and thus by [46] they are conjugacy
separable. Furthermore, 𝑏1(𝐺𝐵) = 1 since Betti numbers are invariants of profinite completions.
Thus by Proposition 4.4, the isomorphism𝐺𝐴 → 𝐺𝐵 is ℤ̂-regular.Hence byTheorem6.6, the sets of
stretch factors {𝜆Φ, 𝜆Φ−1} of Φ±1 and {𝜆Ψ, 𝜆Ψ−1} of Ψ±1 are equal. Moreover, again by Theorem 6.6,
the ranks of the corresponding fibres are equal. The result now follows from Lemma 2.1. □

7.1 Applications

We conclude this section with the applications of Theorem A, Theorem B and Theorem C.

Corollary D. Let 𝐺 be a super irreducible free-by-cyclic group. Then, every free-by-cyclic group
profinitely isomorphic to 𝐺 is super irreducible. In particular, 𝐺 is almost profinitely rigid amongst
free-by-cyclic groups.

Proof. Let𝐻 be a free-by-cyclic group and suppose �̂� ≅ 𝐺. As explained in [28, section 2],𝐺 being
super irreducible is a property of the characteristic polynomial of the matrix 𝑀∶ 𝐻1(𝐹𝑛; ℚ) →

𝐻1(𝐹𝑛; ℚ) representing the action of Φ on 𝐻1(𝐹𝑛; ℚ). Thus, by Theorem B we see 𝐻 is super
irreducible. The result follows from Theorem A. □

Corollary E. Let𝐺 be a random free-by-cyclic group. Then, asymptotically almost surely𝐺 is almost
profinitely rigid amongst free-by-cyclic groups.

Proof. By Proposition 2.4, every generic free-by-cyclic group 𝐺 is super-irreducible and has
𝑏1(𝐺) = 1. The result follows from Corollary D. □

Corollary F. Let 𝐺 = 𝐹3 ⋊ ℤ. If 𝐺 is hyperbolic and 𝑏1(𝐺) = 1, then 𝐺 is almost profinitely rigid
amongst free-by-cyclic groups.

Proof. We first prove 𝐺 is irreducible. Suppose that this is not the case. Then 𝐺 has a subgroup
isomorphic to either ℤ⋊ ℤ or 𝐹2 ⋊ ℤ. But both possibilities would imply that 𝐺 contains a ℤ2

subgroup contradicting hyperbolicity. Now let𝐻 be a free-by-cyclic group and suppose �̂� ≅ 𝐺. By
Theorem C we see 𝐻 is hyperbolic and by Theorem B we see that 𝐻 splits as 𝐹3 ⋊ ℤ. Thus, the
previous paragraph implies𝐻 is irreducible. The result follows from Theorem A. □
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 33 of 43

CorollaryG. Let𝐺 = 𝐹2 ⋊ ℤ. If 𝑏1(𝐺) = 1, then𝐺 is profinitely rigid amongst free-by-cyclic groups.

Proof. Let𝐻 be a free-by-cyclic group and suppose �̂� ≅ 𝐺. By TheoremB,we see that𝐻 ≅ 𝐹2 ⋊ ℤ.
But each 𝐹2 ⋊ ℤ is profinitely rigid amongst groups of the form 𝐹2 ⋊ ℤ by [12]. □

Remark 7.4. In fact, TheoremsA–C apply within awider class of groups than stated in the hypoth-
esis; namely, we can consider the class of mapping tori of (possibly infinite rank) free group
automorphisms (imposing irreducibility if the fibre is finitely generated). The key point is that
by [19] any finitely generated group𝐺 in this class is finitely presented and has non-positive Euler
characteristic with 𝜒(𝐺) = 0 if and only if the fibre subgroup is finitely generated. Now, amongst
such groupswe have that𝜒(𝐺) < 0 if and only if 𝑏(2)

1
(𝐺) > 0 by [43, Theorem6.80], but the first𝓁2-

Betti number is a profinite invariant amongst finitely presented groups [7, Corollary 3.3]. It follows
no {infinitely generated free}-by-cyclic group 𝐺 is profinitely isomorphic to a {finitely generated
free}-by-cyclic group.

8 PROFINITE CONJUGACY IN 𝐎𝐮𝐭(𝑭𝒏)

In this section, we show that the stretch factors of atoroidal elements of Out(𝐹𝑛) are profinite
conjugacy invariants.

Definition 8.1 (Profinitely conjugate). Let Ψ,Φ ∈ Out(𝐹𝑛). We say Ψ and Φ are profinitely
conjugate if they induce a pair of conjugate outer automorphisms in Out(𝐹𝑛).

Theorem H. Let Ψ ∈ Out(𝐹𝑛) be atoroidal. If Φ ∈ Out(𝐹𝑛) is profinitely conjugate to Ψ, then Φ

is atoroidal and {𝜆Ψ, 𝜆Ψ−1} = {𝜆Φ, 𝜆Φ−1}. In particular, if Ψ is additionally irreducible, then there
are only finitely manyOut(𝐹𝑛)-conjugacy classes of irreducible automorphisms which are conjugate
with Ψ in Out(𝐹𝑛)

Proof. The first result follows from applying TheoremC, TheoremB and Proposition 8.3, the latter
of which is proved below. The ‘in particular’ then follows from Lemma 2.1. □

Definition 8.2 (Aligned isomorphism). Let Ψ,Φ ∈ Out(𝐹𝑛). Write 𝐺𝐴 = 𝐹𝑛 ⋊Ψ ℤ and 𝐺𝐵 =

𝐹𝑛 ⋊Φ ℤ and let 𝜓∶ 𝐺𝐴 → ℤ and 𝜓∶ 𝐺𝐵 → ℤ be the induced characters. We say that an
isomorphism Θ∶ 𝐺𝐴 → 𝐺𝐵 is aligned if the following diagram commutes:

Note that an aligned isomorphism realises 𝜓 as the pullback of 𝜑 with respect to Θ with unit 1 in
the sense that Θ∗(𝜑) = 𝜓.

The following proposition follows [40, Proposition 3.7].

Proposition 8.3. Let Φ,Ψ ∈ Out(𝐹𝑛). The following are equivalent:
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34 of 43 HUGHES and KUDLINSKA

(1) the profinite completions of the free-by-cyclic groups 𝐺𝐴 = 𝐹𝑛 ⋊Ψ ℤ and 𝐺𝐵 = 𝐹𝑛 ⋊Φ ℤ are
aligned isomorphic;

(2) the outer automorphisms Φ and Ψ are profinitely conjugate.

Proof. In constructing 𝐺𝐴 and 𝐺𝐵, we have implicitly picked lifts of Φ and Ψ to Aut(𝐹𝑛) which,
abusing notation, we have also denoted byΦ andΨ.Write𝐺𝐴 = 𝐹𝑛 ⋊Ψ ⟨𝑡𝐴⟩ and𝐺𝐵 = 𝐹𝑛 ⋊Φ ⟨𝑡𝐵⟩.
Denote the images of 𝑡𝐴 and 𝑡𝐵 is Out(𝐹𝑛) by 𝜏𝐴 and 𝜏𝐵. Note 𝐺𝐴 = 𝐹𝑛 ⋊ ⟨̂𝑡𝐴⟩ and similarly for
𝐺𝐵. Denote the images of 𝜏𝐴 and 𝜏𝐵 in Aut(𝐹𝑛) by �̂�𝐴 and �̂�𝐵, respectively.
We now prove that (1) implies (2). Suppose there is an aligned isomorphism Θ∶ 𝐺𝐴 → 𝐺𝐵 and

denote its restriction to 𝐹𝑛 byΘ𝐹 . We haveΘ(𝑡𝐴) = 𝑡𝐵ℎ for some ℎ ∈ 𝐹𝑛. Since g𝑡𝐴 = 𝑡𝐴𝑡
−1
𝐴
g𝑡𝐴 =

𝑡𝐴�̂�𝐴(g), we haveΘ𝐹(g)𝑡𝐵ℎ = 𝑡𝐵ℎΘ0(�̂�𝐴(g)). Let 𝐼ℎ denote the inner automorphism given by con-
jugation by ℎ. We have Θ𝐹(g)𝑡𝐵 = 𝑡𝐵𝐼ℎ(Θ𝐹(�̂�𝐴(g)), and hence, 𝑡𝐵�̂�𝐵(Θ𝐹(g)) = 𝑡𝐵𝐼ℎ(Θ𝐹(�̂�(g))) for
all g ∈ 𝐹𝑛. Hence, �̂�𝐵 = 𝐼ℎΘ𝐹�̂�𝐴Θ

−1. It follows that �̂�𝐴 and �̂�𝐵 are conjugate when projected to
Out(𝐹𝑛). Hence, Φ and Ψ are profinitely conjugate.
To show (2) implies (1), we reverse the previous calculation to obtain a group isomorphism

𝐺𝐴 → 𝐺𝐵. □

9 AUTOMORPHISMS OF UNIVERSAL COXETER GROUPS

Let 𝑛 ⩾ 2 be an integer. The universal Coxeter group of rank 𝑛 is the free product𝑊𝑛 of 𝑛 copies
of ℤ∕2,

𝑊𝑛 = ✽𝑛
𝑖=1

ℤ∕2.

A free basis of𝑊𝑛 is a collection of 𝑛 elements 𝑎1, … , 𝑎𝑛 of𝑊𝑛 of order 2, such that

𝑊𝑛 ≅ ⟨𝑎1⟩ ∗ … ∗ ⟨𝑎𝑛⟩.
9.1 Graphs of groups

For further details and careful proofs of the claims made in this section, the interested reader is
referred to [45]. We closely follow the notation established there.
A graph of groups (Γ,) with trivial edge groups consists of a connected graph Γ and an assign-

ment of a group 𝑣 to every vertex 𝑣 of Γ. The vertex 𝑣 is said to be essential if 𝑣 is non-trivial.
To every graph of groups with trivial edge groups (Γ,), we associate a graph of spaces 𝑋 con-
structed by attaching a 𝐾(𝑣, 1) with a unique vertex 𝑣0 to the corresponding vertex 𝑣 of Γ. For
the sake of brevity, we will sometimes write  to denote the graph of groups (Γ,). After fixing a
basepoint and a spanning tree in , and immediately suppressing their notation, we write 𝜋1()

to denote the fundamental group of the graph of groups .
A morphism 𝐹 between graphs of groups (Γ,) and (Λ,) consists of a pair of maps (𝑓, 𝑓𝑋)

with the following properties. The first map 𝑓∶ Γ → Λ sends vertices to vertices, and edges to
edge paths. The second map 𝑓𝑋 ∶ 𝑋 → 𝑋 is a map of spaces such that the following diagram
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 35 of 43

commutes,

The vertical maps are the retractions obtained by collapsing the vertex spaces to their basepoints.
A homotopy from the morphism (𝑓, 𝑓𝑋)∶ (Γ,) → (Λ,) to (𝑓′, 𝑓′

𝑋
)∶ (Γ,) → (Λ,) is a

collection of morphisms

{(𝑓𝑠, 𝑓𝑋,𝑠)∶  →  ∶ 𝑠 ∈ [0, 1]},

such that {𝑓𝑠} is a homotopy from 𝑓 to 𝑓′, and {𝑓𝑋,𝑠} is a homotopy from 𝑓𝑋 to 𝑓′
𝑋
.

A morphism 𝐹∶  →  is a homotopy equivalence, if there exists a morphism 𝐹′ ∶  → 

such that 𝐹◦𝐹′ and 𝐹′◦𝐹 are homotopic to the identity morphisms. Any homotopy equivalence
𝐻∶  →  induces an isomorphism 𝐻∗∶ 𝜋1() → 𝜋1().
We will use the term combinatorial graphwhen we want to emphasise that we are considering

a graph with no extra structure.

9.2 Topological representatives of 𝐎𝐮𝐭(𝑾𝒏) and Nielsen numbers

For each 𝑛 ⩾ 2, define the thistle with 𝑛 prickles to be the graph of groups 𝑛, where the underlying
graph is a tree with one vertex of degree 𝑛 and 𝑛 vertices of degree 1, and where each edge and
the central vertex are labelled by the trivial group, and where the leaves are labelled byℤ∕2. Once
and for all, fix the basepoint ∗ of 𝑛 to be the central vertex. Then, there is a natural identification
𝜋1(𝑛, ∗) ≃ 𝑊𝑛, so that each standard generator of𝑊𝑛 is identified with the path in 𝑛 given by
the concatenation 𝑒 ⋅ 𝑥 ⋅ 𝑒, where 𝑒 is an edge in 𝑛 with 𝑖(𝑒) =∗ and 𝑥 is the generator of the group
associated to the vertex 𝜏(𝑒).
Let Φ ∈ Out(𝑊𝑛). The standard topological representative of Φ is the homotopy equivalence

𝜌∶ (𝑛, ∗) → (𝑛, ∗) determined by Φ and the identification 𝜋1(𝑛, ∗) ≃ 𝑊𝑛 as above. A topolog-
ical representative of Φ is a pair (𝐹,) where  is a graph of groups together with a homotopy
equivalence 𝛼∶ 𝑛 → , and 𝐹∶  →  is a homotopy equivalence, such that the following
diagram commutes up to homotopy:

where 𝜌∶ 𝑛 → 𝑛 is the standard representative of Φ. We assume that 𝑓 is locally injective on
the interiors of the edges of Γ. When we talk of the transition matrix, maximal filtration and expo-
nential strata of (𝐹,), we are referring to those objects associated to the underlying graph map
(𝑓, Γ) (see Section 2.1). In particular, the topological representative (𝐹,) is said to be irreducible
if the maximal filtration of the underlying graph map (𝑓, Γ) has length one.
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36 of 43 HUGHES and KUDLINSKA

Let (𝐹,) be a topological representative of Φ ∈ Out(𝑊𝑛). An invariant forest for the represen-
tative (𝐹,), where𝐹 = (𝑓, 𝑓𝑋), is an𝑓-invariant subgraph Γ0 of the underlying graph Γ, such that
each component 𝐶 of Γ0 is a tree and the fundamental group of the sub-graph of groups corre-
sponding to 𝐶 acts with a global fixed point on its Bass–Serre tree. A forest is said to be non-trivial
if it contains at least one edge.
The outer automorphism Φ ∈ Out(𝑊𝑛) is said to be irreducible, if every topological represen-

tative (𝐹,) of Φ, where the underlying graph Γ has no inessential valence one vertices and no
invariant non-trivial forests, is irreducible. The stretch factor ofΦ is the infimum of the stretch fac-
tors of irreducible topological representatives of Φ. The outer automorphism Φ is fully irreducible
if Φ𝑘 is irreducible for every 𝑘 ⩾ 1.
There exists a theory of (improved) relative train track representatives for elements ofOut(𝑊𝑛)

[44] (see also [16, 20] and [45] for earlier results on train tracks on graphs of groups), which is
completely analogous to that for elements in Out(𝐹𝑛). As in the case of Out(𝐹𝑛), the stretch fac-
tor of an irreducible outer automorphism Φ ∈ Out(𝑊𝑛), as defined in the previous paragraph,
coincides with the stretch factor of any train track representative. The stretch factor of a general
element Φ ∈ Out(𝑊𝑛) is defined to be the stretch factor of any relative train track representative.
The proof of the following lemma is completely analogous to the proof of Proposition 2.7.

Lemma 9.1. LetΦ ∈ Out(𝑊𝑛) be an outer automorphism of𝑊𝑛 with stretch factor 𝜆. Let (𝐹,) be
a topological representative of Φ, with underlying graph map 𝑓. Then

𝜆 = lim sup𝑚→∞𝑁𝑚(𝑓)
1∕𝑚.

Before proceeding further, we take a detour to discuss irreducibility of matrices and graphs.
Let𝐴 ∈ 𝑀𝑛(ℤ) be amatrix with non-negative integer entries 𝑎𝑖𝑗 . We construct a directed graph

Γ𝐴 associated to 𝐴, so that Γ𝐴 has 𝑛 vertices {𝑣1, … , 𝑣𝑛} and there exist 𝑎𝑖𝑗 directed edges from 𝑣𝑖
to 𝑣𝑗 , for every 𝑖, 𝑗 ⩽ 𝑛. The directed graph Γ𝐴 is said to be irreducible, if for any two vertices 𝑢 and
𝑣 of Γ𝐴, there exists a directed path from 𝑢 to 𝑣. The following is an elementary exercise.

Lemma 9.2. The non-negative integer matrix𝐴 is irreducible if and only if the associated graph Γ𝐴
is irreducible.

We now prove a crucial lemma on the irreducibility of degree two covers of directed graphs.
In what follows, when we say path from 𝑢 to 𝑣, we will always mean a directed path. Given an
oriented edge 𝑒 in an oriented graph Γ, we write 𝑖(𝑒) to denote the initial vertex of 𝑒 in Γ and 𝑡(𝑒)
the terminal vertex.

Lemma 9.3. Let Γ be a directed graph on 𝑛 vertices, and let Γ′ be a degree two cover of Γ. If Γ is
irreducible then either Γ′ is irreducible, or it has two connected components and each is isomorphic
to Γ.
Furthermore, if Γ′ is irreducible, then the Perron–Frobenius eigenvalues of 𝐴Γ′ and 𝐴Γ are equal.

Proof. Let {𝑣1, … , 𝑣𝑛} be the vertex set of Γ. Let 𝑣1𝑖 and 𝑣2
𝑖
be the two lifts of 𝑣𝑖 in Γ′, and write

𝑉1 = {𝑣1
𝑖
∣ 1 ⩽ 𝑖 ⩽ 𝑛} and 𝑉2 = {𝑣2

𝑖
∣ 1 ⩽ 𝑖 ⩽ 𝑛}. Let 𝑁 be the number of edges 𝑒 in Γ′ such that

𝑖(𝑒) ∈ 𝑉1 and 𝑡(𝑒) ∈ 𝑉2. We call such edges special. We prove our result by induction on 𝑁.
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If 𝑁 = 0, then the lemma is clearly true, since Γ′ has two connected components and each is
isomorphic to Γ.
Let 𝑁 ⩾ 1 and suppose the lemma is true whenever the number of special edges is at most

𝑁 − 1. Let Γ′ → Γ be a degree two cover with𝑁 special edges. Note that since Γ is irreducible, for
any vertices 𝑣𝑖 and 𝑣𝑗 of Γ, there exists a path 𝛾 from 𝑣𝑖 to 𝑣𝑗 . This path has two lifts 𝛾1 and 𝛾2 in
Γ′ such that either

(i) 𝛾1 joins 𝑣1𝑖 to 𝑣
1
𝑗
and 𝛾2 joins 𝑣2𝑖 to 𝑣

2
𝑗
or

(ii) 𝛾1 joins 𝑣1𝑖 to 𝑣
2
𝑗
and 𝛾2 joins 𝑣2𝑖 to 𝑣

1
𝑗
.

Hence to prove the lemma, it suffices to show that there exists a path in Γ′ from 𝑣1
𝑘
to 𝑣2

𝑘
, and a

path from 𝑣2
𝑘
to 𝑣1

𝑘
, for all 𝑘.

Let 𝑒1 be a special edge and suppose 𝑖(𝑒1) = 𝑣1
𝑖
and 𝑡(𝑒1) = 𝑣2

𝑗
, for some 𝑖 and 𝑗. Then Γ′ contains

an edge 𝑒2 such that 𝑖(𝑒2) = 𝑣2
𝑖
and 𝑡(𝑒2) = 𝑣1

𝑗
. Construct a graph Γ′′ from Γ′ by replacing 𝑒1 with

the edge 𝑒′
1
which joins 𝑣1

𝑖
to 𝑣1

𝑗
, and replacing 𝑒2 with the edge 𝑒′2 which joins 𝑣

2
𝑖
to 𝑣2

𝑗
. Note that

Γ′′ is a degree two cover of Γ with 𝑁 − 1 special edges.
Suppose first that𝑁 = 1 and fix index 𝑘 ⩽ 𝑛. Since Γ is irreducible, there exists a path in Γ from

𝑣𝑘 to 𝑣𝑖 . Let 𝛾 be a shortest such path. Then 𝛾 has two lifts 𝛾1 and 𝛾2 in Γ′′. Since Γ′′ has zero
special edges, 𝛾1 only crosses edges with both endpoints in𝑉1 and 𝛾2 only crosses edges with both
endpoints in𝑉2 (possibly after swapping 𝛾1 and 𝛾2). Also byminimality of the length of 𝛾, the lifts
of 𝛾 do not cross the edges 𝑒′

1
and 𝑒′

2
. Hence the path 𝛾1 descends to a path in Γ′ joining 𝑣1

𝑘
to 𝑣1

𝑖
.

Similarly one constructs a path from 𝑣2
𝑗
to 𝑣2

𝑘
in Γ′. The concatenation of these two paths and the

edge 𝑒1 gives a path from 𝑣1
𝑘
to 𝑣2

𝑘
.

Now assume 𝑁 ⩾ 2. Then Γ′′ is irreducible and thus there exists a shortest path 𝜂1 in Γ′′ from
𝑣1
𝑘
to 𝑣1

𝑖
, and a shortest path 𝜂2 from 𝑣2

𝑗
to 𝑣2

𝑘
. Since 𝑖(𝑒′

1
) = 𝑣1

𝑖
, any shortest path from 𝑣1

𝑘
to 𝑣1

𝑖

does not contain 𝑒′
1
. Similarly, any shortest path from 𝑣2

𝑗
to 𝑣2

𝑘
does not contain 𝑒′

2
. Hence 𝜂1 and

𝜂2 descend to paths in Γ′. The concatenation of these paths, together with the edge 𝑒1 give rise to
a path from 𝑣1

𝑘
to 𝑣2

𝑘
. Similarly, one constructs a path from 𝑣2

𝑘
to 𝑣1

𝑘
. Hence the statement holds for

Γ′. This proves the first part of the lemma.
To prove the statement about equality of Perron–Frobenius eigenvalues, suppose that Γ′ is irre-

ducible. Relabel the vertices of Γ′ so that for each 𝑖 ⩽ 𝑛, the vertices labelled by 𝑖 and 𝑖 + 𝑛 in Γ′

are the two lifts of the 𝑖𝑡ℎ vertex of Γ. Let 𝑎𝑖𝑗 and 𝑎′
𝑖𝑗
denote the (𝑖, 𝑗)th elements of 𝐴Γ and 𝐴Γ′ ,

respectively. Since Γ′ is a degree two cover of Γ, it follows that for every 𝑖, 𝑗 ⩽ 𝑛,

𝑎𝑖𝑗 = 𝑎′𝑖𝑗 + 𝑎′
𝑖(𝑗+𝑛)

= 𝑎′
(𝑖+𝑛)𝑗

+ 𝑎′
(𝑖+𝑛)(𝑗+𝑛)

. (13)

Let 𝑣𝑝𝑓 denote the Perron–Frobenius eigenvector of 𝐴Γ and let 𝜆 be the Perron–Frobenius
eigenvalue. Let 𝑣′

𝑝𝑓
be the vector obtained by concatenating two copies of 𝑣𝑝𝑓 . Then by (13),

𝐴Γ′𝑣
′
𝑝𝑓

= 𝜆 ⋅ 𝑣′
𝑝𝑓
.

Hence the Perron–Frobenius eigenvalue of 𝐴Γ′ is 𝜆. □

Let𝑊𝑛 be the universal Coxeter group with a free basis {𝑎1, … , 𝑎𝑛}. There exists a homomor-
phism 𝑊𝑛 ↠ ℤ∕2 which maps each generator 𝑎𝑖 to the non-trivial element of ℤ∕2. The kernel
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38 of 43 HUGHES and KUDLINSKA

𝐾 ⩽ 𝑊𝑛 is the unique torsion-free index-two subgroup of 𝑊𝑛 and thus it is independent of the
choice of the free basis. Moreover, 𝐾 is isomorphic to the free group of rank 𝑛 − 1.
Fix a preferred free basis𝑋 of the free group𝐹𝑛−1. Let 𝜄𝑋 ∈ Aut(𝐹𝑛−1) denote the automorphism

which acts by inverting each element of 𝑋. We call 𝜄𝑋 the hyperelliptic involution of 𝐹𝑛−1 with
respect to 𝑋. We will write 𝜄 to denote 𝜄𝑋 when 𝑋 is clear from the context. Let [𝜄] be the image of
𝜄 in Out(𝐹𝑛−1).

Remark 9.4. For any two choices of free generating sets 𝑋 and 𝑌 of the free group 𝐹, the outer
classes of the hyperelliptic involutions [𝜄𝑋] and [𝜄𝑌] are conjugate in Out(𝐹) [6, Lemma 6.1].

Definition 9.5 [6]. The hyperelliptic automorphism group HAut(𝐹𝑛−1) is the centraliser of 𝜄 in
Aut(𝐹𝑛−1). The hyperelliptic outer automorphism group HOut(𝐹𝑛−1) of 𝐹𝑛−1 is the centraliser of
[𝜄] in Out(𝐹𝑛−1).

There is a homomorphism 𝜌∶ Aut(𝑊𝑛) → Aut(𝐹𝑛−1) induced by restricting each automor-
phism of𝑊𝑛 to the characteristic subgroup𝐾 ⩽ 𝑊𝑛−1. By [38, section 2], the map 𝜌 restricts to an
isomorphism

𝜌∶ Aut(𝑊𝑛) → 𝑥−1 HAut(𝐹𝑛−1) 𝑥,

for some 𝑥 ∈ Aut(𝐹𝑛−1). Furthermore, the image of the subgroup Inn(𝑊𝑛) of inner automor-
phisms of𝑊𝑛 under 𝜌 is contained in the subgroup Inn(𝐹𝑛−1) ⋅ ⟨𝜄⟩ ∩ HAut(Fn−1). Hence there is
an isomorphism

Aut(𝐹𝑛−1)∕Inn(𝐹𝑛−1) → HAut(𝐹𝑛−1)∕ (Inn(𝐹𝑛−1) ⋅ ⟨𝜄⟩ ∩ HAut(𝐹𝑛−1)).

Moreover, it is easy to see thatHAut(𝐹𝑛−1) ∩ Inn(𝐹𝑛−1) = 1, and hence there is an injective map

Out(𝑊𝑛) ↪ HOut(𝐹𝑛−1)∕⟨[𝜄]⟩.
It follows that each outer automorphism Φ in Out(𝑊𝑛) defines a coset Φ̄ ⋅ ⟨[𝜄]⟩ in the quotient

Out(𝐹𝑛−1)∕⟨[𝜄]⟩. Hence, there is a well-defined mapOut(𝑊𝑛) → Out(𝐹𝑛−1)which sendsΦ to the
outer automorphism Φ̄2, which we label byΦ𝐾 ∈ Out(𝐹𝑛−1), and call the outer automorphism of
𝐹𝑛−1 induced by Φ ∈ Out(𝑊𝑛).

Proposition 9.6. Let 𝑛 ⩾ 3 and Φ ∈ Out(𝑊𝑛) be an outer automorphism with stretch factor 𝜆(Φ).
Then, the stretch factor of the induced outer automorphism Φ𝐾 ∈ Out(𝐹𝑛−1) is equal to 𝜆(Φ)2.

Proof. Let (𝐹,) be a bounded relative train track representative of Φ2 ∈ Out(𝑊𝑛), where
 = (Γ,) is a graph of groups as before, with the vertex 𝑣0 in Γ acting as a basepoint, and
𝐹 = (𝑓, 𝑓𝑋). Let {𝑎1, … , 𝑎𝑛} be a free basis of 𝑊𝑛 so that each vertex of the underlying graph
Γ of  is labelled by some ⟨𝑎𝑖⟩ ≅ ℤ∕2 or the trivial group. Note that Γ is simply connected. Let
𝐾 = ⟨𝑎1𝑎2, 𝑎1𝑎3, … , 𝑎1𝑎𝑛⟩.
As before, let 𝑋 denote the graph of spaces associated to . In particular, we identify𝑊𝑛 with

𝜋1(𝑋, 𝑣0, Γ). Let 𝜋∶ 𝑌 → 𝑋 be the cover of 𝑋 corresponding to the subgroup 𝐾. Let 𝑋 be a
connected lift of 𝑋 to 𝑌 with 𝑣0 ∈ 𝑋 a lift of the basepoint 𝑣0.
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ON PROFINITE RIGIDITY AMONGST FREE-BY-CYCLIC GROUPS 39 of 43

Since 𝐾 is a characteristic subgroup, there is a lift of the map 𝑓𝑋 to a map 𝑓𝑌 ∶ 𝑌 → 𝑌 which
represents the induced outer automorphism Φ𝐾 .
Since each 𝑎𝑖 is not an element of 𝐾, the unique length-one loop in 𝑋 contained in the free

homotopy class of 𝑎𝑖 ∈ 𝜋1(𝑋) lifts to an edge with distinct endpoints. The endpoints are the two
vertices of 𝑌 which project down to the essential vertex labelled by 𝑎𝑖 .
Note that the morphism 𝑓 preserves the set of essential vertices. Let 𝑌′ be the space obtained

from 𝑌 by collapsing the edges which join the two lifts of each essential vertex, and the lifts of
the two cells. Then 𝑌′ is homotopy equivalent to 𝑌, and there is a map 𝑓𝑌′ ∶ 𝑌′ → 𝑌′ which is
homotopic to 𝑓𝑌 . It follows that (𝑓𝑌′ , 𝑌′) is a topological representative ofΦ𝐾 ∈ Out(𝐹𝑛−1). Then,
𝑌′ is a (combinatorial) graph which is obtained by doubling the underlying graph Γ of  along the
essential vertices. In particular, the incidence matrix of 𝑓𝑌′ gives rise to a directed graph which is
an index-two cover of the directed graph associated to the incidence matrix of 𝑓.
The relative train track structure of 𝑓 lifts to a relative train track structure of 𝑓𝑌′ . If 𝑆 is a non-

zero stratum of  with stretch factor 𝜆, then by Lemma 9.3, its lift to 𝑌′ is either an irreducible
stratum with stretch factor 𝜆 or two irreducible strata, each with stretch factor 𝜆. Then 𝜆(Φ𝐾) =

𝜆(Φ2) = 𝜆(Φ)2. □

9.3 Profinite invariants and almost rigidity of {universal
Coxeter}-by-cyclic groups

A group 𝐺 is said to be {universal Coxeter }-by-cyclic if it fits into the short exact sequence

1 → 𝑊𝑛 → 𝐺 → ℤ → 1.

For the remainder of this section,we let (𝐺𝐴, 𝜑) and (𝐺𝐵, 𝜓)denote {universal Coxeter}-by-cyclic
groups with fibred characters 𝜑∶ 𝐺𝐴 → ℤ and 𝜓∶ 𝐺𝐵 → ℤ. We write 𝐺𝐴 = 𝑊𝑛 ⋊Φ ℤ and 𝐺𝐵 =

𝑊𝑚 ⋊Ψ ℤ to denote the splittings of 𝐺𝐴 and 𝐺𝐵 induced by the characters, and let 𝐾𝐴 ⩽ 𝐺𝐴 and
𝐾𝐵 ⩽ 𝐺𝐵 be the unique torsion-free index-two subgroups of the fibres. Recall that there is a well-
defined map Out(𝑊𝑛) → Out(𝐹𝑛−1) which sends an outer automorphism class Φ represented by
𝜙 ∈ Aut(𝑊𝑛), to the the outer automorphism class of 𝜙2|𝐾 , where 𝐾 ⩽ 𝑊𝑛 is the unique torsion-
free index-two subgroup. We write Φ𝐾 to denote the image of Φ under this map, and call it the
outer automorphism of 𝐹𝑛−1 induced by Φ.
Fix some 𝑡 ∈ 𝜑−1(1) and 𝑠 ∈ 𝜓−1(1), and let

𝐻𝐴 = ⟨𝐾𝐴, 𝑡
2⟩𝐺𝐴

≅ 𝐾𝐴 ⋊Φ𝐾𝐴
ℤ,

𝐻𝐵 = ⟨𝐾𝐵, 𝑠
2⟩𝐺𝐵

≅ 𝐾𝐵 ⋊Ψ𝐾𝐵
ℤ.

(14)

We write �̄� to denote the character 𝜑∶ 𝐺𝐴 → ℤ restricted to the subgroup 𝐻𝐴, and define �̄�

similarly. We note that the characters �̄� and �̄� induce the splittings (14).
For a group𝐺 and prime 𝑝we denote its pro-𝑝 completion by𝐺𝐩. Note this is exactly the inverse

limit of the system of finite quotients of order a power of 𝑝.

Proposition 9.7. Let (𝐺𝐴, 𝜑) and (𝐺𝐵, 𝜓) be {universal Coxeter}-by-cyclic groups, and suppose
Θ∶ 𝐺𝐴 → 𝐺𝐵 is an isomorphism. The following conclusions hold:
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40 of 43 HUGHES and KUDLINSKA

(1) Θ is ℤ̂-regular;
(2) 𝐺𝐴 and 𝐺𝐵 have isomorphic fibres;
(3) the free-by-cyclic groups (𝐻𝐴, �̄�) and (𝐻𝐵, �̄�) satisfy that �̄� is the pullback of �̄� via Θ|�̂�𝐴

;
(4) 𝐺𝐴 and 𝐺𝐵 are good.

Proof. It is easy to see that 𝐺𝐴 and 𝐺𝐵 satisfy 𝑏1(𝐺𝐴) = 𝑏1(𝐺𝐵) = 1. Thus, (1) follows from Propo-
sition 4.4. Note that 𝑏1(𝑊𝑛; 𝔽2) = 𝑛. Wemay prove (2) by an identical argument to Proposition 4.6
but taking the twisted Alexander polynomials over 𝔽2 instead of an arbitrary prime.
The subgroups𝐻𝐴 ⩽ 𝐺𝐴 and𝐻𝐵 ⩽ 𝐺𝐵 have finite index in their respective overgroups, and are

free-by-cyclic. Since goodness passes to finite index overgroups this proves (4).
Now, the group𝐻𝐴 is the kernel of a map 𝛼∶ 𝐺𝐴 ↠ ℤ∕2. We see that𝐻𝐴 is torsion-free and so

its pro-2 completion has finite cohomological dimension, whereas 𝐺𝐴 has 2-torsion so cd2(𝐺𝟐
𝐴
) =

∞ (see [59, Section 1.1. and Proposition 11.1.5] for the definition of cd2 and the relevant facts).
Completing the map 𝛼 to 𝐺𝐴 we obtain an induced map 𝐺𝐵 ↠ ℤ∕2 and hence a map 𝛽∶ 𝐺𝐵 ↠

ℤ∕2. Now ker 𝛽 is torsion-free sinceker 𝛽 ≅ ker �̂� and cd2(ker �̂�𝟐) is finite.Wehave shown that𝐻𝐴

and𝐻𝐵 are profinitely isomorphic free-by-cyclic groups with monodromies �̄� and �̄�, respectively.
Since Θ is ℤ̂-regular by (1), it follows that �̄� is the pullback of �̄� via Θ|�̂�𝐴

. □

Theorem I. Suppose that all free-by-cyclic groups with monodromy contained in HOut(𝐹𝑛) (see
Definition 9.5) for some 𝑛 are conjugacy separable.
Let (𝐺𝐴, 𝜑) and (𝐺𝐵, 𝜓) be profinitely isomorphic {universal Coxeter}-by-cyclic groups. Let {𝜆+𝐴, 𝜆

−
𝐴
}

and {𝜆+
𝐵
, 𝜆−

𝐵
} be the stretch factors of (𝐺𝐴, 𝜑) and (𝐺𝐵, 𝜓), respectively. Then

{𝜆+
𝐴
, 𝜆−𝐴} = {𝜆+

𝐵
, 𝜆−𝐵 }.

Proof. The groups (𝐺𝐴, 𝜑) and (𝐺𝐵, 𝜓) have isomorphic fibres by Proposition 9.7, Item 1, and by
Proposition 9.7, Item 3, the character �̄� ∶ 𝐻𝐴 → ℤ is the pullback of �̄� ∶ 𝐻𝐵 → ℤ under a profinite
isomorphism �̂�𝐴 → �̂�𝐵. Also, by assumption, (𝐻𝐴, �̄�) and (𝐻𝐵, �̄�) are conjugacy separable free-
by-cyclic groups. Hence by Theorem 6.6, the stretch factors associated to (𝐻𝐴, �̄�) and (𝐻𝐵, �̄�) are
equal. Thus by Proposition 9.6, the stretch factors of (𝐺𝐴, 𝜑) and (𝐺𝐵, 𝜓) are equal. □
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