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Abstract. We construct explicit finite-dimensional orthogonal repre-
sentations πN of SLN (Z) for N ∈ {3, 4} all of whose invariant vectors
are trivial, and such that HN−1(SLN (Z), πN ) is non-trivial. This implies
that for N as above, the group SLN (Z) does not have property (TN−1)

of Bader–Sauer and therefore is not (N −1)-Kazhdan in the sense of De
Chiffre–Glebsky–Lubotzky–Thom, both being higher versions of Kazh-
dan’s property T .

1. Introduction

One of the remarkable qualities of Kazhdan’s property T is that it admits
a plethora of equivalent formulations. In particular, the celebrated Delorme–
Guichardet Theorem [Gui72, Del77] tells us that a finitely generated group
has property T if and only if its first reduced cohomology with coefficients
in any unitary representation is zero.

This cohomological viewpoint invites natural extensions, where one looks
at the vanishing of higher reduced cohomologies. Bader–Sauer [BS23] intro-
duced two such generalisations: the weaker property (Tn), that requires the
nth reduced cohomology to vanish when the coefficients come from a uni-
tary representation all of whose invariant vectors are trivial, and the stronger
property [Tn], where the vanishing should happen for all unitary represen-
tations; the latter property is equivalent to being n-Kazhdan, as introduced
by De Chiffre–Glebsky–Lubotzky–Thom [DCGLT20].
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Kazhdan introduced property T to study lattices in semi-simple Lie groups
of higher rank [Kaž67]. The prime example of such a lattice is SLN (Z) for
N ⩾ 3, and it is precisely these groups that we will investigate.

Theorem 1.1. For every N ∈ {3, 4}, there exists a finite-dimensional or-
thogonal representation πN of SLN (Z) all of whose invariant vectors are
trivial such that

HN−1(SLN (Z);πN ) ̸= 0.

Since πN is finite-dimensional, the reduced and non-reduced cohomologies are
equal, and therefore SLN (Z) does not have property (TN−1).

This theorem should be compared with [BS23, Theorem A], stating that
for all N ⩾ 3, the groups SLN (Z) have property (TN−2). The Bader–Sauer
theorem is an example of the phenomenon of cohomology vanishing below
the rank (which is N − 1 in this case); our result shows that at the rank,
such vanishing no longer takes place.

For N = 2, since SL2(Z) has a finite-index subgroup with infinite abelian-
isation, one easily constructs unitary representations with all fixed vectors
trivial that admit non-trivial harmonic cocycles, and hence the first coho-
mology of SL2(Z) with coefficients in such a representation is non-trivial.
Hence, SL2(Z) does not have property (T1).

There is an easier way of establishing that SL3(Z) does not have the
stronger property [T3], shown to the authors by Roman Sauer: SL3(Z) ad-
mits a finite-index torsion-free subgroup with cohomological dimension three
and Euler characteristic zero. Since the zeroth cohomology of a non-trivial
group with trivial coefficients Q is non-zero, there must be some non-trivial
cohomology in odd dimensions. There is none in dimension one, since SL3(Z)
has property T , and thus its finite-index subgroups have finite abelianisa-
tions. The subgroup must therefore have non-vanishing third cohomology
with coefficients in Q, which by Shapiro’s lemma gives us non-vanishing
third cohomology for SL3(Z) with coefficients in a finite-dimensional unitary
representation. This representation does have non-trivial invariant vectors.

The general strategy that we will follow consists of three steps. First,
we explicitly construct a chain complex for the symmetric space of SLN (R)
relative to its Borel–Serre boundary using Voronoi cells – here we are follow-
ing an established technique, see [Sou00, EVGS13]. Then we construct an
explicit finite-dimensional representation of SLN (Z) all of whose invariant
vectors are trivial. Finally, we tensor the chain complex with the representa-
tion, and obtain non-trivial homology classes of the tensored complex using a
computer. Through an argument using a spectral sequence and Borel–Serre
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duality, we obtain non-trivial cohomology classes for SLN (Z) with coefficients
in the chosen representation.

Notebooks containing the computations can be found in a Zenodo repos-
itory [BHKM24]. In particular, they contain an implementation of the
Voronoi tessellation in the Julia language.

2. Computing cohomology of special linear groups

The central aim of the article is to compute cohomology groups of the
special linear group SLN (Z). We will do this by relating the cohomology
of SLN (Z) to the homology of the pair (X∗

N , ∂X∗
N ), where XN denotes the

symmetric space associated to SLN (R), the space X∗
N ⊃ XN is a certain

bordification, and ∂X∗
N = X∗

N \XN is the boundary of this bordification.

2.1. The bordification X∗
N . We start by defining X∗

N . The set of all sym-
metric N ×N -matrices over R forms an (N(N +1)/2)-dimensional subspace
of RN×N . We identify it with the subspace of quadratic forms on RN . Inside
this subspace, the set of all positive definite forms is a cone that we denote
by KN . We write K∗

N for its rational closure, i.e. the set of all positive semi-
definite forms whose kernel is spanned by vectors in QN . The set K∗

N forms
a cone as well and we have KN ⊂ K∗

N .
Define X∗

N as the quotient of K∗
N by homotheties and let π : K∗

N → X∗
N be

the projection map, i.e. π(q) = π(q′) if and only if q = λ·q′ for some λ ∈ R>0.
We identify the symmetric space XN associated to SLN (R) with π(KN ).
(The isomorphism of XN with the coset description of the symmetric space as
SO(N)\SLN (R) is given by SO(N)g 7→ π(gtg).) We write ∂X∗

N = X∗
N \XN .

The group SLN (Z) acts on K∗
N from the right by

q.g = gtqg, for g ∈ SLN (Z) and q ∈ K∗
N ,

where we see both g and q as represented by matrices in RN×N . This induces
an action of SLN (Z) on X∗

N that extends the usual action on XN and in
particular preserves ∂X∗

N .

2.2. Relation to the cohomology of SLN (Z). Write G = SLN (Z) and let
M be a QG-module which is finite dimensional as a Q-module. By [Sou00,
Proposition 1],

Hp(X
∗
N , ∂X∗

N ) =

{
StN if p = N − 1;
0 otherwise;

as G-modules, where StN is the Steinberg module associated to SLN (Q),
i.e. the degree-(N − 2) reduced homology of the Tits building associated to
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SLN (Q). In particular,

(1) Hp(X
∗
N , ∂X∗

N )⊗M =

{
StN ⊗M if p = N − 1;

0 otherwise;

as G-modules, where tensoring takes place over Z, and G acts diagonally.
We want to compare the G-modules Hp(X

∗
N , ∂X∗

N ) ⊗ M and
HG

p (X∗
N , ∂X∗

N ;M). To this end, let us prove the following lemma, which
holds for any group G.

Lemma 2.1. Let (X,Y ) be a pair of G-CW complexes. If M is a G-
module that is torsion free as a Z-module, then the natural bilinear map
Hp(X,Y ;M) → Hp(X,Y )⊗M is an isomorphism of G-modules.

Proof. We proceed by examining a standard proof for the Universal Coef-
ficient Theorem and checking that each of the maps involved is in fact a
G-map. See for example [Hat02, Chapter 3.A] for a detailed proof of the
Universal Coefficient Theorem.

Let C• denote the chain complex of the pair (X,Y ) – it is a chain complex
of ZG-modules, and all the modules are free as Z-modules. The complex
admits subcomplexes Z• and B• (with trivial differentials) of G-modules
consisting of cycles and boundaries, respectively. The chain complex C• is
an extension of B•−1 by Z•; this extension respects the G-module structure,
and it is split as an extension of chain complexes of Z-modules. Tensoring
these chain complexes with M over Z (with diagonal G-action) we obtain a
short exact sequence of chain complexes of G-modules

0 Z• ⊗M C• ⊗M B•−1 ⊗M 0

(exact since the short exact sequence before tensoring was split). It gives a
long exact homology sequence of G-modules

· · · Bn ⊗M Zn ⊗M Hn(C•;M) · · ·in⊗id

that breaks up into short exact sequences of G-modules

0 Coker(in ⊗ id) Hn(C•;M) ker(in−1 ⊗ id) 0.

Now, Coker(in ⊗ id) = Hn(C•)⊗Z M by right-exactness of the tensor prod-
uct. The group ker(in−1 ⊗ id) is, by definition (see e.g. [Hat02, Chapter
3.A]), exactly TorZ1 (Hn−1(C•),M). The Tor-group vanishes because M is
Z-torsion-free by assumption. □

Returning to the case G = SLN (Z), we conclude that

(2) Hp(X
∗
N , ∂X∗

N )⊗M ∼= Hp(X
∗
N , ∂X∗

N ;M)

as G-modules.
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There is a spectral sequence, see [Bro94, VII (7.2)], that computes the
equivariant homology HG

p+q(X
∗
N , ∂X∗

N ;M), namely,

E2
p,q = Hp(G;Hq(X

∗
N , ∂X∗

N ;M)) ⇒ HG
p+q(X

∗
N , ∂X∗

N ;M).

But by Eqs. (1) and (2), the E2-page of this spectral sequence is concentrated
in the q = N − 1 row. In particular, it collapses, and so

HG
p+N−1(X

∗
N , ∂X∗

N ;M) ∼= Hp(G;HN−1(X
∗
N , ∂X∗

N ;M))

∼= Hp(G; StN ⊗M)

∼= HN(N−1)/2−p(G;M)

where the last isomorphism is Borel–Serre Duality [BS73].
In conclusion, in order to understand the cohomology Hq(G;M), it is

enough to compute HG
(N+2)(N−1)/2−q(X

∗
N , ∂X∗

N ;M). We are in particular
interested in the case q = N − 1, where the above gives an isomorphism

(3) HN−1(G;M) ∼= HG
N(N−1)

2

(X∗
N , ∂X∗

N ;M).

We will compute the right hand side of this equation using an explicit chain
complex that we describe in the next subsection.

3. A chain complex for (X∗
N , ∂X∗

N )

In this section, we describe a cell structure on (X∗
N , ∂X∗

N ) due to Voronoi
[Vor08]. This cell complex (or its quotient under the action of SLN (Z)) is
often called the first Voronoi or perfect cone decomposition of X∗

N . We then
give an explicit description of the associated cellular chain complex. We
largely follow [Sou00] and [EVGS13]; for further details, see also [Mar03,
Chapter 7] and [McC91, Sections 2.7–2.10]

3.1. Voronoi tessellation. Recall from Section 2.1 that KN and K∗
N de-

note the cones of positive definite forms and positive semi-definite forms with
rational kernel, respectively, and that XN and X∗

N are the images of these
cones under the map π that quotients out homotheties. For a positive defi-
nite form q ∈ KN , let µ(q) = minw∈ZN\{0} q(w) be the smallest value that q

takes on non-trivial elements of ZN . The set of minimal vectors m(q) is the
(finite) subset of ZN where this miminum is attained,

m(q) =
{
v ∈ ZN

∣∣ q(v) = µ(q)
}
.

The form q is called perfect if m(q) determines it uniquely up to homothety,
so if q′ ∈ KN with m(q′) = m(q), then π(q) = π(q′) ∈ XN .

To each perfect form q ∈ KN we can associate a subset σ(q) ⊆ X∗
N defined

as follows: For v ∈ ZN\{0}, let v̂ ∈ K∗
N be the positive semidefinite quadratic

form defined by the matrix vvt. The convex hull of all v̂ with v ∈ m(q) is a
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subset of K∗
N . Define σ(q) as the image of this convex hull in X∗

N ,

σ(q) := π (hull({v̂ | v ∈ m(q)})) .

Voronoi [Vor08] showed that the collection of the sets σ(q), where q ranges
over all perfect forms in KN , together with all their intersections forms a
polyhedral cell decomposition of X∗

N [Mar03, Proposition 7.1.8].
Any face τ of this polyhedral complex is contained in a maximal dimen-

sional cell σ(q). Define m(τ) ⊆ m(q) to be the set of all minimal vectors
v ∈ m(q) such that π(v̂) ∈ τ (in particular, if τ = σ(q) has maximal dimen-
sion, then m(σ(q)) = m(q)). The set m(τ) is uniquely determined by τ and
independent of its embedding in a maximal cell τ ⊆ σ(q) [McC91, Theorem
2.10(a)]. The cell τ is the convex hull of m(τ), and for cells τ and τ ′ we have
m(τ ∩ τ ′) = m(τ) ∩m(τ ′).

The action of SLN (Z) on X∗
N is cellular with respect to this cell struc-

ture and for g ∈ SLN (Z) and a cell σ, we have m(σ.g) = m(σ).g =

{gv | v ∈ m(σ)}. There are only finitely many SLN (Z)-orbits of cells [Vor08,
p. 110], cf. [McC91, Theorem 2.10(c)], and if a cell σ intersects XN

non-trivially (so it is not contained in ∂X∗
N ), then the setwise stabiliser

StabSLN (Z)(σ) is finite.
Note that for N ≥ 2, all vertices of this polyhedral complex are contained

in ∂X∗
N (they correspond to the forms vvt, which cannot be positive definite

as they have non-trivial kernels). Furthermore, if the interior of a cell τ

contains any point of ∂X∗
N , then τ is already entirely contained in ∂X∗

N . In
particular, the cell decomposition is such that ∂X∗

N is a subcomplex (i.e. a
union of closed cells). This allows one to compute HG

p (X∗
N , ∂X∗

N ;M) using
the cellular chain complex of the pair (X∗

N , ∂X∗
N ). We describe this chain

complex in the next section.

Example 3.1. If N = 2, the symmetric space X2 is the hyperbolic plane
and X∗

2 is obtained from it by adding a countable set of boundary points.
The polyhedral complex described above has dimension 2 and is simplicial.
There is exactly one SL2(Z)-orbit of cells in each dimension 0,1 and 2. The
2- and 1-cells intersect X2 non-trivially, whereas the 0-cells are contained in
∂X∗

2 . The orbit of the 2-cells is represented by the perfect form

q =

(
2 −1

−1 2

)
with m(q) = {±e1,±e2,±(e1 + e2)} ,

where e1, e2 ∈ Z2 are the two standard basis vectors. The orbit of 1-cells
is represented by the cell σ with m(σ) = {±e1,±e2}, and the orbit of the
0-cells by τ with m(τ) = {±e1}. This tessellates X∗

2 by the Farey graph
with all vertices lying at ∂X∗

2 .
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The case N = 3 is described in [Ste07, A.3.7].

3.2. The cellular chain complex of (X∗
N , ∂X∗

N ). We will now describe
the cellular chain complex V• of (X∗

N , ∂X∗
N ), as a chain complex of projec-

tive QSLN (Z)-modules. The discussion is actually more general: consider
(X, ∂X), a G-CW-pair of regular CW-complexes for some group G, such that
there are only with finitely many orbits of open cells that are not contained
in ∂X and such that the stabiliser of each such cell is finite.

Given an n-cell σ and an (n − 1)-cell τ , we say that τ is a facet of σ if
and only if the attaching map ∂σ → X(n−1) and every map homotopic to
it has image intersecting the interior of τ non-trivially. When (X, ∂X) is a
polyhedral pair, this coincides with the usual notion of a facet.

Our description of the modules is an explicit version of the argument given
in [Bro94, Example III.5.5b], but carried out over the rationals. Concretely,
the QG-modules Vσ that we are about to describe are isomorphic to the
modules IndGG(σ)Zσ ⊗Q in Brown’s notation.

For each cell σ of X, fix an orientation of σ. If τ and σ are cells of X

that are not contained in ∂X, we denote by G(τ, σ) ⊂ G the (finite) set of
all g ∈ G such that τ.g is a (not necessarily proper) face of σ, ignoring the
orientations. Note that if G(τ, σ) is non-empty, then it is a double coset of
the stabilisers G(τ) := StabG(τ) ⩽ G on the left and G(σ) on the right,
where again the orientation is ignored. Furthermore, if g ∈ G(τ, σ) and τ.g

is either equal to σ or a facet of σ, we define η(τ, σ, g) ∈ {±1} to be 1 if g
sends the fixed orientation of τ to the orientation on τ.g induced from that
of σ, and to be −1 otherwise. Clearly, for h ∈ G(σ) we have

η(τ, σ, g)η(σ, σ, h) = η(τ, σ, gh) and η(σ, σ, h) = η(σ, σ, h−1),

and similarly for (h, g) ∈ G(τ)×G(τ, σ) and (h, g) ∈ G(σ)×G(τ, σ).
Let On be a set of representatives of the G-orbits of unoriented n-cells of

X that are not contained in ∂X. For σ ∈ On, we put

Vσ =

 ∑
g∈G(σ)

η(σ, σ, g)gξ

∣∣∣∣∣∣ ξ ∈ QG

 .

One easily sees that this is isomorphic to Brown’s IndGG(σ)Zσ ⊗ Q via the
map taking a generator of Zσ to vσ = 1

|G(σ)|
∑

g∈G(σ) η(σ, σ, g)g. In other
words, the element vσ represents the n-chain with weight one on σ, and
zero elsewhere – we will refer to this as the characteristic chain of σ. In
particular, for h ∈ G(σ) we have hvσ = η(σ, σ, h)vσ = vσh.

We let Vn =
⊕

σ∈On
Vσ and define the boundary operators ∂n : Vn → Vn−1

as follows. Let σ ∈ On and τ ∈ On−1. We will define the map ∂σ,τ : Vσ → Vτ ,
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and then set

∂n =
⊕
σ∈On

∑
τ∈On−1

∂σ,τ :
⊕
σ∈On

Vσ →
⊕

τ∈On−1

Vτ .

Define ∂σ,τ : Vσ → Vτ to be the map given by left multiplication with

1

|G(τ)|
∑

g∈G(τ,σ)

η(τ, σ, g)g.

Here, η(τ, σ, g) is computed with respect to the fixed orientations on σ and
τ . When τ.G does not contain faces of σ, we set ∂σ,τ to be the zero map.

Let us compute ∂σ,τvσ for σ and τ as above. Picking orbit representatives,
we write G(τ, σ) =

⊔l
i=1G(τ)gi for some collection of elements g1, . . . , gl of

G(τ, σ). In this notation, σ has exactly l facets in the orbit of τ , namely
τ.g1, . . . , τ.gl. Now,

∂σ,τvσ =
1

|G(τ)|
∑

g∈G(τ,σ)

η(τ, σ, g)gvσ

=
1

|G(τ)|

l∑
i=1

∑
g∈G(τ)

η(τ, σ, ggi)ggivσ

=
1

|G(τ)|

l∑
i=1

∑
g∈G(τ)

η(τ, τ, g)η(τ, σ, gi)ggivσ

=

l∑
i=1

η(τ, σ, gi)vτgivσ

=
1

|G(σ)|

l∑
i=1

∑
h∈G(σ)

η(τ, σ, gi)vτgiη(σ, σ, h)h

=
1

|G(σ)|

l∑
i=1

∑
h∈G(σ)

η(τ, σ, gih)vτgih.

For every i and h ∈ G(σ), we have gih ∈ G(τ, σ), so there exists a unique j

such that gih ∈ G(τ)gj . Set h′ := gihgj
−1 ∈ G(τ). We have

η(τ, σ, gih)vτgih = η(τ, σ, h′gj)vτh
′gj

= η(τ, σ, h′gj)η(τ, τ, h
′)vτgj

= η(τ, σ, gj)vτgj .

Moreover, the map (i, h) 7→ j is |G(τ)|-to-one, and hence

∂σ,τvσ =
1

|G(σ)|

l∑
i=1

∑
h∈G(σ)

η(τ, σ, gih)vτgih = vτ ·
l∑

j=1

η(τ, σ, gj)gj .
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Since vτ represents the characteristic chain of the cell τ , the expression
above is precisely the sum of the characteristic chains of the G-translates
of τ that are faces of σ, with signs depending on orientations. Therefore
the chain complex V• = (Vn, ∂n) is isomorphic to the chain complex of the
CW-pair (X, ∂X).

Let M be any QG-module, and consider H0(G;Vp ⊗ M); by definition,
this is the abelian group of QG-coinvariants of Vp ⊗M , but this in turn is
easily seen to be precisely Vp ⊗QG M . Clearly, the differentials in V• ⊗ M

descend to those of V• ⊗QG M , and therefore V• ⊗QG M coincides with
the chain complex with terms H0(G;Vp ⊗ M) that appears as the zeroth
row (that is, q = 0) of the first page of the spectral sequence computing
HG

p+q(X, ∂X;M), see [Bro94, Equation VII.7.6]. Crucially, the other terms
are all zero: by [Bro94, Equation VII.7.6] again, they are all equal to direct
sums of homologies in degree q of the groups G(σ) for various cells σ. These
groups are all finite, and the rational cohomological dimension of a finite
group is zero. Hence, for q ̸= 0, these terms are all zero, as claimed. We
therefore see that HG

p (X, ∂X;M) coincides with Hp(V• ⊗QG M) for every
QG-module M .

The modules Vn constructed above are submodules of free modules. We
will now show that they are direct summands. To this end, we will first
decompose QG.

Lemma 3.2. Let K be a finite subgroup of G and η : K → {±1} be a
homomorphism. Put

V =

{∑
k∈K

η(k)kξ

∣∣∣∣∣ ξ ∈ QG

}

and W =

∑
g∈G

λ(g)g ∈ QG

∣∣∣∣∣∣
∑
k∈K

η(k)λ(kg) = 0 ∀g ∈ G

 .

Then QG = V ⊕W .

Proof. Consider the QG-linear map ρ : QG → QG given by x 7→ vx where
v = 1

|K|
∑

k∈K η(k)k. Clearly, the image of ρ is precisely V , and since v2 = v,
the map ρ is actually a retraction of QG onto V . It follows that QG =

ker ρ ⊕ V , and hence it is enough to show that W = ker ρ, but this is
immediate. □

It follows that

(4) (QG)On =
⊕
On

QG = Vn ⊕Wn
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for

Vn =
⊕
σ∈On

Vσ and Wn =
⊕
σ∈On

Wσ,

where

Wσ =

∑
g∈G

λ(g)g ∈ QG

∣∣∣∣∣∣
∑

k∈G(σ)

η(σ, σ, k)λ(kg) = 0 ∀g ∈ G

 .

In particular, this implies that V• is a chain complex of projective QG-
modules.

4. Homology with unitary coefficients

We now compute homology with coefficients being a Hilbert space en-
dowed with a unitary action of G. In this context, one usually considers
reduced homology, namely kernels of the differentials divided by the closures
of the images. The reason is that the resulting abelian groups are then
Hilbert spaces themselves. This has practical consequences, for example
when one wants to access the von Neumann dimension, like in the theory of
L2-homology. The usual homology is known as the non-reduced homology
in this context.

Let H be a finite-dimensional Hilbert space (either real or complex) en-
dowed with a linear G-action, where G = SLN (Z). In practice, this is going
to be one of our carefully chosen orthogonal representations. To compute
HG

• (X∗
N , ∂X∗

N ;H) we need to tensor the chain complex V• defined in Sec-
tion 3.2 with H over QG and compute the homology of the resulting chain
complex

. . . → Vn+1 ⊗QG H ∂n+1⊗id−−−−−→ Vn ⊗QG H ∂n⊗id−−−−→ Vn−1 ⊗QG H → . . . .

Using the isomorphism QG⊗QG H
∼=−→ H, g ⊗ v 7→ π(g)v and Eq. (4), we

view the modules Vn⊗QGH as direct summands of Hilbert spaces QGOn⊗QG

H ∼= HOn ; hence, the modules Vn ⊗QG H are Hilbert spaces themselves.
Since H is finite dimensional, and the QG-modules Vi are direct sum-

mands of finitely generated free QG-modules by Eq. (4), all the linear spaces
appearing as images of the differentials in the chain complex are finite di-
mensional. Hence they are closed, which implies that the reduced and non-
reduced homologies of V• ⊗QG H coincide. This is important: For us it is
easier to compute reduced homology as the kernel of a Laplacian, but to use
the previous section we need to determine the non-reduced homology.
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It follows from the Hodge decomposition that HG
n (X∗

N , ∂X∗
N ;H) = ker∆n

where

∆n =
(
∂∗
n∂n + ∂n+1∂

∗
n+1

)
⊗ id : Vn ⊗QG H → Vn ⊗QG H

is the Laplacian. This version of the Hodge decomposition has exactly the
same proof as the usual L2-version, see for example [Sch15, Lemma 2.0.2].

Instead of computing the kernel of the Laplacian ∆n, we substitute it with
another operator ∆′

n : (QG)On ⊗QG H → (QG)On ⊗QG H. This is done in
such a way that ker∆n

∼= ker∆′
n. We then compute ker∆′

n.
We define the operator ∆′

n to be equal to ∆n on the Vn component and
to be the identity on the Wn component of Eq. (4):

∆′
n :=

((
∂∗
n∂n + ∂n+1∂

∗
n+1

)
⊕ idWn

)
⊗idH : (Vn⊕Wn)⊗QGH → (Vn⊕Wn)⊗QGH.

Since tensoring preserves direct sums, we have

ker∆′
n = ker∆n ⊕ ker(id⊗ id : Wn ⊗H → Wn ⊗H) ∼= ker∆n.

The reason for working with ∆′
n instead of ∆n is that we can easily describe

∆′
n as a matrix by evaluating the representation π : G → B(H) on(

∂∗
n∂n + ∂n+1∂

∗
n+1

)
⊕ idW : (QG)On → (QG)On .

The key point here is that ∆′
n is obtained from a homomorphism of free

QG-modules. The Laplacian ∆n on the other hand is obtained from a map
of projective QG-modules.

5. Nontriviality of cohomology

In this section we describe finite-dimensional orthogonal representations
πN : SLN (Z) → B(HN ), N = 3, 4, all of whose invariant vectors are trivial,
such that the cohomology HN−1(SLN (Z), πN ) is non-zero. Since the repre-
sentations are finite dimensional, the cohomology coincides with the reduced
cohomology.

The general scheme is as follows. We find, for some prime pN , an orthog-
onal (hence unitary) representation π′

N : SLN (ZpN ) → B(HN ) all of whose
invariant vectors are trivial, where ZpN = Z/pNZ. This defines

πN : SLN (Z) → B(HN )

by precomposing π′
N with the modular map SLN (Z) ↠ SLN (ZpN ). Applying

πN to the operator ∆′
n yields a real square matrix, as explained at the end of

Section 4. To show that HN−1(SLN (Z), πN ) ̸= 0, we have to prove that for
n = N(N − 1)/2, this matrix has non-trivial kernel (see Eq. (3)). Moreover,
computing the real dimension of this kernel gives precisely the real dimension
of the corresponding cohomology.
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Let us define π′
3 and π′

4. In both cases, we indicate a subgroup HN of
SLN (ZpN ), N = 3, 4, and an orthogonal representation π′′

N of HN all of whose
invariant vectors are trivial. The representation π′

N is the representation
induced from π′′

N , from HN to SLN (ZpN ), where p3 = 3, p4 = 2. In order to
get π′′

N , in turn, we proceed as follows. We indicate a normal subgroup H of
HN and define an orthogonal representation ρ of the quotient group HN/H

all of whose invariant vectors are trivial, in an explicit way. As in the case of
constructing πN from π′

N , the representation π′′
N is defined by precomposing

ρ with the quotient homomorphism HN ↠ HN/H. Below, we describe the
representation ρ for N = 3 and N = 4.

(1) The case N = 3. We set H3 to be the subgroup of SL3(Z3) generated
by the two matrices

s =

0 0 1

0 2 0

1 1 0

 and t =

1 2 0

0 2 0

1 1 2

 .

The group H3 is isomorphic to S3 × S3 and we take its index-two
subgroup H ∼= C3 × S3 generated by s and the two matrices

a =

0 0 1

0 2 0

1 1 0

 and b =

0 1 2

0 1 0

1 2 2

 .

This allows us to define ρ : HN/H → GL1(R) as follows.

ρ(hH) =

{
(1) if h ∈ H

(−1) if h /∈ H
.

Suppose that v ∈ R is an invariant vector of ρ. Then any h ∈ HN \H
represents the generator hH of HN/H. Thus, ρ(hH)v = −v. Since
v is invariant this means that it is the zero vector.

(2) The case N = 4. The group H4 is the subgroup of SL4(Z2) generated
by the two matrices

s =


1 0 0 0

0 0 0 1

1 1 0 1

1 0 1 1

 and t =


0 1 1 0

0 1 1 1

1 1 1 1

0 0 1 1

 .
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The order of H4 is 576 and H4 possesses a normal subgroup H gen-
erated by the following six matrices:

a =


1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1

 , b =


1 1 1 0

1 0 0 0

0 0 1 0

1 0 1 1

 , c =


0 1 1 1

1 0 1 1

0 0 1 0

0 0 0 1



d =


1 0 1 0

0 1 1 0

0 0 1 0

0 0 0 1

 , e =


0 1 0 1

0 1 0 0

0 0 1 0

1 1 0 0

 , f =


1 0 0 0

1 0 1 1

0 0 1 0

1 1 1 0

 .

The quotient H4/H is isomorphic to D6
∼= S3, the dihedral group of

order six, and is generated by the equivalence classes of

x =


0 1 0 0

0 1 1 1

1 1 1 1

0 0 0 1

 and y =


0 1 0 0

0 0 0 1

1 1 0 1

0 1 1 1

 .

Let us denote by M(σ) the permutation matrix of σ ∈ S3, e.g.

M((1 2 3)) =

0 0 1

1 0 0

0 1 0

 .

We define ρ : HN/H → GL3(R) as follows.

ρ(hH) =



I3 if hH = H,

M((1 2 3)) if hH = xH,

M((3 2 1)) if hH = x2H,

−M((1 2)) if hH = yH,

−M((2 3)) if hH = yxH,

−M((1 3)) if hH = yx2H.

Assuming v = (v1, v2, v3) ∈ R3 is an invariant vector of ρ, we have
(v1, v2, v3) = ρ(xH)v = (v3, v1, v2). This already implies that v1 =

v2 = v3 = t. On the other hand, (t, t, t) = ρ(yH) = (−t,−t, t) which
means t = 0. Thus, the only invariant vector of ρ is the zero vector.

Denote by Ξ3 the operator ∆′
3 for N = 3, as constructed at the end of

Section 4. Similarly, denote by Ξ4 the operator ∆′
6 for N = 4.

After performing the necessary computations, we were able to show the
main result of this paper.
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Theorem 5.1. The coranks of the matrices π3(Ξ3) and π4(Ξ4) are equal to
4 and 2 respectively. Therefore, H2(SL3(Z), π3) ∼= R4 and H3(SL4(Z), π4) ∼=
R2.

6. Implementation

In order to get our results, we implemented the necessary procedures in
Julia [BEKS17]. They are available at [BHKM24]. Below we describe them
in more detail.

6.1. Voronoi tessalation and the chain complex V•. In the follow-
ing, we describe how we computed the equivariant chain complex V• of
(X∗

N , ∂X∗
N ) described in Section 3.2. We again set G = SLN (Z).

6.1.1. Barycentres. For implementing computations around the Voronoi cell
structure on X∗

N , we use that much information about the cells of this
complex can be inferred from knowing their barycentres: For a cell σ, let
q(σ) :=

∑
v∈m(σ) v̂. Then π(q(σ)) is the barycentre of σ. If σ and σ′ are cells

of the same dimension, then g ∈ G sends σ to σ′ if and only if it sends q(σ)

to q(σ′), i.e.

G(σ, σ′) =
{
g ∈ G

∣∣σ.g = σ′} =
{
g ∈ G

∣∣ q(σ).g = q(σ′)
}
.

In particular, the setwise stabiliser of a cell σ is given by

(5) StabG(σ) = {g ∈ G | q(σ).g = q(σ)} .

Furthermore, a cell σ intersects X∗
N non-trivially (so it is not contained in

∂X∗
N ) if and only if its barycentre does, which is equivalent to saying that

q(σ) is positive definite. Positive definiteness can be effectively checked with
a computer, so this allows us to determine which cells lie in ∂X∗

N . And if q(σ)
and q(σ′) are positive definite forms, then the set of all g ∈ G sending q(σ)

to q(σ′) can be effectively computed as well. This allows one to determine
G(σ, σ′) and StabG(σ) = G(σ).

6.1.2. Orientations. An orientation of a Voronoi cell σ is the same as an
orientation of the dim(σ)-dimensional vector space R(σ) of symmetric N×N

matrices spanned by the forms v̂ with v ∈ m(σ). In practice, we determine
such an orientation by picking an ordered basis of R(σ). If τ is a facet of σ and
both have a fixed orientation, we compute the relative orientation η(τ, σ, 1)

as follows: Start with the ordered basis B of R(τ); let B′ be the basis of
R(σ) ⊃ R(τ) obtained by appending to B any vector v̂ with v ∈ m(σ)\m(τ)

(the result does not depend on the choice of v̂). Then η(τ, σ, 1) = ±1 is the
orientation of B′ in the oriented vector space R(σ).
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6.1.3. Computing V• Step 1: Voronoi cells. As a first step to compute V•,
we compute for each n a set On of representatives of the G-orbits of n-cells
in X∗

N that intersect XN non-trivially. Such cells occur in each dimension
N − 1 ≤ n ≤ dim(XN ) = N(N + 1)/2 − 1. Each representative σ ∈ On is
saved in terms of m(σ), a finite set of vectors in ZN . We ignore orientations
for now.

We start with the top-dimensional cells, n = dim(XN ). These are in 1-to-
1 correspondence with the G-orbits of rank-N perfect forms. These orbits
have been computed up to N = 8 [DSSV07]. We extract the information
from the Lattices database of Nebe and Sloane [NS24]. (Strictly speaking,
these are the GLN (Z)-orbits of perfect forms, but for N ⩽ 5, these are the
same as the SLN (Z)-orbits.) For each perfect form q, we compute its minimal
vectors m(q) using GAP [GAP22].

Now assume that we have computed On+1. We then compute On as
follows: For every σ ∈ On+1, the convex hull of the forms v̂ with v ∈ m(σ) is a
polyhedral subset of K∗

N . We compute each v̂ = vvt as a symmetric matrix in
ZN×N such that their convex hull is a subset of RN×N . We use the Polyhedra
package [Leg23, Lea24] with the exact version of the library CDDLib [ea20] in
its Julia wrapper CDDLib.jl [LDF+19] to compute all facets of this subset.
For each such facet, we first determine whether the corresponding cell τ

of X∗
N intersects XN non-trivially. As mentioned in Section 6.1.1, this is

equivalent to q(τ) being positive definite. We check this using Sylverster’s
criterion, which allows for exact computations (see also Section 6.4). If q(τ)
is positive definite, we check whether we already added a representative of
the G-orbit of τ to On in a previous step. To do so, we check whether q(τ)

lies in the orbit of q(τ ′) for some τ ′ ∈ On. This is done using an algorithm
of Plesken–Souvignier [PS97]. We used an implementation of this algorithm
by Brandt [Bra20] using a combination of Julia and GAP, which we adapted
to our purposes.

6.1.4. Computing V• Step 2: Differentials. We next determine for every n

the modules Vn and the differential ∂n : Vn → Vn−1. To do so, we first fix
for all n and all σ ∈ On an orientation by computing an (arbitrary) ordered
basis of the vector space R(σ), as described in Section 6.1.2.

For each σ ∈ On, we compute its stabiliser G(σ) using Eq. (5). For every
g ∈ G(σ), we also compute η(σ, σ, g) by comparing the fixed orientation of
σ with the image of this orientation under g. This determines the element
vσ, and hence the summand Vσ ⩽ Vn. The module Vn is the direct sum of
modules Vσ.

The differentials ∂n are defined as sums of the QG-morphisms ∂σ,τ , for σ ∈
On and τ ∈ On−1. To determine these, we first compute all facets of σ using



UNITARY COHOMOLOGY OF SLN (Z) 16

Polyhedra.jl. For each such facet τ ′, we determine whether τ ′ intersects the
interior of X∗

N by checking whether q(τ ′) is positive definite. If this is not the
case, we ignore τ ′ and continue with the next facet of σ. If q(τ ′) is positive
definite, we fix an orientation on τ ′. We use the algorithm by Plesken–
Souvignier [PS97, Bra20] to determine the unique τ ∈ On−1 that lies in the
same G-orbit as τ ′. The algorithm also allows us to get a list of all g ∈ G such
that τ.g = τ ′. Comparing the orientation on τ ′ with the g-image of the fixed
orientation on τ gives us η(τ, τ ′, g) for all such g. We compute η(τ ′, σ, 1) by
comparing the orientation on τ ′ with the fixed orientation on σ, as explained
in Section 6.1.2. We then compute η(τ, σ, g) = η(τ, τ.g, g) · η(τ.g, σ, 1). This
is all the information that is necessary to determine

xτ ′ :=
1

|G(τ)|
∑

g∈G(τ,τ ′)

η(τ, σ, g)g.

We obtain ∂σ,τ : Vσ → Vτ as left multiplication with the sum of all xτ ′ where
τ ′ is a facet of σ. This sum is an element of the group ring QG that we store
to represent ∂σ,τ ; we store ∂n as a matrix over QG. We use the group ring
implementation from [KL22] (as used in [KNO19, KKN21]) wrapped in the
matrix setting in [KMN24].

6.2. Computing the Laplacians. In order to compute the operators Ξ3

and Ξ4 as matrices over group rings, we start by computing the Laplacians
∆n. To work with a group ring, one has to be able to solve the word problem
in the group. It turns out that an efficient way of computing with RG is to
pre-compute a big enough portion of the Cayley graph of G.

We fix (N,n) to be (3, 3) or (4, 6), see Section 5. We create a subspace
R(E−1E) of RG supported on the set E−1E, where E consists of the elements
of G appearing in the support of ∂σ,τ for any cells τ and σ of dimension
n−1, n, or n+1, and of elements of the stabiliser of any cell. The computer
verifies that this set is actually big enough, that is, that E−1E contains the
supports of all the group elements that appear in our computations. This
was not clear a priori.

More precisely, R(E−1E) is the subspace of RG consisting of the sums∑
g∈E−1E λgg with twisted multiplication (x, y) 7→ x∗y defined on E only. In

that way we ensure that the twisted multiplication is an intrinsic operation in
R(E−1E), defined on a subset of R(E−1E) consisting of group ring elements
supported on E. We now compute ∆n as a matrix over R(E−1E).

In the next step, we pass from ∆n to ∆′
n. We store ∆n as an On × On

matrix over QG. We first need to make sure that the matrix only operates
on Vn, rather than on

⊕
On

QG. To arrange this, one can multiply the
matrix on both sides by a diagonal matrix with entries vσ in the (σ, σ)
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position. However, it follows from the computations in Section 3.2 that this
multiplication does not change the matrix (this is also verified in the code).
Finally, we add the diagonal matrix with entries 1− vσ in the (σ, σ) position
to our matrix, to guarantee that we operate as the identity on Wn. This
yields the desired matrix ∆′

n, which is precisely Ξ3 or Ξ4, depending on
(N,n).

These computations constitute the sln_laplacians.jl script from
[BHKM24].

6.3. Proving non-triviality of cohomology. At this stage, we load the
matrix Ξ3 or Ξ4 from the previous step, compute the orthogonal represen-
tation of SLN (Z) for N = 3 and N = 4 as described in Section 5 and
apply this representation to the matrix. We compute the corank (or nul-
lity) of the matrices, proving Theorem 5.1. All this is performed in the
sln_nontrivial_cohomology.jl script.

6.3.1. Computing the representation π′′
N . In the first step, we compute the

representation π′′
N with the flip_permutation_representation function.

This boils down to computing the representation ρ of the quotient HN/H

(cf. Section 5). To get the subgroups HN , and H, we used GAP [GAP22].
We decided, however, to define the generating matrices of these subgroups
(obtained via GAP) entirely in Julia, due to simplicity of implementation. In
order to check that the aforementioned subgroups are as described, one can
use GAP. First, define the generators and the groups HN and H as follows.

• The case N = 3.
0_:=0*Z(3)ˆ0; 1_:=1*Z(3)ˆ0; 2_:=2*Z(3)ˆ0;
s:=[[0_,0_,1_],[0_,2_,0_],[1_,1_,0_]];
t:=[[1_,2_,0_],[0_,2_,0_],[1_,1_,2_]];
a:=[[0_,0_,1_],[0_,2_,0_],[1_,1_,0_]];
b:=[[0_,1_,2_],[0_,1_,0_],[1_,2_,2_]];
H_N:=Group([s,t]);
H:=Group([s,a,b]);

• The case N = 4.
0_:=0*Z(2)ˆ0; 1_:=1*Z(2)ˆ0;
s:=[[1_,0_,0_,0_],[0_,0_,0_,1_],[1_,1_,0_,1_],[1_,0_,1_,1_]];
t:=[[0_,1_,1_,0_],[0_,1_,1_,1_],[1_,1_,1_,1_],[0_,0_,1_,1_]];
a:=[[1_,0_,1_,1_],[0_,1_,1_,1_],[0_,0_,1_,0_],[0_,0_,0_,1_]];
b:=[[1_,1_,1_,0_],[1_,0_,0_,0_],[0_,0_,1_,0_],[1_,0_,1_,1_]];
c:=[[0_,1_,1_,1_],[1_,0_,1_,1_],[0_,0_,1_,0_],[0_,0_,0_,1_]];
d:=[[1_,0_,1_,0_],[0_,1_,1_,0_],[0_,0_,1_,0_],[0_,0_,0_,1_]];
e:=[[0_,1_,0_,1_],[0_,1_,0_,0_],[0_,0_,1_,0_],[1_,1_,0_,0_]];
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f:=[[1_,0_,0_,0_],[1_,0_,1_,1_],[0_,0_,1_,0_],[1_,1_,1_,0_]];
H_N:=Group([s,t]);
H:=Group([a,b,c,d,e,f]);

Next, compute the quotient HN/H by running H_N_mod_H:=H_N/H;. When
computing the quotient HN/H, GAP automatically verifies that H is a nor-
mal subgroup of HN . We can check that the subgroups of interest have the
desired structure by calling StructureDescription(K), where K is one of
the groups: H_N, H, and H_N_mod_H. The only thing left to check, for the case
N = 4, is that the representatives (in HN ) of the generators of HN/H can
be chosen to be x and y. This can be accomplished as follows.
x:=[[0_,1_,0_,0_],[0_,1_,1_,1_],[1_,1_,1_,1_],[0_,0_,0_,1_]];
y:=[[0_,1_,0_,0_],[0_,0_,0_,1_],[1_,1_,0_,1_],[0_,1_,1_,1_]];
xˆ3 in H; yˆ2 in H; y*x*y*x in H;
x in H; xˆ2 in H; y in H; y*x in H; y*xˆ2 in H;

6.3.2. Computing the representation π′
N . In the next step, we induce π′′

N

from H to SLN (ZpN ) to get π′
N . This is done essentially in the ind_H_to_G

function, although, for the sake of legibility of the script, we wrapped it in
an auxiliary function called ind_rep_dict which is invoked directly in the
main script.

6.3.3. Evaluating representations on the Laplacians. The matrices πN (ΞN )

are computed directly from π′
N and ΞN with the representing_matrix func-

tion. For each group ring entry of ΞN , we project its supports to SLN (ZpN ),
apply π′

N to these projections and sum these values with coefficients to get
the block entry corresponding to the considered group ring entry of ΞN .

6.3.4. Checking singularity of Laplacians. Finally, we compute the corank
of the matrices computed in the previous step; these correspond to R-
dimensions of H2(SL3(Z), π3)) and H3(SL4(Z), π4), respectively.

6.4. Ensuring rigour of computations. To ensure rigour of the compu-
tations, all of them are done over integer or rational types and we use exact
determinant and rank functions provided by the LinearAlgebraX package
[Sea24].

7. Replication of the results

To replicate the computations justifying Theorem 5.1, we refer the reader
to the README.md file in the Zenodo repository [BHKM24]. All the replication
details are included there as well.
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