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Abstract. We show that free-by-cyclic groups with polynomially growing
monodromies are conjugacy separable and that double cosets of cyclic sub-
groups are separable. As a corollary of our results, we show that the outer
automorphism group of every polynomially growing free-by-cyclic group is
residually finite.
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1. Introduction

A group G is conjugacy separable if the conjugacy class of every element is
closed in the profinite topology on G. More explicitly, for any pair of non-
conjugate elements g, h ∈ G, there exists a finite quotient of G such that the
image of g is not conjugate to the image of h.

Any finitely presented conjugacy separable group has solvable conjugacy prob-
lem [Mos66]. Conjugacy separability is known to hold for a number of groups
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appearing in low-dimensional topology, for example: virtually free groups [Ste70,
Dye79], polycyclic groups [Rem69, For76], Fuchsian groups [FR90], virtually sur-
face groups [Mar07], limit groups [CZ07], and fundamental groups of compact
orientable 3-manifolds [HWZ13]. Moreover, Minasyan–Zalenskii show that every
virtually compact special hyperbolic group is conjugacy separable [MZ16].

On the other hand conjugacy separability is sensitive to passing to finite index
subgroups and finite extensions. Indeed, there exists a non-conjugacy separable
group G with a conjugacy separable index two subgroup [Gor86]. More surpris-
ingly, Martino–Minasyan construct non-conjugacy separable subgroups of finite
index in a conjugacy separable group, which are finitely presented and have solv-
able conjugacy problem [MM12]. See [Min17] for even more pathologies.

We say that a group G is free-by-cyclic if it admits a finite rank free normal
subgroup F ⊴ G such that the quotient G/F is infinite cyclic. A lift of the gener-
ator of G/F to G acts by conjugation on F . Any two lifts induce automorphisms
that differ by an inner automorphism. We call the corresponding outer class the
monodromy of the splitting.

An outer automorphism Φ ∈ Out(F ) of a finite rank free group F is polyno-
mially growing if, roughly, the minimal word lengths of conjugacy classes grow
polynomially under the iterations of Φ (see Section 2.4 for the precise definition).
We call a free-by-cyclic group polynomially growing if it has a polynomially grow-
ing monodromy.

Despite the ubiquity of free-by-cyclic groups in geometric group theory, the
study of their profinite topology has received little attention and has almost
entirely focussed on subgroup separability and rigidity [Kud24, HK25, BP25,
AHLP25].

It was recently shown by G. Bartlett that every free-by-cyclic group with
finite order monodromy is conjugacy separable [Bar25]. In this paper prove
that free-by-cyclic groups with unipotent polynomially growing monodromies
are conjugacy separable (see Theorem 7.2) and then use G. Bartlett’s result to
obtain the following generalization:

Theorem A. Every polynomially growing free-by-cyclic group is conjugacy sep-
arable.

In contrast to Theorem A, polynomially growing free-by-cyclic groups are al-
most never subgroup separable (LERF). Indeed, a free-by-cyclic group is LERF
exactly when its monodromy has finite order [Kud24].

As an application of our results we obtain the following:

Corollary B. Let G be a polynomially growing free-by-cyclic group. Then Out(G)
is residually finite.

The corollary follows from a theorem of Grossman, who shows that if G is
a finitely generated conjugacy separable group such that every pointwise inner
automorphism is inner then Out(G) is residually finite [Gro75]. The latter condi-
tion holds for all torsion-free acylindrically hyperbolic groups by [AMS16, Corol-
lary 1.5]. Free-by-cyclic groups with non-periodic monodromies are acylindrically
hyperbolic by the work of Genevois–Horbez [GH21, Corollary 1.5].

1.1. Proof strategy and further results. An outer automorphism Φ ∈ Out(F )
of a finite rank free group F is unipotent if it induces a unipotent element of
GL(H1(F ;Z)). Every polynomially growing element has a unipotent power.

It is by now a well-known fact that free-by-cyclic groups with unipotent and
polynomially growing monodromies admit acylindrical graphs-of-groups split-
tings over abelian subgroups [Mac02, BFH05, Hag19, AHK24, AM22, DT24,
KV25]. Furthermore the vertex groups of these splittings are themselves free-
by-cyclic groups with unipotent monodromies whose polynomial growth is of
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strictly lower degree, thus giving rise to a hierarchical decomposition. Our aim
is to exploit such splittings and induction on the degree of polynomial growth to
construct finite quotients that separate conjugacy classes.

In the base case of linearly growing monodromy, by [AM22, Proposition 5.2.2]
the corresponding free-by-cyclic group G splits as a graph of groups with vertex
groups of the form Fv×Z where Fv is a finite rank free group, and Z2-edge groups.
The action on the Bass–Serre tree is 4-acylindrical.

Our strategy is to construct a virtually free quotient of G for a given pair of
non-conjugate elements so that the images remain non-conjugate. Since virtually
free groups are conjugacy separable, we may pass to a further finite quotient
where the images are non-conjugate.

The virtually free quotients arise through a vertex filling procedure, which
works by replacing each vertex group in the splitting of G by an appropriate
finite quotient, resulting in a graph of finite groups with the same underlying
graph as that of the original splitting of G, and such that G maps onto the
fundamental group of the new graph of groups.

Standard arguments reduce to the case of non-conjugate elements of G which
both act loxodromically on the Bass–Serre tree of the splittings with the same
translation length and same sequence of double cosets representatives in their
short-position representatives (see Section 5.2 for the definition). In this case, we
must work harder to construct the required virtually free fillings.

A key tool in constructing virtually free fillings in this case is the property of
strong command for independent elements of vertex groups. Two infinite-order
elements g1, g2 ∈ G are independent if the conjugacy class of the cyclic subgroup
⟨g1⟩ intersects the conjugacy class of ⟨g2⟩ in exactly the trivial subgroup. The
group G strongly commands independent elements g1 and g2 if there is a finite
quotient of G such that the images of g1 and g2 have prescribed orders and
their cyclic subgroups have trivial intersection. Bridson–Wilton showed that
a (virtually) free group strongly commands any tuple of independent elements
[BW15, Theorem 4.3], and thus the same holds true for groups of the form Fv×Z.
Being able to ensure that independent elements have images in finite groups
whose orders have prescribed divisors and that generate trivially intersecting
subgroups is crucial to the combinatorial arguments in the linear growth case.
It is also interesting to note that while strong command is typically used to
construct finite index subgroups of graphs of groups, which we do, we will we
also use this property to construct vertex fillings.

In the case of superlinear growth, the corresponding free-by-cyclic group G
splits as a graph of groups with infinite cyclic edge groups and vertex groups
which are free-by-cyclic with unipotent and polynomially growing monodromy of
strictly lower degree growth. The action on the Bass–Serre tree is 2-acylindrical.
In this case, we may apply the Combination Theorem of Wilton–Zalesskii [WZ10]
(see Theorem 7.1) and argue by induction.

One of the hypotheses in the theorem of Wilton–Zalesskii is that edge groups
are double coset separable in the vertex groups. Thus, we show the following:

Theorem C. Let G be a free-by-cyclic group with polynomially growing mon-
odromy. Then, for any cyclic subgroups H,K ≤ G and g ∈ G, the double coset
HgK ⊆ G is separable.

As before, we prove Theorem C by constructing virtually free quotients via
vertex fillings. This time, we need good control over the orders and the pairwise
intersections of cyclic subgroups in the image of the vertex groups. In the case
that the vertex groups split as products Fv × Z, we can use strong command of
the fibre Fv as in the previous arguments. We are not able to prove command for
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all free-by-cyclic groups with unipotent and polynomially growing monodromies,
however we show the following, which might be of independent interest:

Proposition D. Let G be a free-by-cyclic group with unipotent and polynomially
growing monodromy. Let S ⊆ G be a collection of non-trivial elements and let
g, h ∈ G be such that ⟨g⟩ ∩ ⟨h⟩ = 1 or [g, h] ≠ 1. There exists N = N(S) such that
for every prime p > N there is a p-periodic quotient of G such that the image of
each element of S is non-trivial and the cyclic subgroups generated by g and h
have trivial intersection.

The key tool for proving Theorem D is the observation that any free-by-cyclic
group with unipotent and polynomially growing monodromy is residually torsion-
free nilpotent, and thus residually p-finite for every prime p. We note that it is
known that free-by-cyclic groups are virtually residually p-finite for every prime
p by [AF13, Corollary 4.32].

Theorem D differs from strong command in that we are no longer able to pre-
scribe arbitrary divisors to the orders of the images of element in our independent
set. This proposition is therefore not suitable for the linear growth case, but it
is good enough for the inductive step. This fits into a typical pattern, starting
with [Mac02], where the linear growth and the superlinear growth cases requires
substantially different techniques, the latter case being less pathological.

1.2. Structure of the paper. In Section 2 we give the necessary background
on group actions on trees, graphs of groups, profinite topologies on groups, au-
tomorphisms of free groups, and free-by-cyclic groups.

In Section 3 we prove that unipotent polynomially growing free-by-cyclic groups
are residually torsion-free nilpotent (Theorem 3.12) and deduce Theorem D.

In Section 4 we construct virtually free vertex fillings for cyclic splittings of free-
by-cyclic groups. We also prove general results about conjugacy distinguished
elements and cyclic subgroups in graphs of groups that admit virtually free vertex
fillings.

In Section 5 we specialise our study of vertex fillings to the case of unipotent
linear monodromy. This section uses many results from [DT24]. We conclude
this section by proving Theorem A in the special case of a free-by-cyclic group
with unipotent and linearly growing monodromy (Theorem 5.17).

In Section 6 we prove Theorem C.
Finally, in Section 7 we prove Theorem A by combining Theorems 5.17 and C

with work of Wilton–Zalesskii [WZ10] and Chagas–Zalesskii [CZ10].
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2. Preliminaries

We begin by establishing conventions that will be used throughout the paper.
For g, h ∈ G, we write adg(h) = gh = h−1gh.
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2.1. Actions on trees. Let T be a simplicial tree and define a metric dT on
T such that each edge is isometrically identified with the unit interval and the
distance between two points in T is the length of the shortest path between them.
Let Isom(T ) be the group of isometries of (T, dT ).

For any element g ∈ Isom(T ), the translation length of g is

ℓT (g) ∶= inf{dT (x, g ⋅ x) ∣ x ∈X}.
It is classical that if ℓT (g) = 0 then g fixes a point in T , and otherwise there
exists a unique line in T called the axis of g on which g acts as translation by
ℓT (g). If g ∈ Isom(T ) fixes a point then it is called elliptic and otherwise it is
hyperbolic.

The action of G ⩽ Isom(T ) on T is said to be κ-acylindrical if the pointwise
stabiliser of any edge path of length κ + 1 is trivial. We say that the action of G
on T is acylindrical if it is κ-acylindrical for some non-negative integer κ.

2.2. Graphs of groups, Bass–Serre theory. A (combinatorial) graph X con-
sists of a tuple of sets (V (X),E(X)) where V (X) is called the vertex set,
and E(X) the edge set, together with a pair of maps ι∶E(X) → V (X) and
τ ∶E(X) → V (X), and a fixed-point-free involution ¯ ∶E(X) → E(X), such that
for every edge e ∈ E(X) we have that ι(e) = τ(ē).

A graph of groups G is a triple (X,G●, ι●) where X is a graph, G● encodes the
assignment of a group Gv to every vertex v ∈ V (X) and a group Ge to every edge
e ∈ E(X) so that Ge = Gē, and ι● determines monomorphisms ιe∶ Ge ↪ Gι(e) for all
edges e ∈ E(X). We also define the monomorphism τe∶ Ge → Gτ(e), to be τe = ιē
for each e ∈ E(X). Throughout the paper we will assume that the underlying
graph X is finite.

Let G be a graph of groups and denoting by FE(X) the free group with basis
E(X). The Bass group Bass(G) is defined to be

Bass(G) = (( ˚
v∈V (X)

Gv) ∗ FE(X))/⟪eē = 1, ēιe(g)e = τe(g)⟫ .

For a vertex v ∈ V (X), the fundamental group of G based at v, denoted by
π1(G, v), is the subgroup of Bass(G) given by the elements of the form

a0e1a1e2⋯enan
where ei ∈ E(X), ai ∈ Gτ(ei) = Gι(ei+1) (when the indices occur) and the edge path
e1⋯en is a closed loop based at v in the graph X.

For any vertex v ∈ V (X), the fundamental group π1(G, v) sits as a free factor
inside Bass(G) and for any two vertices v,w ∈ V (X), the subgroups π1(G,w)
and π1(G, v) are conjugate in Bass(G). We call an element g ∈ Bass(G) a G-loop
if it is an element of π1(G, v) for some v ∈ V (X). We will sometimes omit the
basepoint and simply write π1(G) when there is no risk of confusion.

For any two graphs of groups G = (XG ,G●, ι●) and H = (XH,H●, κ●), a mor-
phism f ∶ G → H consists of the tuple

(fX ,{fv}v∈V (X),{fe}e∈E(X),{γe}e∈E(X))

where f ∶XG → XH is a morphism of graphs, each fv ∶ Gv → Hf(v) for v ∈ V (XG)
and fe∶ Ge →Hf(e) for e ∈ E(XG) is a homomorphism, and fe = fē, and γe ∈ Gf(e)
for every e ∈ E(XG). We also require that for every e ∈ E(XG),

fι(e) ○ ιe = adγe ○ιf(e) ○ fe.
A morphism of graphs of groups f ∶ G → H induces a homomorphism of the

corresponding fundamental groups f∗∶π1(G, v) → π1(H, f(v)) for any v ∈ V (XG)
[Bas93, Proposition 2.4].



CONJUGACY SEPARABILITY IN FREE-BY-CYCLIC GROUPS 6

Let XG be a graph and fix v0 ∈ V (XG). The universal cover of a graph of
groups G = (XG ,G●, ι●) is the graph T = TG with vertices

V (T ) = ∐
v∈V (XG)

π1(G, v0)/Gv,

edges
E(T ) = ∐

e∈E(XG)
π1(G, v0)/ιe(Ge),

and the adjacency map ι given by inclusions of cosets. The graph T comes
equipped with an action of π1(G, v0) with cell stabilisers conjugates of the groups
in G●.

2.3. Profinite topology.

Definition 2.1. Let G be a discrete group and let {Ni}i∈J be the family of finite
index normal subgroups of G. The profinite completion Ĝ of G is the inverse
limit of the inverse system (G/Ni)i∈J ,

Ĝ ∶= lim←Ð
i∈J

G/Ni.

There is a natural map ι∶G→ Ĝ that sends each element g to the tuple (gNi)i∈J .
The profinite topology is the coarsest topology on G so that the map ι∶G→ Ĝ is
continuous. Equivalently, it is the topology generated by a basis of open subsets
consisting of cosets of finite index normal subgroups of G.

A subset X ⊆ G is separable if it is closed in the profinite topology. Equiva-
lently, for any element g ∈ G ∖X, there exists a finite quotient π∶G → Q such
that π(g) /∈ π(X).

A subgroup H ≤ G is fully separable, if every finite index subgroup H ′ ≤f H
is separable in G. We say that G induces the full profinite topology on H if the
closure of H in the profinite completion of G is isomorphic to Ĥ.

We will often use the following lemma:

Lemma 2.2 (Reid [Rei15, Lemma 4.6]). Let G be a finitely generated group and
H ≤ G a finitely generated subgroup. Then H is fully separable in G if and only
if G induces the full profinite topology on H.

A group G is conjugacy separable if the conjugacy class of any element is
separable in G. We say that an element g ∈ G is conjugacy distinguished if the
conjugacy class of g is separable.

Theorem 2.3 (Stebe [Ste70], Dyer [Dye79]). Let G be a finitely generated vir-
tually free group. Then G is conjugacy separable.

A group G is said to have the unique roots property if for any two elements
a, b ∈ G such that an = bn for some positive integer n, it follows that a = b. A
subgroup H ≤ G of a torsion-free group is root-closed if for any g ∈ G such that
gn ∈H for some positive integer n, it follows that g ∈H.

Lemma 2.4 (Cotton-Barratt–Wilton [CBW12, Lemma 3.1]). Let G be a finitely
generated group with the unique roots property. If G contains a conjugacy sepa-
rable finite index subgroup then G is conjugacy separable.

Lemma 2.5. Let G = (X,G●, ι●) be an acylindrical graph of groups such that the
vertex groups have the unique roots property and the edge groups are root-closed.
Then, π1(G) has the unique roots property.
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Proof. Let G = π1(G) and let T be the Bass–Serre tree corresponding to the
splitting. Note that each vertex group has the unique roots property and thus is
torsion free. Hence, G is torsion free.

Arguing as in [CBW12, Lemma 3.3], if an = bn for some positive integer n,
then a and b are both hyperbolic or elliptic. If a and b are both hyperbolic then
it must be the case that a and b have the same axis and ℓT (a) = ℓT (b). Thus, the
element ab−1 fixes an infinite line in T . Since the action of G on T is acylindrical,
it follows that ab−1 = eG and a = b.

Suppose that both a and b are elliptic. If Fix(a) ∩ Fix(b) ≠ ∅, then a, b ∈ Gv
for some vertex v and an = bn in Gv. Hence, by the unique roots property of Gv,
it follows that a = b.

Suppose now that Fix(a)∩Fix(b) = ∅. Let γ be the shortest path in T joining
Fix(a) to Fix(b). Then an = bn must fix the path γ pointwise. Thus, an and bn
fix every edge in γ. Using root closure of edge groups, it follows that a and b
fix every edge in γ. Hence, a and b fix a common vertex and we may argue as
before. □

The group G is said to be double coset separable, if for any finitely generated
subgroups H,K ≤ G and g ∈ G, the double coset HgK ≤ G is separable in G.

We will use the following lemma often throughout the text.

Lemma 2.6 (Niblo [Nib92, Proposition 2.2]). Let G be a group and H,K ≤ G
subgroups. Let G′ ≤f G be a finite index subgroup and let H ′ = H ∩ G′ and
K ′ =K ∩G′. Then the double coset HK is separable in G if and only if H ′K ′ is
separable in G′.

Theorem 2.7 (Gitik–Rips [GR95]). If G is a finitely generated free group, then
G is double coset separable.

Combining the previous two results we obtain that double coset separability
also holds for virtually free groups.

Theorem 2.8 (Minasyan [Min23, Theorem 1.1]). Let G be a residually finite
group and let H,K ≤ G be subgroups. Suppose that for every finite index subgroup
H ′ ≤f H, we have that H ′K is separable in G. Then the intersection H ∩K of
the closures of H and K in the profinite completion of G is equal to H ∩K.

A finitely generated subgroup H ≤ G is conjugacy distinguished, if for any g ∈ G
which is not conjugate into H, there exists a finite quotient π∶G → Q such that
π(g) is not conjugate into π(H).

Theorem 2.9 (Ribes–Zalesskii [RZ16, Theorem A]). Every finitely generated
subgroup of a finitely generated virtually free group is conjugacy distinguished.

Definition 2.10 (Wilton–Zalesskii [WZ10]). Let G = (X,G●, ι●) be a graph of
groups. We say that the profinite topology on π1(G) is efficient if π1(G) is
residually finite, every vertex and edge group is closed in the profinite topology
on π1(G) and π1(G) induces the full profinite topology on each vertex and edge
group.

Let G = (X,G●, ι●) be a graph of groups and suppose that the profinite topol-
ogy on G = π1(G) is efficient. We write Ĝ to denote the graph of groups with
underlying graph X, such that the vertex and edge groups are profinite com-
pletions of the corresponding groups in G, and the edge inclusions Ĝe ↪ Ĝi(e)
are the natural maps induced by the edge inclusions in G. Since the topology
on G is efficient, the profinite completion Ĝ of G is isomorphic to the profinite
fundamental group of Ĝ . Moreover, there is a simply-connected profinite graph,
which we denote by S(Ĝ) and call the profinite Bass–Serre tree, which admits an
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action of Ĝ. The Bass–Serre tree corresponding to the splitting G = π1(G), which
we denote here by S(G), embeds as a dense subset of S(Ĝ). See [ZM88, Rib17]
for further details about actions of profinite groups on profinite trees.

Definition 2.11. Let G be a graph of groups such that the profinite topology
on π1(G) is efficient. Let Ĝ be the corresponding graph of profinite groups and
S(Ĝ) the profinite Bass–Serre tree. We say that Ĝ is profinitely κ-acylindrical if
every edge path of length κ + 1 in S(Ĝ) has trivial pointwise stabiliser for the
action of Ĝ.

Lemma 2.12. Let G be a 2-acylindrical graph of groups with efficient profinite
topology. Suppose that for every vertex v ∈ V (X) and incident edges e and f , the
following conditions are satisfied:

(1) the intersection Ge ∩ Gf is either trivial or Ge = Gf , and
(2) the intersection of the closures of Ge and Gf in the profinite completion

of Gv is given by sGe ∩ sGf = Ĝe ∩ Gf .
Then, Ĝ is profinitely 2-acylindrical.

Proof. Our argument is modelled on the proof of [WZ10, Lemma 5.5].
Let ρ be a path of length 3 in S(Ĝ) that consists of the concatenation of

the edges e1, e2 and e3. We will show that the pointwise stabiliser of ρ in Ĝ is
trivial. After translating e2 by an element of Ĝ, we may assume that e2 is an
element of S(G). Let u be the initial point of e2 and the final point of e1. Since
e2 ∈ S(G), we must have that u is also contained in S(G). By assumption (1)
the intersection of Ge1 and Ge2 is either trivial or Ge1 = Ge2 , so it follows from
assumption (2) that sGe1 ∩ sGe2 is either trivial or is equal to Ĝe1 = Ĝe2 . Since Gu
induces the full profinite topology on Ge1 and Ge2 , we have that Ĝe1 ∩Ĝe2 is either
trivial, in the case that Ge1 ∩Ge2 = 1, or is equal to Ĝe1 = Ĝe2 , otherwise. Similarly,
we have that Ĝe2 ∩ Ĝe3 is trivial if Ge2 ∩ Ge4 = 1 or is equal to Ĝe2 = Ĝe3 .

If Ge1∩Ge2 is non-trivial, then we must have that Ge2∩Ge3 = 1 by 2-acylindricity
of G and by the first assumption. Then, Ĝe2∩Ĝe3 is trivial by the argument above
and thus Ĝe1 ∩Ĝe2 ∩Ĝe3 = 1. On the other hand, if Ge1 ∩Ge2 is trivial then Ĝe1 ∩Ĝe2
is trivial and thus Ĝe1 ∩ Ĝe2 ∩ Ĝe3 = 1. □

2.4. Automorphisms of free groups. Let F be a free group and X a free
basis of F . An outer automorphism Φ ∈ Out(F ) acts on the set of conjugacy
classes of elements in F . Given a conjugacy class ḡ of an element g ∈ F , we write
∣ḡ∣X to denote the word length of the shortest representative of the conjugacy
class ḡ. We say that the conjugacy class ḡ grows polynomially of degree d under
the iteration of Φ, if there exist constants A,B > 0 such that for all k ≥ 1

Akd −A ≤ ∣Φk(ḡ)∣X ≤ Bkd.
For any two free generating sets S and S′ of F , the word metrics with respect

to S and S′ are bi-Lipschitz equivalent. It follows that the growth of a conjugacy
class under Φ does not depend on the specific choice of free basis for F .

We say the outer automorphism Φ ∈ Out(F ) grows polynomially of degree d if
every conjugacy class in F grows polynomially of degree ≤ d and there exists an
element g ∈ F whose conjugacy class grows polynomially of degree exactly d.

An outer automorphism Φ ∈ Out(F ) is unipotent if Φ induces a unipotent
element of Out(Fab) ≅ GLn(Z). We will typically abbreviate unipotent and
polynomially growing to UPG. An outer automorphism Φ is neat if for every
x ∈ F and every representative automorphism ϕ of Φ, if ϕk(x) = x for some
k ∈ Z ∖ 0, then ϕ(x) = x.

Lemma 2.13. If Φ ∈ Out(F ) is UPG then it is neat.
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Proof. Apply the argument from the proof of [BFW23, Theorem 4.4] to the
topmost splitting coming from an improved relative train track representative of
a UPG element Φ ∈ Out(F ) [BFH00, Theorem 5.1.8]. □

2.5. Free-by-cyclic groups. A group G is free-by-cyclic if there exists an epi-
morphism χ∶G→ Z with kerχ = F , where F is a free group of finite rank. In this
case, G splits as a semidirect product, G ≅ F ⋊ϕ Z for F ≅ F and ϕ ∈ Aut(F). We
will often abuse notation and write G = F ⋊ϕ ⟨t⟩ where t ∈ χ−1(1). Note that for
any two elements of χ−1(1), the corresponding automorphisms of F induced by
the conjugation action represent the same element of Out(F ). We call F ⊴ G the
fibre and Φ ∶= [ϕ] ∈ Out(F ) the monodromy corresponding to the pair (G,χ).
We will also often suppress χ from the notation.

Lemma 2.14. Let ϕ ∈ Aut(F ) be a representative of a UPG outer automorphism
Φ. Then G = F ⋊ϕ ⟨t⟩ has the unique roots property.

The proof is essentially [KV25, Lemma 3.3].

Proof. Let n > 0 and let g, h ∈ G be such that gn = hn. Then there is some k ∈ Z
such that g = utk and h = vtk for u, v ∈ F . Let ψ ∈ Aut(F ) be the automorphism
induced by the conjugation action by g. Let w = vu−1 ∈ F . Then h = wg and the
equation gn = hn evaluates to

gn = gnψn−1(w) . . . ψ2(w)ψ(w)w.
Hence, ψn−1(w) . . . ψ2(w)ψ(w)w = 1 and thus ψn(w) = w. Note that ψ is in the
outer automorphism class of Φk, and since Φ is UPG it follows that Φk is also
UPG. Hence Φk is neat and so we must have that ψ(w) = w and thus wn = 1.
Hence by the unique roots property of the free groups we have that w = 1 and so
g = h. □

Lemma 2.15. Let ϕ ∈ Aut(F ) be a representative of a UPG outer automorphism
and G = F ⋊ϕ ⟨t⟩. Let H ≤ G be a subgroup of the form H = ⟨vt⟩ or H =K ⊕ ⟨vt⟩
for some v ∈ F , where Z ≅K ≤ F is not generated by a proper power. Then H is
root-closed.

Proof. Suppose that there exists some x ∈ G∖1 such that xm ∈H for some m ∈ N.
We begin by considering the case where H is a cyclic subgroup. By replacing

the automorphism ϕ with ϕ ○ adv, we may assume that H = ⟨t⟩. Let x = utk for
some u ∈ F and k ∈ Z. Since x is non-trivial and H is not a subgroup of F , it
must be the case that k ≠ 0 and

(utk)m = tkm.
Then, by Theorem 2.14 it follows that utk = tk and thus u = 1. Hence x ∈H.

Suppose now that H = K ⊕ ⟨t⟩ where Z ≅K ≤ F is not generated by a proper
power. Let us first assume that x ∈ F . Then xm ∈ H ∩ F = K. Let k ∈ K be a
generator of K. Then xm is a power of k. It follows that x ∈ CF (k) ≅ Z and thus
k and x are powers of a common element z ∈ F . However, since k is not a proper
power, it must be the case that k = z±1 and thus x ∈K ≤H.

Suppose now that x /∈ F . Then x = utk for some u ∈ F and k ∈ Z ∖ 0. Since
xm ∈H, we have that

w ∶= uϕk(u) . . . ϕ(m−1)k(u) ∈K.
Then ϕk(w) = u−1wϕmk(u), and also ϕk(w) = w since t centralises K. Hence

t−mkutmk = ϕmk(u) = w−1uw.
Now, one checks that tmkw−1 = (tku−1)m and thus

(tku−1)−mu(tku−1)m = u.
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Hence, setting ψ ∈ Aut(F ) to be the automorphism induced by the conjugation
action of tku−1 on F , we get that ψm(u) = u. Then, by neatness we must have
that ψ(u) = u, and thus ϕk(u) = u. Hence, um ∈ K and by the argument above
we must have that u ∈K. Hence utk ∈H. □

Note that if G is free-by-cyclic then cdZ(G) = 2 and thus if H ≤ G is abelian
then H is isomorphic to one of 1,Z, or Z2.

Lemma 2.16. Let G be free-by-cyclic. Let H,K ≤ G be non-trivial abelian
subgroups of G. Then there exists a finite index subgroup G′ ≤ G such that
G′ = F ′ ⋊ ⟨s⟩ and for each J ∈ {H,K}, the following holds.

(1) If J ≅ Z then J ∩G′ = ⟨vs⟩ for some v ∈ F ′, or J ∩G′ = ⟨u⟩ where u ∈ F ′
is primitive.

(2) If J ≅ Z2 then J ∩G′ = ⟨u, vs⟩ for some v ∈ F ′, where u ∈ F ′ is primitive.
Moreover, we can pick the fibre F ′ to be a subgroup of any given fibre of F , and
the monodromy to be a power of the corresponding monodromy in G.

Proof. Let G = F ⋊ ⟨t⟩ be a free-by-cyclic splitting and let χ∶G → Z be the
character corresponding to the splitting. For each J ∈ {H,K}, let xJ ∈ F denote
the (possibly trivial) generator of J ∩ F . By [DT24, Lemma 6.5], there exists a
finite index normal subgroup F ′ ⊴f F such that if xJ ≠ 1 then ⟨xJ⟩ ∩F ′ is a free
factor of F ′.

Now for each J ∈ {H,K}, let OJ = ∣Z/χ(J)∣ and define

O ∶= lcm{OH ,OK , [F ∶F ′]!}.
Let s = tO. Then, (F ′)s = F ′ and we can set G′ ∶= ⟨F ′, ts⟩ ≅ F ′ ⋊ ⟨s⟩ ≤f G. It
follows that J ∩F ′ is trivial or primitive, and if χ(J) ≠ 0, then there exists some
v ∈ F ′ such that vs ∈ J . □

We end this section by recording the graph-of-groups splittings for free-by-
cyclic groups with polynomially growing monodromies that will be used through-
out the paper.

Theorem 2.17 (see [DT24, §3.1]). Let ϕ ∈ Aut(F ) be a representative of a
unipotent and linearly growing outer automorphism and let G = F ⋊ϕ ⟨t⟩ be the
corresponding free-by-cyclic group. Then G ≅ π1(G, v0) where G is a graph of
groups with a bipartite underlying graph (X,V0(X), V1(X)) that satisfies the fol-
lowing properties.

(1) For any vertex b ∈ V0(X), the group Gb is a maximal subgroup of G of
the form Fb⊕⟨tb⟩ where Fb ≤ F is a maximal cyclic subgroup and tb ∈ Ft.
We call the vertices in V0(X) black vertices.

(2) For any vertex w ∈ V1(X), the group Gw is maximal subgroup of the form
Fw⊕⟨tw⟩, where Fw is a finitely generated non-abelian subgroup of F and
tw ∈ Ft. We call the vertices in V0(X) white vertices. The subgroup Fw

is called the local fibre of Gw and tw the central element.
(3) Edge groups are isomorphic to maximal Z2 subgroups of G and map sur-

jectively onto vertex groups in V0(X).
(4) The action of G on the Bass–Serre tree corresponding to the splitting

G ≅ π1(G, v0) is 4-acylindrical.

The following proposition (modulo the action being 2-acylindrical) is well
known to experts and can be found in [Mac02], [BFH05, Theorem 4.22], [Hag19],
and [AHK24, Proposition 2.5]. A proof that the action is 2-acylindrical can be
found in [KV25, Lemma 5.2].

Proposition 2.18. Let ϕ ∈ Aut(F ) be a representative of a unipotent and linearly
growing outer automorphism and let G = F ⋊ϕ ⟨t⟩ be the corresponding free-by-
cyclic group. Then G admits a 2-acylindrical splitting G ≅ π1(G). The vertex
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groups Gv are of the from Gv = Fv ⋊ϕv ⟨tv⟩ for Fv ≤ F finitely generated, tv ∈ Ft,
and ϕv ∶Fv → Fv an automorphism that represents a unipotent and polynomially
growing outer automorphism of strictly lower degree growth. Moreover, each edge
group is of the form Ge = ⟨te⟩ where te ∈ Ft.

Definition 2.19 (Standard splitting). We will call the graph of groups splittings
in Theorem 2.17 and Theorem 2.18 the standard splitting for (G,χ).

3. Residual nilpotency and periodic quotients

A group G is residually (torsion-free) nilpotent if for every non-trivial element
g ∈ G there exists a homomorphism αg ∶G → N such that N is (torsion-free)
nilpotent and αg(g) is non-trivial. In [BNB21, Proposition 7.8] it is shown that
that all free-by-cyclic are virtually residually nilpotent (see also [AF13]). In this
section we will show that free-by-cyclic groups with and polynomially growing
monodromies are residually nilpotent.

For this section let F denote a finite rank free group and let ϕ be a polynomially
growing automorphism in Aut(F ). We denote the commutator of two elements
by [x, y] = x−1y−1xy and the commutator of two subgroups by

[A,B] = ⟨[a, b] ∶ a ∈ A, b ∈ B⟩.
We set γ1F = F and inductively define the terms of the lower central series
γn+1 = [γnF,F ]. We say an element g ∈ F has weight n, denoted wt(g) = n if and
only if g ∈ γnF .

Lemma 3.1. Let a, b, c be elements of a group. The following conclusions hold:
(1) [ab, c] = [b, [a, c]][a, c][b, c];
(2) [a, b]−1 = [b, a];
(3) [c, ab] = [c, b][c, a][[a, c], b];
(4) wt([a, b]) ≥ wt(a) +wt(b);
(5) wt(ab) =min(wt(a),wt(b)).

Repeatedly applying this lemma, and using the fact that elements of weight n
commute modulo γn+1F we have.

Corollary 3.2. Let wt(ai) ≥ n′ and wt(bi) ≥ n′′ for i = 0, . . . ,m then

[a0a1⋯am, b0b1⋯bm] =
m

∏
i=1

m

∏
j=1
[ai, bj]

modulo γn+1F , where n = n′ + n′′.

The following is a classical result of Magnus [Mag35] on free groups.

Theorem 3.3 (Magnus). If F is a free group then F is residually torsion-free
nilpotent,

∞
⋂
i=1
γiF = {1}.

In particular for any finite set S ⊂ F there is some c(S) such that the set S is
mapped injectively via the canonical quotient F /γc(S)F .

Since γnF is characteristic in F the automorphism ϕ descends to an automor-
phism ϕ̄n of F /γnF . We also have that γnF ≤ F ⋊ϕ Z is a normal subgroup and
that

(F ⋊ϕ Z)/γnF ≅ (F /γnF ) ⋊ϕ̄n
Z

is polycyclic. Wolf’s Theorem [Wol68] asserts that every polycyclic group is either
virtually nilpotent or has exponential growth. We shall use the following which
is actually a result of the proof of [DK18, Proposition 14.28].
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Proposition 3.4 (see proof of [DK18, Proposition 14.28]). The semidirect prod-
uct (F /γnF )⋊ϕ̄n

⟨t⟩ is nilpotent if all the eigenvalues of the natural induced linear
map

ϕn ∶ γnF /γn+1F → γnF /γn+1F
are precisely 1, i.e. each ϕn is unipotent.

Let ϕ ∈ Aut(X) be unipotent, then we say that an ordered basisX = (x1, . . . , xr)
is ϕ-ordered if ϕ(xi) = xiWi(xi+1, . . . , xr) where Wi(xi+1, . . . , xr) denotes a word
in {xi+1, . . . , xr}±1. We remark that F may not have a ϕ-ordered basis even
though ϕ is unipotent, we address this issue in the proof of Theorem 3.12.
Definition 3.5. [Hal59, §11.1] Let X = (x1, . . . , xr) be an ordered basis of F .
The basic commutators of F form an ordered subset (A,≤) ⊂ F consisting of all
possible elements in F that satisfy the following properties:

(1) Either c ∈X or c = [c′, c′′] where c′, c′′ ∈ A.
(2) The order ≤ satisfies the following properties:

(a) If c1, c2 ∈ A and wt(c1) > wt(c2) then c1 > c2.
(b) For elements in X we have xi ≤ xj ⇔ i ≤ j.

(3) If c = [c′, c′′] ∈ A then we must have
(a) c′ > c′′, and
(b) c′′ ≥ (c′)′′, where c′ = [(c′)′, (c′)′′].

(4) If wt([c′1, c′′1 ]) = wt([c′2, c′′2) ≥ 2 then

[c′1, c′′1 ] ≥ [c′2, c′′2 ] ⇔
⎧⎪⎪⎨⎪⎪⎩

c′′1 > c′′2 , or
c′′1 = c′′2 and c′1 ≥ c′′2

The “anti-lexicographic ordering” Property (4) in Definition 3.5 is not standard,
usually we are free to order the basic commutators any way we like within a weight
class, but this specific ordering will be crucial to the results of this section. This
terminology is also abusive since while the elements of X cannot be commutators,
they are still basic commutators.

The collection process is a rewriting process that takes a given word w =
xi1⋯xil ∈ F and iteratively rewrites it as a product w = cn1

1 c
n2
2 ⋯ with ci < ci+1

and nj ∈ Z, by iteratively taking the ≤-minimal basic commutator that is “out of
position” and migrating it to the left into position. Since yx = xy[x, y], doing so
inserts commutators, but if at each step we only move ≤-minimal “out of position”
commutators then all new commutators will be basic. If we work modulo γnF
then this process will terminate since we can ignore high weight commutators.

Let An = {c ∈ A ∶ wt(c) = n} and denote by (An,≤) the set An ordered by the
basic commutator ordering. The following result, in particular, motivates the use
of the term basic.
Theorem 3.6 (Basis Theorem [Hal59, Theorem 11.2.4]). The set An of basic
commutators of weight n maps bijectively to a basis of the free abelian group
γnF /γn+1F via the map

c↦ cγn+1F.

Lemma 3.7 (see [Hal59, §11.1]). Let v, u ∈ A and suppose [v, u] ∈ A. Let v0 = v
and vi+1 = [vi, u], i = 0,1,2,3, . . .. Let w1 = [v, u] and wt+1 = [wt, v]. Then all
vi,wt ∈ A and we have:

vu = uv[v, u]
vu−1 = u−1vv2v4⋯v−13 v−11 = u−1vWv,u−1[v, u]−1

v−1u = uv−1w2w4⋯w−13 w−11 = uv−1Wv−1,u[v, u]−1

v−1u−1 = u−1v1v3⋯v−14 v−12 v−1 = u−1[v, u]Wv−1,u−1v
−1,
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modulo γnF for all n > 0. Also wt(Wu±1,v±1) > wt([v, u]).
The factors Wv±1 ,u±1 will be called W -factors. We will now extend the “an-

tilexicographic” order ≤ on basic commutators to commutators of the form [c′, c′′]
where c′, c′′ ∈ A±1 naturally as follows: firstly c ≤ c−1 and c−1 ≤ c and secondly if
wt(c1) = wt(c2) then c1 = [c′1, c′′1 ] ≤ c2 = [c′2, c′′2 ] if and only if either c′′1 < c′′2 or
c′′1 = c′′2 and c′1 ≤ c′2.

The following three lemmas show how to rewrite “badly formed” commutators
into products of ≤-larger basic commutators and their inverses.

Lemma 3.8. Let c0 = [a0, b0] ∈ A, let yi, yj ∈ A and let cij = [yϵii , yϵjj], where
ϵ1, ϵ2 ∈ {−1,1}, with c0 < cij in the extended ordering. Suppose wt(c0) = wt(cij) =
n and suppose wt(a0) = wt(b0) = wt(yi) = wt(yj) = n/2. If cij /∈ A then there is
basic commutator bij ∈ A with c0 < bij such that

cij = bϵ
′

ij mod γn+1F,

for some ϵ′ ∈ {−1,1}.
Proof. There are 4 cases to consider. In all cases, due to our hypotheses on
weights we always have yj > y′′i , where yi = [y′i, y′′i ]. In particuar [yi, yj] is a basic
commutator precisely when yi > yj . In all cases, even if [yi, yj] is not a basic
commutator, we still have yj ≥ b0 and yi ≥ a0. In particular, even if yj > yi, we
still have yi ≥ a0 > b0.

Case 1: ϵi, ϵj = 1. In this case if [yi, yj] is already a basic commutator there
is nothing to show. If [yi, yj] is not a basic commutator then yi < yj . Thus
[yi, yj] = [yj , yi]−1 is the inverse of basic commutator and as explained above
yi > b0 so [a0, b0] < [yj , yi].

Case 2 ϵi = 1, ϵj = −1. We have [yi, y−1j ]. We will use the collection process
to express this as a product of basic commutators. Consider first the case where
yi > yj (so that [yi, yj] is a basic commutator). We will start by migrating yj
symbols left and will be repeatedly using Lemma 3.7:

[yi, y−1j ] = y−1i yjyiy
−1
j = y−1i �

��yjy
−1
j yi

��
��Wyi,y
−1
j
[yi, yj]−1 = [yi, yj]−1.

Note that here we can cancel the W -factors since they will have weight n +
1 or more. Which, as seen in Case 1, is the inverse of a basic commutator
that is greater than c0. The next possibility is b0 < yi < yj , this time we will
start by migrating yi and simply ignore W -factors and immediately cancel all
commutators of weight more than n:

[yi, y−1j ] = y−1i yjyiy
−1
j =���y−1i yiyj[yj , yi]y−1j =���yjy

−1
j [yj , yi]�������[[yj , yi], y−1j ] = [yj , yi].

Again, in this case, c0 = [a0, b0] < [yj , yi].
Case 3 ϵi = 1, ϵj = −1. Calculations completely analogous to those in Case

2 will rewrite the commutator as a basic commutator or the inverse of a basic
commutator that is greater than c0.

Case 4 ϵi = ϵj = −1. We consider first the case where yi > yj . And proceed as
before

[y−1i , y−1j ] = yiyjy−1i y−1j

= yi���yjy
−1
j [yi, yj]�����Wy−1i ,y−1j

y−1i =���yiy
−1
i �������
[[yi, yj], y−1i ] = [yi, yj].

Which as we’ve seen before will be greater than c0. The case yj > yi > xj is
handled similarly. □

Lemma 3.9. Let a, b, c ∈ A with a < b, c < a and [c, a] > b so that [[c, a], b] is a
basic commutator, say of weight n. Then we have

(1) [[c, a]−1, b] = [[c, a], b]−1
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(2) [[c, a], b−1] = [[c, a], b]−1
(3) [[c, a]−1, b−1] = [[c, a], b],

modulo γn+1F .

Proof. Consider the first equation. Noting the weight of the W -factors we have:

[[c, a]−1, b] = [c, a]b−1[c, a]−1b = [c, a]���b−1b[c, a]−1W[c,a]−1,b[[c, a], b]−1

= [[c, a], b]−1
⎛
⎜⎜
⎝
W[c,a]−1,b[W[c,a]−1,b, [[c, a], b]−1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

wt>n

⎞
⎟⎟
⎠

The other equations follow similarly. □

Lemma 3.10. Let a, b, c, [c, b] ∈ A with [c, b] > a but b > a so that [[c, b], a] is
not a basic commutator then if ϵ1, ϵ2 ∈ {−1,1}, q = [[c, b]ϵ1 , aϵ2] can be rewritten
as a product

q = [[c, b]ϵ1 , aϵ2] = b1⋯bs mod γn+1F

of (possibly repeated) basic commutators of weight n, where wt(q) = n, such that
q < bi, i = 1, . . . , s.

Proof. The hypotheses imply that c > b > a and that [[c, a], b] is a basic com-
mutator. For this proof, we will be using the following terminology: we will say
that basic commutators q1 < q2 are commutable if [q2, q1] ∈ A. If q1 < q2 are not
commutable then we will say q1 explodes q2 and if q2 = [q′2, q′′2 ] we will say that
q′2, q

′′
2 are the debris of the explosion. Explosions occur in the collection process

when we have a subword [q′2, q′′2 ]q1 with q1 < [q′2, q′′2 ] and q′′2 > q1. Then the
basic commutator [q′2, q′′2 ] must be replaced by the product q′−12 q′′−12 q′2q

′′
2 of basic

commutators and their inverses. The following is immediate from definitions, but
central to the argument of the proof.

Fact: If q1 explodes q2 then q1 < q′2, q′′2 where q′2, q
′′
2 is the debris of the explo-

sion.
Let us first consider the case where ϵ1 = ϵ2 = 1 and where [c, a], [b, a] ∈ A. We

turn the non-basic commutator into a product of basic commutators by expanding
it and applying the collection process

[[c, b], a] = [c, b]−1a−1[c, b]a

We see here that [c, b] and a are not commutable, which means we must explode
[c, b]:

[c, b]−1a−1[c, b]a = [c, b]−1a−1c−1b−1cba.
The smallest basic commutator is a so we migrate it to the left until it cancels
with its inverse. We underline it to aid in keeping track of the process

[c, b]−1a−1c−1b−1cba
= [c, b]−1a−1c−1b−1ac[c, a]b[b, a]
= [c, b]−1a−1c−1ab−1Wb−1,a[b, a]−1c[c, a]b[b, a]
= [c, b]−1���a−1ac−1Wc−1,a[c, a]−1b−1Wb−1,a[b, a]−1c[c, a]b[b, a]
= [c, b]−1c−1Wc−1,a[c, a]−1b−1Wb−1,a[b, a]−1c[c, a]b[b, a].

Where from Lemma 3.7 we have

Wb−1,a = [[b, a], b] ⋅ [[[[b, a], b], b], b]⋯[[[b, a], b], b]−1

Wc−1,a = [[c, a], c] ((((((((((
⋯[[[c, a], c], c]−1) .
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where we cancel off the terms that clearly have weight greater than n. At this
point in the collection process we have cancelled out all a symbols and we have
a product of basic commutators that are all strictly greater than a.

Consider now the general case

[c, b]ϵ1aϵ2[c, b]−ϵ1a−ϵ2 ,
where we no longer assume that a is commutable with b or c. In all cases, the
collection process will migrate the rightmost a±1 to the left until it cancels with
the other a∓1 symbol. Throughout the collection process basic commutators are
created when a is commutable with its leftmost neighbour. Note that all created
W -factors will have weight greater than a, or exploded, but the debris will remain
strictly greater than a. It follows that once the a symbols cancel out, we will be
left with a product of basic commutators that are all strictly greater than a.

Now the collection process will continue to rewrite the product. In doing so
many basic commutators will be created, exploded, or cancelled out. Because
of our fact about explosion debris, all basic commutators that will occur for the
remainder of the collection process will remain strictly greater than a.

In the end no basic commutators of weight less than n will remain, furthermore
in the final product of basic commutators, every basic comutator factor will be of
the form bi = [b′i, b′′i ] where b′i, b

′′
i are commutators that are strictly greater than

a. In particular b′′i > a so bi > [[c, b], a] as required. □

Lemma 3.11. Let ϕ ∈ Aut(F ) be unipotent and let X be a ϕ-ordered basis of F
that in turn induces the order ≤ on A. If c is a basic commutator with wt(c) = n
then

ϕ(c) = ccn1
1 ⋯c

nm
m mod γn+1F

where c < c1 < ⋯cm are basic commutators with the same weight as c, ni ∈ Z. In
particular the induced the matrix representation of the induced linear map

ϕn ∶ γnF /γn+1F → γnF /γn+1F
with respect to the ordered basis (An,≤) is lower unitriangular.

Proof. We proceed by induction on n = wt(c). The base case is n = 1 where ϕ1
is the induced automorphism of the abelianization of F . C1 = {x1, . . . , xr} and
xi < xj ⇔ i < j. By definition of ϕ-ordered we immediately get

ϕ(xi) = xixni+1
i+1 ⋯x

nr
r mod γ2F

for some ni+1, . . . , nr ∈ Z. The lower unitriangularity of the matrix representation
follows immediately.

Suppose now that the result was true for all weights up to n. Let c = [c′, c′′]
be such that wt(c) = n + 1. By induction hypothesis and Corollary 3.2 we get

ϕ(c) = [ϕ(c′), ϕ(c′′)]

= [a0an1
1 ⋯a

np
p R, b0b

m1
1 ⋯b

mq
q S] = [a0, b0]

⎛
⎝ ∏
(i,j)≠(0,0)

[a∣ni∣/ni

i , b
∣mj ∣/mj

j ]
nimj⎞
⎠
T

where a0 = c′, b0 = c′′, wt(ai) = wt(a0) and wt(bj) = wt(b0) for all i, j, and
where wt(a0) < wt(R) and wt(b0) < wt(S). By induction hypothesis, the se-
quences of basic commutators a0, a1, a2, . . . and b0, b1, b2, . . . are strictly increas-
ing with respect to ≤ and wt(T ) > n + 1. Now for (i, j) ≠ (0,0) each of the
commutators

[a∣ni∣/ni

i , b
∣mj ∣/mj

j ]
is greater than c = [c′, c′′] = [a0, b0] with respect to the extended ordering ≤ for
i, j > 0, but some may not be a basic commutator due to a combination of the
the signs ∣ni∣/ni, ∣mj ∣/mj possibly being negative or [ai, bj] not being basic.
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If [ai, bj] is not basic because bj > ai, then wt(ai) = wt(bj) and Theorem 3.8
lets us rewrite it as [bj , ai]±1 which is a basic commutator mod γn+2F .

Otherwise we have wt(ai) > wt(bj) and Theorem 3.9 or Theorem 3.10 allows us
to rewrite the commutator as a product of ≤-strictly greater basic commutators.
Finally noting that all commutators of weight n+ 1 commute modulo γn+2F the
first part of the result follows.

By Theorem 3.6 (An,≤) gives a basis of γn+1F /γn+2F and ϕn+1 is easily seen
be lower unitriangular. The result now follows by induction. □

Theorem 3.12. If ϕ ∈ Aut(F ) is unipotent then

(F ⋊ϕ Z) /γnF
is torsion-free nilpotent.

Proof. If ϕ is unipotent then by [BFH00, Theorem 5.1.5] there is a connected
directed graph Γ such that E(Γ) = {e1, . . . , er} and a homotopy equivalence
Φ ∶ Γ→ Γ that, for i > 1, maps ei to a concatenation eiµi where µi is a (possibly
empty) loop that is itself a concatenation of edges (possibly traversed with or
against orientation) that lie in {e1, . . . , ei−1}. We can pick any vertex v ∈ Γ
identify F = π1(Γ, v) and Φ will be a representative for the class [ϕ] in Out(F ).
Since Φ(v) = v we may assume without loss of generality that, under the π1-
functor, we have Φ♯ = ϕ.

Consider the quotient map q ∶ Γ → Γ● obtained by identifying all the vertices
of Γ to obtain a bouquet of circles with the single vertex ●. The map q is π1-
injective and maps F to a free factor of F ∗Fr = π1(Γ●, ●). Now, as a bouquet of
circles, we can also view π1(Γ●, ●) = F (E(Γ)), the free group on the (abstract)
set E(Γ). Let X = E(Γ) and reverse its order so that ei < ej if and only if i > j.

Now Φ naturally descends to a homotopy equivalence Φ● of Γ● and since it
preserves the unique basepoint it induces the automorphism ϕ● ∈ Aut(F (X))
given by

ei ↦ µi,

where µi can be interpreted as a string in X±1 . It follows that (X,≤) is a ϕ●-
ordered basis for π1(Γ●) = F (X).

Now the basic commutators of weight n map to an ordered basis of the free
abelian group

γnF (X)/γn+1F (X).
By Lemma 3.11 and Proposition 3.4, for all N > 0 the quotient

(F (X) ⋊ϕ● Z) /γNF (X) ≅ (F (X)/γNF (X)) ⋊ϕ●N Z

is torsion-free nilpotent.
We note that although F is a free factor of F (X) this particular free factoriza-

tion is not obtained from a partition of X, besides none these free factorizations
will be ϕ●-invariant

By our construction we do have that the image of F , which we identify with F
is ϕ● invariant and that [ϕ●∣F ] ∈ Out(F ) as an outer automorphism is represented
by Φ. Thus, without loss of generality we may assume that ϕ●∣F = ϕ and in fact
that we have an embedding

F ⋊ϕ ⟨s⟩ ↪ F (X) ⋊ϕ● ⟨t⟩
fsn ↦ ftn,

where we identify f ∈ F with its image in F (X). We further note that since F
is a free factor of F (X) we have

γnF (X) ∩ F = γnF
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for all terms of the lower central series. It therefore follows that we have a natural
embedding

(F ⋊ϕ Z) /γNF ↪ (F (X) ⋊ϕ● Z) /γNF (X).
The result now follows since torsion-free nilpotency is inherited by subgroups.

□

Theorem 3.13 ([KM79, Theorem 17.2.5]). Let G be a finitely generated torsion-
free nilpotent group, then there exists an integer n = n(G) such that G embeds in
UTn(Z), the group of n × n upper unitriangular integral matrices.

The following proposition is a simple exercise.

Proposition 3.14. For any prime p > n the group UTn(Z/pZ) is a group with
exponent p, i.e. every nontrivial element has order p.

Corollary 3.15. Let ϕ ∈ Aut(F ) be unipotent. For any finite set S ⊂ F ⋊ϕ Z
there exists some N(S) ∈ Z≥0 such that for any prime p > N(S) there is a finite
p-periodic quotient QS

p of F ⋊ϕ Z in which S is mapped injectively.
Furthermore if g, h ∈ F ⋊ϕ Z and the commutator [g, h] does not vanish in QS

p

then the images of the cyclic groups ⟨g⟩, ⟨h⟩ will have order precisely p and will
have trivial intersection.

Proof. Let S = {f1tn1 , . . . fmt
nm}. By Theorem 3.3 there is a sufficiently large N

so that if fi is non-trivial then the image of fi survives in F /γNF . Each element
of S will therefore be mapped non-trivially to

GN ∶= (F ⋊ϕ Z) /γNF ≅ (F /γNF ) ⋊ϕN
Z,

which by Theorem 3.12 is torsion-free nilpotent. By Theorem 3.13 N embeds
into UTd(Z) for some d = d(N). Looking at the matrix images of the elements
of S in UTd(Z), we see that if we pick a prime p greater than N1, the maximal
absolute value of the coefficients of the matrices occuring in the image of S, then
S will be mapped injectively via

F ⋊ϕ Z↠ GN ↪ UTd(Z) ↠ UTd(Z/pZ).
If p is chosen to be be greater than max(N1, d) = N(S) then the image QS

p of
F ⋊ϕ Z will be p-periodic. The first part of the proof follows.

Suppose now that [g, h] did not vanish in the quotient to QS
p . Then neither g

nor h vanished so, by p-periodicity, their images both generate subgroups isomor-
phic to Z/pZ. Suppose towards a contradiction the images ⟨g⟩, ⟨h⟩ had non-trivial
intersection. Then by they structure of Z/pZ, the images must coincide and the
images of both g and h will generate this intersection. This means that the image
of g will be a power of the image of h, forcing their images to commute, con-
tradicting the assumption that [g, h] had non-trivial image. It follows that the
images of ⟨g⟩, ⟨h⟩ must have trivial intersection and the proof is complete. □

We will also need the following:

Lemma 3.16. Let G = F ⋊ϕ ⟨t⟩ where ϕ ∈ Aut(F ) is unipotent and rank(F ) > 1.
Let g, h ∈ G ∖ 1 be two commuting elements such that ⟨g⟩ ∩ ⟨h⟩ = 1. Let S ⊆ G
be a finite subset of elements that contains g and h. Then there exists some
N(S) ∈ Z≥0 such that for every prime p > N(S) there is a finite p-periodic
quotient QS

p such that each element of S has non-trivial image and the images of
⟨g⟩ and ⟨h⟩ have trivial intersection.

Proof. We begin with the following claim:

Claim 3.17. The elements g, h are contained in a subgroup H = FH ⊕ ⟨s⟩ ≤ G,
where FH ≤ F is not abelian and s ∈ F ⋅ t.
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Proof. We argue by induction on the degree of growth of ϕ. If deg(ϕ) = 0 then
ϕ = id. Hence we can take H to be the entire group G. Now suppose that
deg(ϕ) > 0. Let G ≅ π1(G) be the standard splitting as in Theorem 2.19. Recall
that the standard splittings are acylindrical.

Since g and h are elements of infinite order that commute, by acylindricity it
must be the case that g and h are elliptic and Fix(g)∩Fix(h) ≠ ∅. Pick a vertex v
in the intersection. Then, g, h ∈ Gv and Gv = Fv⋊⟨tv⟩ for some Fv ≤ F and tv ∈ F ⋅t.
The conjugation action of s on Fv induces a unipotent and polynomially growing
automorphism of degree d < deg(ϕ). If rank(Fv) > 1 then we may conclude the
required result by induction.

Hence, suppose that rank(Fv) = 1 and assume first that deg(ϕ) = 1. It must
be the case that Gv is a black vertex of the standard splitting (as defined in
Theorem 2.17), and thus for any incident edge e, the map ιe∶ Ge → Gv is onto.
Hence, Gv can be identified with a subgroup of Gw where w = τ(e). Then, Gw is
a white vertex and thus is of the form Gw = Fw ⊕ ⟨tw⟩ where Fv ≤ F is finitely
generated of rank greater than 1. Again, the result follows.

Suppose now that rank(Fv) = 1 and deg(ϕ) > 1. Suppose that there exists a
non-loop edge e incident at v and let w be the other endpoint of e. We may write
Gv = ⟨xv⟩ ⊕ ⟨tv⟩ for xv ∈ F , tv ∈ F ⋅ t, and Gw = Fw ⋊ϕw ⟨tw⟩ for Fw ≤ F , tw ∈ F ⋅ t,
and let

K ∶= ⟨Gv,Gw⟩ ≅ Gv ∗xl
vtv=tw Gw,

for some l ∈ Z. Note that ϕw is unipotent and polynomially growing and
deg(ϕw) < deg(ϕ). Thus K admits a presentation

K ≅ ⟨Fw, xv, tw∣atw = ϕw(a)∀a ∈ Fw, x
tw
v = xv⟩ ≅ F ′ ⋊ϕ̃ ⟨s⟩

where F ′ ≤ F is finitely generated, s ∈ F ⋅ t and ϕ̃ is a unipotent automorphism
of degree d < deg(ϕ). Again, the result follows by induction.

Suppose now that there is some loop edge e at v. Then, the stable letter a is
an element of the fibre F and we have that

K ∶= ⟨Gv, a⟩ ≅ Gv∗xv
ltv∼xv

ktv ,a

for some l, k ∈ Z. One checks that

K ≅ ⟨xv, a, s ∣ xsv = xv, as = axk−lv ⟩,
where s = xlvtv ∈ F ⋅ t. Thus, either K = F ′ ⊕ ⟨s⟩ where F ′ = ⟨xv, a⟩ ≤ F , or
K = F ′ ⋊ϕ̃ ⟨s⟩ where ϕ̃ is unipotent and linearly growing. In the former case,
the result follows immediately. For the latter case, since ϕ̃ grows linearly and
rank(F ′) > 1, we may argue by induction.

The final case to consider is rank(Fv) = 0. Then, Gv is infinite cyclic and
g, h ∈ Gv, contradicting the assumption that ⟨g⟩ ∩ ⟨h⟩ = 1. □

Let H = FH ⊕ ⟨s⟩ be as in Theorem 3.17. Since g and h commute, it must
be the case that g = uasb and h = ucsd for some u ∈ FH not a proper power and
integers a, b, c, d ∈ Z such that

det(a b
c d
) ≠ 0.

Since rank(FH) > 1, there exists some v ∈ FH which does not commute with u.
Let S′ = S ∪ {u, v, s, [u, v]} and let N(S′) > 0 be the integer so that for each

prime p > N(S′), there is a p-periodic quotient π∶G → QS′
p so that the image of

each element of S′ is non-trivial, which exists by Theorem 3.15.
Fix p > N(S′) and suppose, for contradiction, that ⟨π(u)⟩ ∩ ⟨π(s)⟩ ≠ 1. Since

QS′
p is p-periodic, we must have that ⟨π(u)⟩ = ⟨π(s)⟩ and thus π(u) commutes

with π(v). However, we constructed QS′
p so that π([u, v]) ≠ 1.
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It follows that ⟨π(u), π(s)⟩ = ⟨π(u)⟩⊕⟨π(s)⟩ ≅ Z/pZ×Z/pZ. Now if we choose
M(S) =max{N(S′),det(A) + 1}, then for any prime p >M(S) it follows that

det(a b
c d
) /≡ 0 mod p.

Hence, π(uasb) /∈ ⟨π(ucsd)⟩. It follows that ⟨π(g)⟩ ∩ ⟨π(h)⟩ = 1. □

Combining Theorem 3.15 and Theorem 3.16 we obtain Theorem D from the
introduction.

Theorem D. Let G be a free-by-cyclic group with unipotent and polynomially
growing monodromy. Let S ⊆ G be a collection of non-trivial elements and let
g, h ∈ G be such that ⟨g⟩ ∩ ⟨h⟩ = 1 or [g, h] ≠ 1. There exists N = N(S) such that
for every prime p > N there is a p-periodic quotient of G such that the image of
each element of S is non-trivial and the cyclic subgroups generated by g and h
have trivial intersection.

4. Virtually free vertex fillings

The aim of this section is to introduce and construct virtually free vertex
fillings, in particular for free-by-cyclic groups with unipotent polynomial mon-
odromy.

4.1. Constructing fillings.

Definition 4.1. Let G = (XG ,G●, ι●) and H = (XH,H●, κ●) be graphs of groups.
A morphism f ∶ G → H is a vertex filling if the corresponding graph morphism
f ∶XG → XH is an isomorphism, for each vertex v ∈ V (X) the homomorphism
fv ∶ Gv ↠Hf(v) is onto, and γe = 1 for each e ∈ E(XG). A vertex filling induces a
quotient of the corresponding fundamental groups

Θf ∶π1(G,∗) ↠ π1(H, f(∗)).

Let f ∶ G → H be a vertex filling. Let TG and TH be the Bass–Serre trees
corresponding to G and H, respectively, and let N = kerΦ. Then TH = N/TG and
the quotient

π∶TG → TH = N/TG
is a Φ-equivariant morphism, i.e. for every g ∈ π1(G,∗) and x ∈ TG , π(g ⋅ x) =
Φ(g) ⋅ π(x).

Definition 4.2. Let G = (X,G●, ι●) be a graph of groups. For every v ∈ V (X), let
Nv ≤f Gv be a finite index subgroup. A virtually free vertex filling associated to the
collection {Nv}v∈V (X) consists of a collections of finite index normal subgroups
N ′v ⊴f Gv such that N ′v ≤ Nv, and a vertex filling f ∶ G → H such that for every
v ∈ V (X), the vertex group Hf(v) = Gv/N ′v, and fv ∶ Gv → Hf(v) is the natural
quotient.

If S ⊆ V (X) is a subset of vertices, andNv ≤f Gv a collection of finite index sub-
groups for all v ∈ S, then a virtually free vertex filling corresponding to {Nv}v∈S
is the virtually free vertex filling corresponding to {Nv}v∈S ∪ {Gv}v∈V (X)∖S .

We say that G admits arbitrarily deep virtually free vertex fillings if for every
collection {Nv}v∈V (X) where Nv ≤f Gv is a finite index subgroup, there exists a
virtually free vertex filling associated to it.

Lemma 4.3. Let f ∶ G → H be a vertex filling with a corresponding morphism
of trees π∶TG → TH. Fix a basepoint ∗ ∈ V (X) and let G = π1(G,∗) and H =
π1(H, f(∗)). Let ρ and ρ′ be a vertex or an edge in TG. Then ρ and ρ′ are in
the same G-orbit if and only if π(ρ) and π(ρ′) are in the same H-orbit.
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Proof. By the definition of a vertex filling we have a commutative square

TG TH

XG XH,

π

f

where f is a graph isomorphism and the vertical arrows are the covering maps.
The claim follows immediately from commutativity since ρ and ρ′ are in the same
orbit if and only if they have the same image in XG and similarly for the images
of π(ρ) and π(ρ′) in XH. □

Lemma 4.4. Let G = (X,G●, ι●) be a graph of groups that admits arbitrarily deep
virtually free vertex fillings. Suppose that all the vertex groups are residually finite
and all the edge groups are separable in the vertex groups. Then for every vertex
v ∈ V (X), every collection of (possibly repeated) images He1 , . . . ,Hes ≤ Gv of edge
group monomorphism into Gv, every finite set of elements g1, . . . , gs ∈ Gv that
respectively do not lie in the subgroups He1 , . . . ,Hes ≤ Gv, and any finite set of
elements h1, . . . , hm ∈ Gv, there exists a vertex filling of G such that the image of
each vertex group Ḡv is finite, and for i = 1, . . . , s, the image of gi in Ḡv does not
lie in the image of Hei and none of the elements hj are mapped to the identity.

Proof. Using the hypotheses that the edge groups are separable in the vertex
groups and that the vertex groups are residually finite, for each vertex v ∈ V (X)
we can find a finite index normal subgroup Nv ⊴f Gv such that the image of each
gi is not mapped into the image of the edge group Hei and each hj is mapped to
a non-trivial element in the quotient Gv/Nv. Then, we may pass to a virtually
free vertex filling associated to the collection {Nv}v∈V (X) to obtain the required
vertex filling. □

If G satisfies the conclusion of Theorem 4.4 then we say that G admits arbi-
trarily deep edge separating virtually free fillings.

Lemma 4.5. Let G =H ⋊ϕ ⟨t⟩ where H is finitely generated and let χ∶G→ Z be
the map associated to the splitting. Let N ≤f G be a subgroup of finite index and
fix a positive integer k. Then, there exists a positive integer L such that for every
i ∈ kZ>0, there is a finite index normal subgroup Ni ⊴f G such that Ni ≤ N and
every element g ∈ G with χ(g) = k has order iL/gcd(iL, k) in the quotient G/Ni

Proof. Fix a positive integer k and a subgroup N ≤f G of finite index. After
possibly passing to a further subgroup of finite index, which we also call N by
an abuse of notation, we may assume that χ(N) = nZ for some positive integer
n and tn ∈ N . Then, N = (N ∩H) ⋊ ⟨tn⟩. Let K ∶= CH(N ∩H) ⊴f H be the
characteristic core of the subgroup N ∩H in H. Let M = [H ∶K]! and L =Mn.
Pick i ∈ kZ>0 and define Ni ∶= ⟨K, tiL⟩ ≅K ⋊ ⟨tiL⟩. Note that Ni is a finite index
normal subgroup of G and Ni ≤ N .

Now to prove the claim about orders of elements in the quotient. For every
x ∈H and positive integers k,m > 0, let

Φk,m(x) ∶= xϕk(x)ϕ2k(x)⋯ϕ(m−1)k(x).
Let g ∈ G be such that χ(g) = k > 0. Then, g = xtk for some x ∈ H. Let
Gi = G/Ni, and denote the natural quotient by

s⋅ ∶G→ Gi

z ↦ z̄.

Note that Gi ≅ H/K ⋊ Z/(iL)Z. Let l = iL/gcd(iL, k). Let m > 0 and write
m = ql + r for some 0 ≤ r < l and q ∈ Z. Then,

ḡm = Φk,l(x)
q ⋅Φk,r(x) ⋅ t

r
.
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It follows that the order of ḡ is given by

ordGi(ḡ) = lcm{ordGi(Φk,l(x)), l}.

However, the order of Φk,l(x) in Gi is the order of Φk,l(x) in H/K, and thus
ordGi(Φk,l(x)) divides [H ∶ K]. By definition, [H ∶ K] divides L, and since i
is a multiple of k, L divides l. It follows that ordGi(Φk,l(x)) divides l and thus
ordGi(sg) = l. □

Corollary 4.6. Let G = (X,G●, ι●) be a graph of groups with infinite cyclic edge
groups. Suppose that there exists an epimorphism χ∶π1(G) → Z with finitely
generated kernel such that χ(Ge) = Z for every edge e ∈ E(X). Let Nv ≤f Gv be a
subgroup of finite index for each v ∈ V (X). Then there exists a positive integer
L such that for every positive integer i, there is a virtually free filling G → G
associated to {Nv}v∈V (X) such that the order of each edge group is iL.

Proof. For each vertex v ∈ V (X), let χv ∶ Gv → Z be the restriction of χ to Gv.
Since χ is surjective on edge groups, each restriction χv is surjective. Let Lv > 0
be the constant from Theorem 4.5 for the finite index subgroup Nv ≤ Gv and
k = 1. Let L = lcm{Lv}v∈V (X). Fix integer i > 0. Then, for every v ∈ V (X),
let N ′v ⊴f Gv be the finite index normal subgroup contained in Nv such that for
every g ∈ Gv with χv(g) = 1, we have that the order of g in the quotient Gv/N ′v is
iL, which exists by Theorem 4.5. In particular, the generators of the images of
the incident edge groups have order iL. Now we may construct a vertex filling
of G by replacing each vertex group Gv with Gv/N ′v. □

We now specialise to the setting of splittings of free-by-cyclic groups with
unipotent and superlinearly growing monodromy.

Proposition 4.7. Let G be a free-by-cyclic group with unipotent superlinearly
growing monodromy and let G ≅ π1(G) be the standard splitting. Then the fol-
lowing properties are satisfied.

(1) The profinite topology on π1(G) is efficient.
(2) The edge groups are separable in the vertex groups.
(3) The edge groups are root-closed in π1(G).
(4) G admits arbitrarily deep virtually free vertex fillings.

Proof. The group G is residually finite by [Bau71] and every vertex and edge
group is fully separable by [HK25, Proposition 2.9]. By Theorem 2.2 it follows
that G induces the full profinite topology on every edge and vertex group and
thus the profinite topology on π1(G) is efficient, proving (1).

All infinite cyclic subgroups are separable in free-by-cyclic groups by [HK25,
Proposition 2.9] and thus the edge groups are separable in the vertex groups,
proving (2).

The edge groups are root-closed since they are maximal cyclic subgroups of
G. The latter follows from the fact that the epimorphism χ∶G → Z is surjective
on the edge groups. This proves (3).

Finally, G admits arbitrarily deep virtually free vertex fillings by Theorem 4.6,
proving (4). □

4.2. Conjugacy separability. In this subsection we will utilise virtually free
vertex fillings to show that certain pairs of elements can be conjugacy distin-
guished in finite quotients.

Lemma 4.8. Let G = (X,G●, ι●) be a graph of groups such that the edge groups
are separable in the vertex groups. Suppose that G admits arbitrarily deep virtually
free vertex fillings. Let g1, g2 ∈ π1(G, v). Then there exists a virtually free vertex
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filling G → G inducing a morphism of the associated Bass–Serre trees T → T such
that ℓT (gk1) = ℓT (ḡk1) and ℓT (gk2) = ℓT (ḡk2) for all k ∈ Z.

Proof. Note that the image of an elliptic element is elliptic in any vertex filling.
Thus we may assume that g1 and g2 are loxodromic.

Let G = π1(G, v). Let αi be the axis of gi in T for i = 1,2. Let Di ⊆ αi be
a minimal closed connected fundamental domain for the action of G on αi and
note that Di is isometric to the closed interval [1, ni] for some ni. Let D̃i ⊂ αi

be obtained from the subinterval Di by taking the union with an edge on either
side of Di. Then, for any pair of edges f1 and f2 on αi with i(f1) = i(f2), there
exist edges e1 and e2 on D̃i and some g ∈ G such that f1 = g ⋅ e1 and f2 = g ⋅ e2.

Fix a vertex v in D1 and let e1 and e2 be the distinct edges on α1 with
i(e1) = v = i(e2). If e1 and e2 are in the same G-orbit, let xv ∈ Gv be such
that xv ⋅ e1 = e2. Since Ge1 ≤ Gv is separable, we may pick a finite index normal
subgroup Nv ⊴f Gv such that xv /∈ Nv ⋅ Ge1 . If e1 and e2 are not in the same G-
orbit, take Nv = Gv. Do the same for the vertices in the interior of D2, obtaining
a collection of finite index normal subgroups {Mv}v∈V (D2). Finally, extend each
collection {Nv}v∈V (D1) and {Mv}v∈V (D2) to equivariant families {Nv}v∈V (T ) and
{Mv}v∈V (T ), in the obvious way. That is, for any w ∈ V (T ) with g ⋅ v = w for
some v ∈ V (D1), we set Nw = g ⋅Nv ⋅ g−1. If w ∈ V (T ) is not in the G-orbit of
any vertex in D1, then set Nw = Gw. Carry out the analogous procedure for the
collection {Mv}v∈V (T ).

Finally, set Lv ∶= Nv ∩Mv for each v ∈ V (T ). Then, {Lv}v∈V (T ) is an equi-
variant collection of finite index normal subgroups Lv ⊴f Gv. Construct a vertex
filling G → G corresponding to the system {Lv}v∈V (X) and let T → T be the
associated morphism of Bass–Serre trees.

We claim that α1 and α2 are mapped injectively onto their image via the
quotient T → T = ⟨Lv⟩v∈V (T )/T . Since T → T maps edges to edges, and since T
is a tree, it must be the case that if two edges of αi are identified under the map
T → T , then there exist two edges f1 and f2 in αi with i(f1) = i(f2) that are
identified. By equivariance, we may assume such edges to be contained in D̃i..
However, our construction of the subgroups Lv ≤ Nv ∩Mv precludes this.

Now let ni = ℓT (gi) ∈ N and let ᾱi be the image of the axis αi under the vertex
filling morphism T → T . Then ḡi acts as translation by ni on the line ᾱi. Hence
ḡi is loxodromic and ℓT (ḡi) = ni. It follows that for all k ∈ Z,

ℓT (ḡ
k
i ) = ∣k∣ ⋅ ℓT (ḡi) = ∣k∣ ⋅ ni = ℓT (g

k
i ). □

A direct consequence of Theorem 4.8 is the following:

Lemma 4.9. Let G = (X,G●, ι●) be a graph of groups such that the edge groups are
separable in the vertex groups. Suppose that G admits arbitrarily deep virtually
free vertex fillings. Let G = π1(G, v) and let g1, g2 ∈ G be two elements with
distinct translation lengths. Then there exists a finite quotient of G such that the
images of g1 and g2 are not conjugate.

Lemma 4.10. Let G = (X,G●, ι●) be an acylindrical graph of groups that satisfies
the following.

(1) Vertex groups are conjugacy separable.
(2) Edge groups are conjugacy distinguished in vertex groups.
(3) G admits arbitrarily deep virtually free vertex fillings.

Let G = π1(G, v). Then for any pair g1, g2 ∈ G of non-conjugate elements which
are elliptic, there exists a virtually free quotient G ↠ G such that the image of
g1 is not conjugate to the image of g2. Hence, there exists a finite quotient of G
such that the image of g1 is not conjugate to the image of g2.
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Proof. Let T be the Bass–Serre tree corresponding to the splitting G = π1(G, v).
Using the fact that edge groups are conjugacy distinguished in the vertex

groups, and that Fix(g1) and Fix(g2) have bounded diameter by acylindricity,
we may construct a virtually free vertex filling π∶T → T such that π(Fix(g1)) =
Fix(ḡ1) and π(Fix(g2)) = Fix(ḡ2). Note also that for any vertex fillings, two
edges e, e′ incident at the same vertex are identified by π if only if they are
contained in the same G-orbit Theorem 4.3.

Suppose first that Fix(g1) consists of a single vertex v. Then, if Fix(g2)
contains an edge, it follows that Fix(ḡ1) and Fix(ḡ2) are not isomorphic as graphs
and thus ḡ1 and ḡ2 are not conjugate.

Hence, suppose that Fix(g2) consists of a single vertex w. If v and w are not
in the same G-orbit in T , then v̄ and w̄ are not in the same Ḡ-orbit and thus
ḡ1 and ḡ2 are not conjugate in Ḡ. Hence, suppose that v and w are in the same
orbit. Then, there exists x ∈ G such that g′2 ∶= gx2 fixes v. Now g′2 is not conjugate
to g1 and g1, g

′
2 ∈ Gv. Hence, by conjugacy separability of Gv, there is a finite

quotient q∶ Gv → Qv such that q(g1) and q(g′2) are not conjugate in Qv. Hence
there is a virtually free vertex filling G → Ḡ such that Fix(ḡ1) = Fix(ḡ′2) = {v̄}
and ḡ1 and ḡ′2 are not conjugate in Ḡv = stabḠ(v̄). But if there exists some ȳ ∈ Ḡ
such that ḡ′ȳ2 = ḡ1, then ȳ ⋅ Fix(ḡ1) = Fix(ḡ′2). Hence, ȳ ∈ stabḠ(v̄). It follows
that ḡ1 and ḡ′2 are not conjugate in Ḡ. Thus ḡ1 and ḡ2 are not conjugate.

Assume now that Fix(g1) and Fix(g2) both contain an edge. If no pair of
edges e1 ∈ Fix(g1) and e2 ∈ Fix(g2) are in the same G-orbit, then their images
in a virtually free filling are not in the same Ḡ-orbit and thus ḡ1 and ḡ2 are not
conjugate. Hence, there exists a pair e1 and e2 that are in the same G-orbit.
Replacing g2 by a conjugate, we may assume that there exist some edge e that is
fixed by g1 and g2. If Fix(g1) = Fix(g2) consists of a single edge, then as before,
we may use conjugacy separability of the vertex groups to pass to a virtually free
quotient where ḡ1 and ḡ2 are not conjugate.

Suppose finally that Fix(g1) contains at least two edges. Since G is acylindrical,
each Fix(gi) is a subtree of T of finite diameter. In particular, it contains finitely
many non-leaf vertices. Let u be an endpoint of an edge e ∈ Fix(g1) ∩ Fix(g2)
that is not a leaf of Fix(g1).

Consider the set X of all elements x ∈ G such that x ⋅Fix(g1) = Fix(g2). Since
G acts by isometries, each x ∈ X maps u to a non-leaf vertex of Fix(g2). Let
{v1, . . . , vk} be the non-leaf vertices of Fix(g2). Let Xi ⊂X be the set of all x ∈X
such that x ⋅ u = vi. Then the Xi partition X into finitely many subsets, and for
any two x, y ∈ Xi, we must have that y−1x ∈ Gu. Hence, X consists of finitely
many Gu-orbits. For each i, pick some xi ∈ Xi. Then x−1i g2xi ∈ Gu for every i.
Since Gu is conjugacy separable, we may pass to a further virtually free filling
such that x−1i g2xi and g1 are not conjugate in Ḡu for every i. Then, by the same
argument as above, we conclude that ḡ1 and ḡ2 are not conjugate.

The final claim follows from the fact that finitely generated virtually free
groups are conjugacy separable Theorem 2.9. □

4.3. Conjugacy distinguished cyclic subgroups. We mimic the proof of
Theorem 4.10 to construct virtually free fillings that separate the conjugacy class
of an element g2 from the cyclic subgroup ⟨g1⟩ in the case that g1 and g2 are both
elliptic.

For the remainder of this article we will use the notation G → G to denote a
vertex filling, T → T the corresponding morphism of the associated Bass–Serre
trees, and G→ G,g ↦ ḡ the quotient of the correpsoninng fundamental groups.

Lemma 4.11. Let G = (X,G●, ι●) be an acylindrical graph of groups that satisfies
the following.
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(1) Vertex groups are conjugacy separable.
(2) Vertex groups are Z-conjugacy distinguished.
(3) Edge groups are conjugacy distinguished in the vertex groups.
(4) Edge groups are root-closed in π1(G).
(5) G admits arbitrarily deep virtually free vertex fillings.

Let G = π1(G, v). Then, for any elements g1, g2 ∈ G such that at least one
of g1 or g2 is elliptic and g2 is not conjugate into ⟨g1⟩, there exists a virtually
free quotient of G such that the image of g2 is not conjugate into the image of
⟨g1⟩. Hence, there exists a finite quotient of G such that the image of g2 is not
conjugate into the image of ⟨g1⟩.

Proof. Let g1, g2 ∈ G be as in the statement of the lemma. Let T be the Bass–
Serre tree corresponding to G.

Suppose first that g1 is loxodromic and g2 is elliptic. By Theorem 4.8, there
exists a virtually free vertex filling T → T such that ḡ1 is loxodromic. Moreover,
gk2 remains elliptic in any virtually free filling. Hence g1 is not conjugate into
⟨g2⟩ in the image. The same argument holds if g1 is elliptic and g2 is loxodromic.

Suppose now that both g1 and g2 are elliptic. We begin by noting that for any
k, l ∈ Z ∖ 0,

Fix(gk1) ⊆ Fix(gkl1 ),

and since the action ofG on T is acylindrical, the diameter of Fix(gk1) is uniformly
bounded over all k ∈ Z ∖ 0. Using the fact that edge groups are conjugacy
distinguished in the vertex groups, and that Fix(g1) and Fix(g2) have bounded
diameter by acylindricity, we may pass to a virtually free vertex filling π∶T → T
such that π(Fix(gk1)) = Fix(ḡk1) for all k ∈ Z ∖ 0, and π(Fix(g2)) = Fix(ḡ2).

Suppose now that Fix(g2) consists of a single vertex v. If there is no power gk1
of g1 such that Fix(gk1) consists of a single vertex, then Fix(ḡk1) is not isomorphic
to Fix(ḡ2) for any k ∈ N and thus ḡ2 is not conjugate into ⟨ḡ1⟩.

If there is a power gk1 of g1 such that Fix(gk1) consists of a single vertex, then
we must have that Fix(g1) consists of a single vertex, since Fix(g1) ⊆ Fix(gk1) for
all k ∈ Z. Let Fix(g1) = {w}. If v and w are not in the same G-orbit in T , then
v̄ and w̄ are not in the same Ḡ-orbit and thus ḡ2 and ḡk1 are not conjugate in Ḡ
for all k ∈ Z.

Hence, suppose that v and w are in the same orbit. Then, there exists x ∈ G
such that g′2 = gx2 fixes v. Now g′2 is not conjugate to gk1 for all k ∈ N, and gk1 , g

′
2 ∈

Gv. Then, since ⟨g1⟩ is conjugacy distinguished in Gv, there is a finite quotient
q∶ Gv → Qv such that q(gk1) and q(g′2) are not conjugate in Qv, for all k ∈ Z. Hence
there is a virtually free vertex filling G → Ḡ such that Fix(ḡk1) = Fix(ḡ′2) = {v̄}
and ḡk1 and ḡ′2 are not conjugate in Ḡv = stabḠ(v̄). But if there exists some ȳ ∈ Ḡ
such that ḡ′ȳ2 = ḡk1 , then ȳ ⋅ Fix(ḡk1) = Fix(ḡ′2). Hence, ȳ ∈ stabḠ(v̄). It follows
that ḡk1 and ḡ′2 are not conjugate in Ḡ. Thus ḡk1 and ḡ2 are not conjugate.

Assume now that Fix(g2) contains an edge and there exists k ∈ Z∖0 such that
Fix(gk1) also contains an edge. If no pair of edges e1 ∈ Fix(g2) and e2 ∈ Fix(gk1),
for any k ∈ Z ∖ 0, are in the same G-orbit, then their images in a virtually free
filling are not in the same Ḡ-orbit and thus ḡk1 and ḡ2 are not conjugate. Hence,
there exists a pair e1 and e2 that are in the same G-orbit. Replacing g2 by a
conjugate, we may assume that there exist some edge e that is fixed by g2 and
gk1 for some k ∈ Z ∖ 0.

Suppose that Fix(g2) only contains the edge e. If Fix(g1) also consists of a
single edge, then for every k ∈ Z∖0 such that Fix(gk2) consists of an edge, we must
have that Fix(gk1) = Fix(g2) = {e}. Let u be an endpoint of e. Then u is fixed
by g2 and gk1 for every k ∈ Z. Hence, we may use the conjugacy distinguished
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property of the vertex group Gu to pass to a virtually free quotient such that ḡ2
is not conjugate into ⟨ḡ1⟩.

Finally, suppose that Fix(g2) contains at least two edges. Since G is acylindri-
cal, each Fix(g2) is a subtree of T of finite diameter. In particular, it con-
tains finitely many non-leaf vertices. Let u be an endpoint of an edge e ∈
Fix(g1) ∩ Fix(g2) that is not a leaf of Fix(g1).

We will now use the root-closed assumption. Since G is root-closed, Fix(gk1) =
Fix(g1) for all k ∈ Z ∖ 0. Now we argue as in the last part of Theorem 4.10.
Consider the set X of all elements x ∈ G such that x ⋅ Fix(g1) = Fix(g2). Then
each x ∈ X maps u to a non-leaf vertex of Fix(g2). Let {v1, . . . , vk} be the non-
leaf vertices of Fix(g2). Let Xi be the subset of x ∈X such that x ⋅ u = vi. Then
the Xi partition X into finitely many subsets, and for any two x, y ∈Xi, we must
have that y−1x ∈ sGu. Hence, X consists of finitely many sGu orbits. For each i,
pick some xi ∈ Xi. Now x−1i g2xi, g

k
1 ∈ Gu for every i and k ∈ Z ∖ 0. Since Gu is

conjugacy distinguished, we may pass to a further virtually free filling such that
the image of x−1i g2xi is not conjugate into the image of ⟨g1⟩.

The final claim follows from the fact that cyclic subgroups are conjugacy dis-
tinguished in virtually free groups [CZ15]. □

Lemma 4.12. Let G = (X,G●, ι●) be an acylindrical graph of groups such that the
edge groups are separable in the vertex groups. Suppose that G admits arbitrarily
deep virtually free vertex fillings. Suppose also that hyperbolic elements of G =
π1(G, v) are conjugacy distinguished.

Then, for any hyperbolic elements g1 and g1 such that g2 is not conjugate into
⟨g1⟩, there exists a virtually free quotient of G such that the image of g2 is not
conjugate into the image of ⟨g1⟩. Hence, there exists a finite quotient of G such
that the image of g2 is not conjugate into the image of ⟨g1⟩.

Proof. By Theorem 4.8, we may pass to a virtually free vertex filling G → G =
G/N1 that preserves the translation lengths of g1 and g2. Hence, there exists at
most one positive integer k > 0 such that

ℓT (g2) = ℓT (ḡ2) = ℓT (ḡ
k
1) = ℓT (gk1).

If no such integer exists, then ḡ2 is not conjugate into ⟨ḡ1⟩ and we are done.
Suppose that there exists some k > 0 such that ℓT (g2) = ℓT (gk1). Since hy-

perbolic elements in G are conjugacy distinguished, there exists a finite quotient
π∶π1(G) → Q such that π(g2) is not conjugate to π(g±k1 ). Let N2 be the kernel
of π.

Then, the quotient G→ G/N1 ∩N2 corresponds to a virtually free filling such
that the image of g2 is not conjugate into the image ⟨g1⟩. The final claim follows
from the fact that cyclic subgroups are conjugacy disntinguished in virtually free
groups.

□

5. Piecewise trivial suspensions

The goal of this section is to prove that free-by-cyclic groups with unipotent
linear monodromy are conjugacy separable. This is done in Theorem 5.17.

5.1. Some background results. Recall that a free-by-cyclic group with unipo-
tent and linearly growing monodromy admits a standard splitting as in Theo-
rem 2.17. Following the terminology established in [DT24], we will call such a
splitting a piecewise trivial suspension with free local fibres, sometimes omitting
reference to the local fibres if it is clear from the context.

A piecewise trivial suspension K is said to be clean if whenever w is a white
vertex of the underlying graph we have Kw ≅ Fw⊕⟨tw⟩ and if H ≤ Kw is the image
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of any edge group in Kw, then H = ⟨cH , tw⟩ where cH is a primitive element of
Fw. We say that a finite index subgroup K ≤ π1(G, v) is a clean cover if the
induced splitting K of K is clean and furthermore if there is a power k such that
every black vertex group in K is conjugate to a k-congruence subgroup, i.e. the
subgroup kZ⊕ kZ ≤ Z2 of a black vertex group of G.
Proposition 5.1. Let G be a piecewise trivial suspension with free local fibres.
Then the following properties are satisfied.

(1) The profinite topology on π1(G, v) is efficient; in particular, the edge
groups are separable in the vertex groups.

(2) The vertex groups are conjugacy separable.
(3) Cyclic subgroups are conjugacy distinguished in the vertex groups.
(4) The edge groups are conjugacy distinguished in the vertex groups.
(5) The splitting is 4-acylindrical.

Moreover, π1(G, v) contains a finite index subgroup that admits a splitting as a
clean piecewise trivial suspension with free fibres.

Proof. By definition of piecewise trivial suspension the splitting is 4-acylindrical,
the vertex groups are of the form Fv × Z where Fv is a finitely generated free
group and the edge groups are maximal Z2-subgroups. The group G is residually
finite by [Bau71], and by [HK25, Proposition 2.9] every edge and vertex group is
fully separable. Hence the profinite topology on π1(G) is efficient.

Since finitely generated free groups are conjugacy separable, it follows that
the vertex groups are conjugacy separable. Since finitely generated subgroups
are conjugacy distinguished in finitely generated free groups, it follows that edge
groups and cyclic subgroups are conjugacy distinguished in the vertex groups.
Similarly, edge groups are separable in the vertex groups.

By [DT24, Proposition 6.14], there is a finite index subgroup G′ ≤ G that
admits a splitting as a clean piecewise trivial suspension. □

Clean piecewise trivial suspensions admit virtually free vertex fillings of a
particularly nice form.

Proposition 5.2 (Virtually free vertex fillings ([DT24, Proposition 6.17])). Let
K be a clean piecewise trivial suspension. Suppose for every white vertex w we are
given a finite index subgroup Nw ≤ Fw. Then there are finite index characteristic
subgroups Dw ≤ Nw ≤ FW such that there exists a positive integer N > 0 and
a graph of groups K̄ and with the same underlying graph such that for every
white vertex we have K̄w ≅ Fw/Dw ⊕ (Z/NZ), every black vertex is isomorphic
to (Z/NZ)2 and there is a natural surjection π1(K, v) ↠ π1(K̄, v) induced by a
morphism of graphs of groups, where each vertex group morphism Kv ↠ K̄v is
the quotient by ⟨Dw, t

N
w ⟩.

Remark 5.3. By strong omnipotence of the free groups Dw, there exists a
positive integer N ′ > 0 such that for every i ∈ N, there is a virtually free vertex
filling K̄ of K with images of white vertex groups of the form K̄w ≅ Fw/Dw ⊕
(Z/iNZ) and black vertex groups (Z/iNZ)2.
5.2. Short positions and vertex fillings. Let G = (X,G●, ι●) be a piecewise
trivial suspension. A turn is a pair of edges (e, f) ∈ E(X)±1 ×E(X)±1 such that
τ(e) = ι(f). Every turn defines a system of double coset representatives in Gτ(e)
for the double cosets Ie/Gτ(e)/Of where Ie is the image of τe∶ Ge → Gτ(e) and Of

is the image of ιf ∶ Gf → Gι(f). For a piecewise trivial suspension we can always
assume that the double coset representatives are the trivial element in the black
vertex groups and elements of the local fibre Fv in the white vertex groups.

Recall that an element g ∈ Bass(G) is a G-loop if it is an element of π1(G, v)
for some v ∈ V (X). We say that a G-loop based at a white vertex is in normal
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form when it is explicitly written out as

ℓl00 ã0e1e2ℓ
l2
2 ã2e3⋯en−1enℓ

ln
n ãnr

mn
n tk

where the ãi are double coset representatives with ã0 and ãn being representatives
for the turn (en, e1); for each i ≥ 1, ℓi ∈ Iei , ℓ0 ∈ Ien ∩Fτ(en) and rn ∈ Oe1 ∩Fι(e1);
and t is the generator of the center of Gτ(en).

We say a G-loop g is in short position within its G-conjugacy class if it has
translation length 2 and its normal form looks like

e1e2ã2r
d
2t

k,

or if if has translation length 4 or more and its normal form looks like

e1e2ã2e3e4ℓ
d
e4 ã4⋯t

k

where d ∈ Z is minimal (w.r.t. some fixed well-order of Z) among all conjugates of
g. Note that by conjugating by the right element of the edge group corresponding
to e1 it is possible to fix the initial prefix e1e2ã2 while changing the exponent d.

We say that g is in almost short position if it has a prefix of the form e1e2.
Note that all conjugates in almost short position are conjugates of elements in
short position by elements that lie in the edge group ιe1(Ge1). The following
proposition follows by 4-acylindricity of the splitting.

Proposition 5.4 ([DT24, Proposition 5.6]). An element of π1(G, v) with trans-
lation length 2m has at most m Bass(G)-conjugates in short position.

Now given a G-loop g, letDCR(g) = (ã0, . . . , ãn) denote the sequence of double
coset representatives that occur in the normal form for g if g is in short position,
and if g′ is a conjugate of g by an element of an edge group that is in almost short
position thenDCR(g′) =DCR(g). As a consequence of double coset separability
of free groups we have:

Lemma 5.5. If for any Bass(G) conjugates k1, k2 of g1, g2 in short position with
the same underlying edge part we have DCR(k1) ≠ DCR(k2) then there is a
virtually free quotient of G where g1, g2 have non-conjugate image.

Proof. By hypothesis, we can find sufficiently deep finite index subgroups of the
vertex groups so that the kth coset representative b̃2k occurring in DCR(k2)
is separated from the double coset Ie2k ã2kOe2k+1 . Let Ḡ be a sufficiently deep
virtually free vertex filling. Then all almost short conjugates of the image of g1
will be different from the image of all almost short conjugates of the image of
g2 in Bass(Ḡ). Since any element has almost short conjugates, it follows that g1
and g2 have non-conjugate images. □

5.3. Separating elements with the same double coset sequence. Suppose
now that we are given two non-conjugate elements in short position with normal
forms

g = e1e2a2e3e4c
n4
4 a4e5⋯elc

nl

l alc̄
n1
1 t

r
1(1)

h = e1e2a2e3e4c
m4
4 a4e5⋯elcml

l alc̄
m1
1 tr1(2)

where we allow ei = e±1j even if i ≠ j and where the cj are elements that generate
the intersection of the fibre and the image of the edge group. We have the
following migration relations:

c̄ieiei+1 = eiei+1ci+1(3)
tieiei+1 = eiei+1c

ϵi+1
i+1 ti+1,(4)

where ti is the generator of the center of either Gτ(ei) or Gι(ei); which ever hap-
pens to be a non-abelian vertex group. The exponents ϵj that occur in (4) are
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called twisting numbers since these are the exponents that occur in the Dehn
multitwists.

Let us now look at the effect of conjugating g from (1) by t1. The sequence of
equalities is obtained by migrating the ti symbols to the right.

t1gt
−1
1 = t1e1e2a2e3e4c

n4
4 a4e5⋯elc

nl

l alc̄
n1
1 t

r−1
1

= e1e2c
ϵ2
2 t2a2e3e4c

n4
4 a4e5⋯elc

nl

l alc̄
n1
1 t

r−1
1

= e1e2c
ϵ2
2 a2e3e4c

n4+ϵ4
4 t4a4e5⋯elcnl

l alc̄
n1
1 t

r−1
1

= ⋯

t1gt
−1
1 = e1e2c

ϵ2
2 a2e3e4c

n4+ϵ4
4 a4e5⋯elcnl+ϵl

l alc̄
n1
1 t

r
1(5)

From this we see that the subgroup that preserves the prefix e1e2a2e3e4 of g
under conjugation is ⟨tc̄−ϵ21 ⟩. We also see that

(6) (t1c̄−ϵ21 )g(t1c̄
−ϵ2
1 )

−1 = e1e2a2e3e4cn4+ϵ4
4 . . . elc

nl+ϵl
l alc̄

n1+ϵ2
1 tr1.

Up to this point we did not specify the ordering on Z we wanted for short
position. For our purposes we will now require our well-ordering on Z to be any
well-order that extends

0 < 1 < ⋯ < ∣ϵ4∣.
Lemma 5.6. If g, h as given in (1), (2), respectively, are in short position then
we have

0 ≤ n4,m4 < ∣ϵ4∣.
Proof. Suppose towards a contradiction that g is in short position but either
n4 < 0 or n4 > ϵ4. This means that by the division algorithm there exists q ∈ Z
such that

n4 = q∣ϵ4∣ + r
with 0 ≤ r < ∣ϵ4∣. By equation 6, by repeatedly conjugating g by (t1c̄ϵ21 )±1, we can
add integer multiples of ϵ4 to he exponent in the c4 position while preserving the
e1e2a2e3e4-prefix. By the division algorithm we can therefore make this exponent
the remainder of division, contradicting that g was in short position. The same
argument works for h □

We can now make sense of and then justify the following definition.

Definition 5.7. If (g, h) is the pair of elements given by (1) and (2) then we
define the persistent vector ϵ⃗ and the difference vector δ⃗ to be

ϵ⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϵ4
ϵ6
⋮
ϵl
ϵ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and δ⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m4 − n4
m6 − n6
⋮

ml − nl
m1 − n1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We also define the persistent equation to be

δ⃗ = λϵ⃗.
The reason why these vectors are important is that firstly, if the persis-

tent equation does in fact have a solution λ0 ∈ Z then by (6) we would have
(t1c̄−ϵ21 )λ0g(t1c̄−ϵ21 )−λ0 = h. That said, we also have the following.

On the one hand, 4-acylindricity implies that all the ϵi are nonzero. Lemma
5.6 implies ∣m4 − n4∣ < ∣ϵ4∣, so if ∣m4 − n4∣ ≠ 0 then there is no integer solution to
the equation and if ∣m4 − n4∣ = 0 then the only solution is λ = 0, which implies
δ⃗ = 0 and therefore that g = h.

We now wish to pass to a virtually free vertex filling Ḡ in which the images
of g, h remain non-conjugate. To simplify notation we will continue to denote
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the images of g, h in Bass(Ḡ) as (1) and (2), but assuming that the non-E(X)
symbols denote elements in the finite, filled, vertex groups. Every abelian vertex
group in Ḡ is isomorphic to ZN × ZN so we’ll call N the abelian exponent of Ḡ.
The image of a double coset ⟨cn⟩an⟨c̄n+1⟩ is said to be permeable if there are
p, q ∈ Z, at least one of which is not zero, such that

cpnan =Ḡ an(c̄n−1)q.
Otherwise the image of the double coset is said to be impermeable. It is easy to
see that the image of double coset is impermeable if and only it has cardinality
N2.

Suppose all the double cosets from DCR(g) have impermeable images in a
virtually free vertex filling. We will now describe potential conjugators that
bring the image of g to the image of h. We note that (6) still holds in Ḡ only
here the exponents can be taken mod N . In particular, if there is a solution λ
to the persistent equation

δ⃗ = λϵ⃗ mod N

then the images of g and h will be conjugate. The persistent equation comes
from the determining which conjugators preserve the prefix e1e2a2e3e4 of g or
h for that matter. It is worth noting that in G, the group of such elements
coincides with the stabilizer of a segment of length 4 in the dual Bass–Serre tree.
Equation (5) also holds with exponents modulo N and we immediately get that
conjugation by tN/ϵ21 also preserves the prefix e1e2a2e3e4. Looking at the effect
of this conjugation by repeatedly applying (6) motivates the following.

Definition 5.8. If (g, h) is the pair of elements given by (1) and (2) then for a
given N the we have the content vector and variable vector

κ⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϵ4
ϵ6
⋮
ϵl
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and ν⃗N =
N

ϵ2
⋅ κ⃗

respectively. We further define the modulo N conjugacy equation to be

(7) δ⃗ = λ1ϵ⃗ + λ2ν⃗N mod N.

Obviously, a solution (λ1, λ2) to the modulo N conjugacy equation would
imply that the images of g and h are conjugate in Ḡ. The following shows that
we can arrange for this not to happen.

Proposition 5.9. If (g, h) is the pair of elements given by (1) and (2) then
there is some M such that, if M ∣N , the modulo N conjugacy equation (7) has no
solution.

Proof. The equation

(8) δ⃗ = λ1ϵ⃗ + λ2κ⃗
has a solution if and only if δ⃗ lies in the subgroup ⟨ϵ⃗, κ⃗⟩. The hypothesis that
g, h are non conjugate implies that δ ≠ 0⃗, so (λ1, λ2) = (0,0) is not a solution.
Lemma 5.6 implies that there are also no integer solutions with λ2 = 0.

Recall that all the twisting numbers ϵi are non-zero. It follows that the per-
sistent and content vectors, ϵ⃗ and κ⃗, are linearly independent. So if there is a
solution to (8), then this solution must be unique. This means that we can take
L to be divisible by ϵ2 and so large that

(9) δ⃗ = λ1ϵ⃗ + λ2
L

ϵ2
κ⃗
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does not have a solution in Z2. It follows that we can always find some sufficiently
large L that is divisible by ϵ2 such that

δ⃗ /∈ ⟨ϵ⃗, L
ϵ2
κ⃗⟩ .

Since Zl/2 is subgroup separable then we can find some M that is divisible by L
such that the image of δ⃗ does not lie in the image of ⟨ϵ⃗, Lϵ2 κ⃗⟩ in (Z/MZ)l/2 and
therefore neither in any (Z/NZ)l/2 where M ∣N ⇒ N = qL for some q ∈ Z.

Suppose finally towards a contradiction that the modulo N conjugacy equation
(7) had a solution, then we have

δ⃗ = λ1ϵ⃗ + λ2ν⃗N mod N

⇒ δ⃗ = λ1ϵ⃗ + λ2
N

ϵ2
κ⃗ mod N

⇒ δ⃗ = λ1ϵ⃗ + (λ2q)
L

ϵ2
κ⃗ mod N

which implies that the image of δ⃗ lies in the image of ⟨ϵ⃗, Lϵ2 κ⃗⟩ in (Z/NZ)l/2, which
is a contradiction and the result follows. □

Proposition 5.10. Let g, h be as in (1),(2) and suppose they are non-conjugate
in G. Let g1, . . . , gc be all the conjugates of g that are in short position and where
DCR(gi) = DCR(g), i = 1, . . . , c. If we can find a vertex filling Ḡ such that all
double coset images are impermeable, distinct double cosets have distinct images
in their respective vertex groups, and where the abelian exponent N is such that
the modulo N conjugacy equation

δ⃗i = λ1ϵ⃗ + λ2ν⃗N mod N

has no solution, where δi is the difference vector for (gi, h), then the images of
g, h are not conjugate in Ḡ.

Proof. Consider the image of g as given in (1) in Ḡ. By impermeability distinct
vectors of exponents [n4, . . . , nl, n1]⊺ mod N will give distinct elements. Sup-
pose towards a contradiction that the images of g and h were conjugate in Ḡ.
Let k be the conjugator that gives kgk−1 =Ḡ h. If k is hyperbolic then, it can
be decomposed as k = ep where p cyclically permutes syllables and e is elliptic.
It follows that there will be some elliptic k such that (k′)gi(k′)−1 =Ḡ h for some
1 ≤ i ≤ c.

Equation (5) implies that k′ must lie in the image of the subgroup ⟨tc̄−ϵ21 , tN/ϵ2⟩
and in particular that (7), the modulo N conjugacy equation, must hold for δi
on the left hand side, which is impossible by hypothesis. The result follows. □

5.3.1. Designer vertex fillings. Let g1, g2 be two hyperbolic elements in G. Our
goal is to find a finite quotient of G where the images ḡ1 and ḡ2 are not conjugate.
We will do this by finding a virtually free quotient of a finite index subgroup of G
in which powers of images of so-called elevations of g1 and g2 are non-conjugate.
The finite index subgroup and virtually free quotients we will construct will work
specifically for the pair g1, g2.

We write H ⩽fi G to indicate that H is a finite index subgroup of G. If H ⩽fi G
then there is some power e(H) such that ge(H) ∈ H for all g ∈ G. The following
result is a consequence of the proof of [CBW12, Lemma 3.1], we reproduce the
relevant part here for completeness.

Lemma 5.11. Let g1, g2 be elements of a group G. Suppose there exists γ ∈ Ĝ
such that gγ1 = g2, i.e. g1, g2 are conjugate in the profinite completion of G. Let
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H ⩽fi G. Then there exists some d ∈ G and some γ′ ∈ Ĥ such that (ge(H)1 )γ′ =
(ge(H)2 )d.

Proof. Since Ĝ = ĤG we may write γ = γ′d−1 with γ′ ∈ Ĥ and d ∈ G. We have

g
e(H)
2 = (ge(H)1 )

γ
= (ge(H)1 )

γ′d−1

, that is (ge(H)1 )
d
= (ge(H)2 )

γ′

. □

Our goal will therefore be, given nonconjugate elements g1, g2 ∈ G, to construct
some H ⩽fi G such that for any G-conjugate of ge(H)2 lying in H there will be
some finite quotient of H such that its image will be nonconjugate to the image
of ge(H)1 . Lemma 5.11 will then imply that g1 and g2 have nonconjugates image
in some finite quotient of G.

An important tool to achieve our goal is Shepherd’s strong commanding prop-
erty, which is a generalization of Wise’s omnipotence.

Definition 5.12 (Commanding group elements [She23, Definition 1.1] (c.f. [Wis00,
Definition 3.2])). A group G commands a set of elements {g1, . . . , gn} ⊂ G if there
exists an integer N > 0 such that for any integers r1, . . . , rn > 0 there exists a
homomorphism to a finite group G → Ḡ, g ↦ ḡ such that the order of ḡi is Nri.
If this can always be done with ⟨ḡi⟩ ∩ ⟨ḡj⟩ = {1} for all i ≠ j then we say that G
strongly commands {g1, . . . , gn}.

Typically, command (or omnipotence) has been used to construct finite degree
covering spaces of graphs of spaces - we will be using command in this way and
we will also use command in a somewhat novel way to construct vertex fillings.
The following lemma indicates how the notion of strong command will be useful
to construct impermeable double cosets.

Lemma 5.13. Let H = ⟨h⟩ and K = ⟨k⟩ be non-trivial cyclic subgroups of a group
F . If H ∩ gKg−1 = {1} then the double coset HgK is impermeable.

Proof. We will prove the contrapositive, to this end suppose HgK is not im-
permeable. Then there are distinct pairs of integers (n1,m1) ≠ (n2,m2) such
that

hn1gkm1 = hn2gkm2 .

This immediately implies

hn1−n2 = gkm2−m1g−1

and since either n1 = n2 or m2 − m1 is non-zero, both must be non-zero so
H ∩ gKg−1 ≠ {1} and the result follows. □

Let us now first focus on constructing a finite index subgroup that will en-
able us to do the necessary vertex fillings. This finite index subgroup will be
constructed from a finite degree covering space.

Let X be a topological space and let ℓ ∶ S1 ↬X be a loop (i.e. an continuous
immersion from a circle to the space). Let ρ ∶ Y ↠X be a finite degree covering
space of X. An elevation ℓ̂ ∶ S1 ↬ Y of ℓ to Y is an immersion such that the
following diagram commutes:

S1 Y

S1 X

↫→ℓ̂

↠ c ↠ ρ

↫→ℓ

for some covering map c. The degree of c is the degree of the elevation. On the
group theoretic level, if an orientation is given to S1 then the loop ℓ represents
a conjugacy class [g] in G = π1(X,x0) where x0 is any basepoint. The covering
space Y corresponds to a conjugacy class of a finite index subgroup H ⩽fi G, if
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Y is a regular cover, i.e. the group of deck transformations of ρ ∶ Y ↠ X acts
transitively on point preimages, then H will in fact be a normal subgroup.

A fixed loop ℓ will admit only finitely many elevations to a finite cover Y . If Y
is regular, then if non-empty, the set of elevations ℓ̂1, . . . , ℓ̂m correspond to the set
of H-conjugacy classes [(gd1)n]H , . . . , [(gdm)n]H of generators of the intersection
of conjugates of ⟨g⟩ and H. The power n is the common degree of the elevations.
We call the H-conjugacy classes [(gdi)n]H the algebraic elevations of g to H. A
covering space argument gives n ⋅m = [G ∶H].

From the graph of groups G we have a corresponding graph of spaces XG
constructed from the canonical splitting G of a piecewise trivial suspension as
follows: the vertex space associated to a white vertex w is of the form Xw × S1

where Xw is a bouquet of circles with vertex xw and Fw ≅ π1(Xw, xw), the vertex
space associated to a black vertex b is a 2-torus S1 × S1, edge spaces are also
2-tori. Any non-elliptic G-loop in short position will give rise to an immersed
loop ℓ ∶ S1 → XG .

Recall that to every G-loop we can associate a sequence of turns. We call a turn
of the form (e, e−1) a sharp turn. We will need to eliminate sharp turns to enable
impermeability. Sharp turns occur precisely when an immersed loop ℓ enters and
then exits a vertex space via the same edge space. A finite covering space of XG
is also naturally a graph of spaces. Our goal is to construct a covering space
that ensures that elevations of ℓ no longer have sharp turns. We will achieve this
using subgroup separability of free groups.

A finite cover of XG corresponds to a (conjugacy class) of a finite index sub-
group of G. In particular, if G is a piecewise trivial suspension, then so are all its
finite index subgroups. A sharp turn will occur along the loop ℓ if in the G-loop
representing its π1-image we have a subword

eae−1.

Note that for any white vertex w, Gw = Fw⊕⟨tw⟩ and tw is contained in the image
of every incident edge group. Thus, we may always assume that ai is contained
in the fibre.

Let H ≤ G be a finite index subgroup. Suppose that for every white vertex
w ∈ V (X), the subgroups in the induced graph-of-groups GH intersect Fw as a
normal subgroup Hw Pfi Fw. Suppose also that for any sharp turn eae−1 with
τ(e) = w, we have that the intersections of subgroups Ie and aIea

−1 with Hw

are non-conjugate in Hw. Then, the elevations of ℓ will always enter and exit a
vertex space from different edge spaces.

Lemma 5.14. For every Fw, there is a normal finite index subgroup Hw Pfi Fw

such that for any sharp turn eae−1 that occurs in any conjugate of g1 or g2 in short
form with a ∈ Fw, conjugates of Ie∩Hw and aIea−1∩Hw have trivial intersection
in Hw.

Proof. Let eae−1 with a ∈ Fw be a sharp turn. By hypothesis, the sharp turn
occurs in a reduced word so a /∈ Ie ∩Fw = ⟨c⟩. Also note that by hypothesis ⟨a⟩ is
a maximal cyclic subgroup of Fw. Suppose that for some H Pfi Fw there exists
h ∈H such that

⟨c⟩ ∩ h⟨aca−1⟩h−1 ≠ {1}.
Then this implies that [ha, c] = 1, which in a free group, by maximality of the
cyclic group ⟨c⟩ implies that ha ∈ ⟨c⟩. In particular the image of a in Fw/H lies
in the image of ⟨c⟩.

Now Fw is subgroup separable so there exists Ha,c Pfi Fw that separates a from
⟨c⟩. In particular, the subgroups ⟨c⟩ ∩Ha,w and ⟨aca−1⟩ ∩Ha,w are not conjugate
in Ha,w.
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Since any subgroup that is deeper than Ha,c will also separate a from ⟨c⟩, we
may take such a normal finite index subgroup for every sharp turn that occurs
in Fw and then take their intersection to obtain Hw with the desired properties.
Note that there are finitely many sharp turns to consider since the short form
representatives of g1 and g2 have finite length. □

Lemma 5.15. Let G = π1(G, v) be a piecewise trivial suspension and let g1, g2 ∈
G. There exists a finite index subgroup H ⩽fi G with an induced graph of groups
GH such that the following hold:

(1) Elevations of the conjugates in short form of g1 and g2 to H have no
sharp turns with respect to GH .

(2) There is some exponent kH such that every black vertex group of GH is
conjugate to some subgroup of kH powers kH ⋅ Gb where b ∈ V (X) a black
vertex.

(3) Every white vertex group GHŵ is conjugate to a subgroup ⟨Hw, t
kH
w ⟩ ≤ Fw ⊕

⟨tw⟩ = Gw and the image of every edge group in GHŵ is conjugate to a
subgroup of the form ⟨ckH , tkHw ⟩ ≅ Z2 where c is a fibrewise generator of
an edge group.

Proof. By Theorem 5.14, for every white vertex w ∈ V (X), there is a finite index
normal subgroup Jw Pfi Fw such that for every sharp turn eae−1 occurring in any
conjugate of g1 or g2 in short position, we have that the Ie ∩ Jw and aIea−1 ∩ Jw
have no conjugates in Jw with non-trivial intersection.

Fix a white vertex w ∈ V (X). For each incident edge e at w, let he be the
generator of Ge∩Jw and let Hw be the set of all the elements he. The hypotheses
imply that Hw is an independent set and thus Jw commands the elements in
Hw by [Wis00, Theorem 3.5]. Each he is an algebraic elevation of a fibrewise
generator cei ∈ Fw of the image of an incident edge group.

Now, using command, we may find some positive integer D and for each white
vertex w ∈ V (X) a finite index subgroups Hw ⊴f Fw, such that all algebraic
elevations of the fibrewise generators of edge groups in Fw have a common degree
D. We note that for every fibrewise generator cei ∈ Fw the sum of the algebraic
degrees of all its algebraic elevations is the index [Fw ∶Hw].

We can now construct finite index subgroups

⟨Hw, t
D
w ⟩ ≤ Gw ≅ Fw ⊕ ⟨tw⟩

of the white vertex groups and take the D-congruence subgroups D ⋅ Z2 of the
black vertex groups. By following the construction of [DT24, Proposition 6.14]
it is possible to construct a finite degree covering graph of spaces, and therefore
a finite index subgroup H with the desired properties with kH =D. □

We call the finite index subgroup H ≤ π1(G) constructed in Lemma 5.14 un-
sharpened relative to g1, g2. We now construct the vertex filling of H = π1(GH)
that witnesses the non-conjugacy of g1 and g2.

Proposition 5.16. Let g1, g2 be non-conjugate elements of G = π1(G) with
DCR(g1) = DCR(g2). Then it is possible to find a finite index subgroup H =
π1(GH) that admits a virtually free vertex filling GH → GH in which all algebraic
elevations of g1 and g2 have non-conjugate images.

Proof. We first apply Lemma 5.14 in order to find the finite index subgroup
H = π1(GH) that is unsharpened relative to g1, g2. Let P be the product of the
positive integers M given in Theorem 5.9 coming from all pairs of non-conjugate
algebraic elevations of g1, g2 in H.
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Consider now a white vertex group GHw ≅Hw ⊕ ⟨tkH ⟩ ≤ G[w], where G[w] is the
vertex group of G that naturally contains GHw . The elements

Ew = {ce ∈Hw ∶ e is incident to w}
are independent. Let Nw be the integer given in Definition 5.12 given for Hw

and the set Ew, and let
NH =M ⋅∏

w

Nw

where w ranges over the white vertices of GH . For each turn τ = e′ae−1 that occurs
in a normal form of an algebraic elevation of g1, g2 we want to find a finite quotient
of Hw →Hw such that the images of ⟨ce′⟩ and ⟨acea−1⟩ have trivial intersection.
By [BW15, Theorem 4.3], Hw strongly commands Ew and replacing some ce
with a conjugate acea−1 we can ensure by strong command that there is a finite
quotient Hτ

w where the images of all the elements ce have order NH and where
the images of ⟨ce′⟩ and ⟨acea−1⟩ have trivial intersection. Let Kτ

w be the kernel
of this homomorphism and let Kw = ⋂τ K

τ
w where τ ranges over the turns that

occur in w. Then the normal subgroup Kw =Kw⊕⟨tkHNH ⟩ Pfi Hw⊕⟨tkH ⟩ is such
that for every turn τ = e′ae−1, the element a is in the fibre, the corresponding
double coset images are impermeable and the image of every edge group is a NH -
congruence quotient of the image of the edge group in GHw . It follows that that
the Kw give a system of vertex fillings and the result follows from Proposition
5.10. □

5.4. Conjugacy separability in the unipotent linear case.

Theorem 5.17. Let G be a free-by-cyclic group with unipotent and linearly grow-
ing monodromy. Then G is conjugacy separable and every cyclic subgroup of G
is conjugacy distinguished..

Proof. We begin by showing that G is conjugacy separable. Since G has the
unique roots property by Theorem 2.14, bu Theorem 2.4 it suffices to show that
G contains a conjugacy separable subgroup of finite index.

Up to replacing G by a finite index subgroup we may assume that G admits a
splitting G = π1(G) where G is a clean piecewise trivial suspension satisfying the
properties in Theorem 5.1. Let g1, g2 ∈ G be non-conjugate elements.

If both g1 and g2 are elliptic, then by Theorem 4.10 there exists a finite quotient
of G such that the image of g1 is not conjugate to the image of g2. Moreover,
if one of the gi is loxodromic, or if both g1 and g2 are loxodromic with different
translation lengths, then by Theorem 4.9 there exists a finite quotient where the
images are not conjugate.

If no conjugates of g1 and g2 in short position have the same sets of double coset
representatives then their conjugacy classes can be separated in a finite quotient
by Theorem 5.5. Otherwise, we combine Theorem 5.10 with Theorem 5.16, noting
that we may pass to a finite index subgroup by Theorem 5.11.

We also claim that cyclic subgroups are conjugacy distinguished in G. We
will again use the piecewise trivial splitting of G, noting that the edge groups
are root-closed by Theorem 2.15. Since we have already established that G is
conjugacy separable, we can apply Theorem 4.11 and Theorem 4.12 to conclude
the claim. □

6. Double-Z-coset separability

The aim of this section is to prove that double cosets of cyclic subgroups are
separable in free-by-cyclic groups with polynomially growing monodromy (see
Theorem C). Note that for any element g ∈ G, the double coset HgK ⊂ G is
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separable if and only if HgKg−1 ⊂ G is separable. Hence we only need to consider
separability of double cosets of the form HK ′ ⊂ G where H and K ′ are cyclic.

Lemma 6.1. Let G be a κ-acylindrical graph of groups and let h, k be two hy-
perbolic elements of π1(G, v0) with distinct respective axes αh, αk in the dual
Bass–Serre tree T . Let H = ⟨h⟩ and K = ⟨k⟩. Let v be a vertex in αk and let
THK ⊂ T be the convex hull of HK ⋅ v. Then the vertices of THK have valence
at most 4. Furthermore, for any vertex w ∈ THK there are at most finitely many
elements x ∈HK such that x ⋅ v = w.

Proof. Since h, k have distinct axes, acylindricity forces the intersection of the
axes to be contained in a finite interval. The tree THK must therefore have
one of the following configurations shown in Figure 1, depending on whether
the axes αh, αk are disjoint, intersect in a point, or intersect in an arc. The
advertised bound on vertex degrees follows immediately. Noting that h and

Figure 1. The three configurations for THK . The axes αh, αk are
drawn thicker.

k translate points along the axes αh and αk, respectively, we immediately see
that in the first two configurations the set HK ⋅ v = {hmkn ⋅ v ∶ m,n ∈ Z} is in
bijective correspondence with HK. In the third case, where the axes have an
intersection that contains a non-trivial arc I, the only way for it to be possible
that hm1kn1 ⋅ v = hm2kn2 ⋅ v, is if both kn1v, kn2v ∈ I and the different powers of
h make these two points coincide. Since there are only finitely many powers kn
of k such that kn ⋅ v ∈ I the finiteness result follows. □

Lemma 6.2. Let G be a κ-acylindrical graph of groups that admits arbitrar-
ily deep edge-group-separating virtually free vertex fillings. Assume that G =
π1(G, v0) does not contain elements of order 2. Let H,K ≤ G be cyclic non-
elliptic subgroups. Then the double coset HK is separable in G.

Proof. Let g ∈ G ∖HK. We begin by constructing a virtually free quotient of G
such that the image of g is not mapped to the image of HK.

We will split into two cases depending on whether the axes of the cyclic sub-
groups H and K are distinct or coincide.
Case 1: H and K have distinct axes.

Let THK ⊂ T be the tree given in the statement of Lemma 6.1 and let us fix a
vertex v contained in αk, the axis of k. We split into two subcases depending on
the behaviour of g ⋅ v.
Subcase i: g ⋅ v ∈ THK .

By Theorem 6.1, the set gGv ∩HK is at most finite. Let A be the set of all
elements of the form y−1g for y ∈ gGv ∩HK. Note that all elements of A are
non-trivial since g /∈HK.

Since Gv is residually finite, there exists a finite index normal subgroup Nv ⊴f
Gv such that each element of A ⊆ Gv is mapped to a non-trivial element via the
quotient Gv → Gv/Nv. Let G → G be a virtually free vertex filling associated to
Nv.
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Now, suppose for contradiction that ḡ ∈ HK. Then ḡ ∈ ḡGv ∩HK. Hence,
there exists some y ∈ gGv ∩HK such that ȳ−1ḡ = 1. This contradicts the fact that
the elements in A have non-trivial image in the quotient.
Subcase ii: g ⋅ v /∈ THK .

By construction, there is a finite connected subgraph D ⊂ THK such that

THK ⊂ ⋃
x∈HK

x ⋅ D.

In particular, if w is any vertex in D and e is an edge of D that is adjacent to
w, then if w′ ∈HK ⋅w is another vertex in THK , it follows that there are finitely
many elements x ∈HK such that x ⋅w = w′ and x ⋅ e is an edge of THK adjacent
to w′.

Then, by the edge group separating hypothesis, there exists a vertex filling
G → G that doesn’t fold any pair of edges of THK incident to any vertex w ∈ D.
It follows that the tree THK is mapped injectively via the folding map T → T .

Let ρ be the path of minimal length joining g ⋅v to THK . Note that by Lemma
6.1 the maximal possible valency of any vertex in the tree THK ∪ ρ is 5. Thus if
we take a vertex filling deep enough so that THK is mapped injectively, we can
then take an ever deeper filling so that none of the finitely many edges of THK ∪ρ
adjacent to vertices in ρ get folded together. It now follows that

ḡ ⋅ v̄ /∈ THK ⊃HKv̄
which means that ḡ /∈HK as required. ˛

We have exhausted all possibilities for g ⋅ v completing the proof of Case 1. ∎
Case 2: The axes of H and K coincide.

Since the action of G on T is acylindrical, it must be the case that H and K
are contained in a maximal cyclic subgroup. Here we are using acylindricity and
that there are no elements of order 2 (otherwise they could be contained in D∞).
Thus, we see that HK coincides with a cyclic subgroup C. The result in this
case follows by the same arguments as those given above, the only difference is
that THK is the minimal C-invariant tree TC .

Finally, since g ∈ G ∖HK was arbitrary, and since finitely generated virtually
free groups are double coset separable, we conclude that HK is separable in
G. □

Lemma 6.3. Let G be a κ-acylindrical graph of groups that admits arbitrarily
deep edge separating virtually free vertex fillings and let G = π1(G, v0). Let H,K ≤
G be cyclic subgroups and suppose that H is generated by a loxodromic element
and K is generated by an elliptic element. Then the double cosets HK and KH
are separable in G.

Proof. Let H = ⟨h⟩ and let αh denote the axis of h. Let v ∈ Fix(K) be the
element of Fix(K) closest to αh. Let THK be the convex hull of the set HK ⋅ v
in the Bass–Serre tree T associated to G. If v is contained in αh then THK = αh.
Otherwise, THK is as in Fig. 2. In particular, THK is locally finite and for any
vertex w ∈ THK , there is at most one m ∈ Z such that hmk ⋅v = w for some k ∈K.
Now the argument is the same as in Theorem 6.2. To show that KH is separable,
we note that the map G→ G,g ↦ g−1 is continuous with respect to the profinite
topology on G. Hence, if HK ⊆ G is closed then so is K−1H−1 =KH. □

Lemma 6.4. Let G be a κ-acylindrical graph of groups such that double cosets
of cyclic subgroups are separable in the vertex groups. Let G = π1(G, v0). Sup-
pose that all the vertex groups are fully separable in G. Let H,K ≤ G be cyclic
subgroups generated by elliptic elements such that Fix(H) ∩ Fix(K) ≠ ∅. Then
HK is separable in G.
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αh

v

Figure 2. The configuration for THK when H is hyperbolic and K
elliptic.

Proof. Pick a vertex v ∈ Fix(H)∩Fix(K). Hence, H,K ≤ Gv. Then, since double
cosets of cyclic subgroups are separable in Gv, it follows that HK is closed in the
profinite topology on Gv. By assumption, G induces the full profinite topology
on Gv and thus HK ⊆ G is separable. □

Lemma 6.5. Let G be a clean piecewise trivial suspension with free local fibres
and let G = π1(G, v0). Let H,K ≤ G be cyclic subgroups generated by elliptic
elements. Suppose that Fix(H) ∩ Fix(K) = ∅. Then HK is separable in G.

We postpone the proof of Theorem 6.5 until the end of the section.

Proposition 6.6. Let G be free-by-cyclic with unipotent and linearly growing
monodromy. Then double cosets of cyclic subgroups are separable.

Proof. By Theorem 2.6, it suffices to show that G admits a finite index subgroup
with separable double cosets of cyclic subgroups. Hence, assume that G admits
a splitting G ≅ π1(G) where G is a clean piecewise trivial suspension with free
local fibres. Then, all vertex groups are residually finite and all edge groups are
separable in the vertex groups. Hence, G admits edge separating virtually free
vertex fillings by Theorem 5.2 and Theorem 4.4.

If at least one of the subgroups is generated by a hyperbolic element, then the
result follows by Theorem 6.2 and Theorem 6.3. Otherwise, the result holds by
Theorem 6.4 and Theorem 6.5. □

We are now ready to prove the main result of this section.

Theorem C. Let G be a free-by-cyclic group with polynomially growing mon-
odromy. Then double cosets of cyclic subgroups are separable in G.

Proof. By Theorem 2.6, it suffices to show that G admits a finite index subgroup
with separable double cosets of cyclic subgroups. Hence, we may assume without
loss of generality that G has unipotent and polynomially growing monodromy.

We will argue by induction on the degree d of growth. If d = 0 then G ≅
F × Z where F is a free group of finite rank. Double cosets of finitely generated
subgroups of free groups are separable by Theorem 2.7. It follows that double
cosets of cyclic subgroups are separable in G.

The case d = 1 is proved in Theorem 6.6.
Now suppose that d ≥ 2. Let G = π1(G) be the standard splitting and let

T be the associated Bass–Serre tree. Let H and K be finitely generated cyclic
subgroups of G.

By Theorem 2.16, we may find a finite index subgroup G′ = F ⋊ϕ ⟨t⟩ where
ϕ ∈ Aut(F ) is unipotent and polynomially growing of degree d, and such that
H ′ ∶= H ∩G′ = ⟨ut⟩ or H ′ = ⟨v⟩, and K ′ ∶= K ∩G′ = ⟨u′t⟩ or K ′ = ⟨v′⟩ for some
u,u′, v, v′ ∈ F and v and v′ not proper powers. By Theorem 2.6, it suffices to show
that the double coset H ′K ′ ⊂ G′ is separable. Hence, without loss of generality,
we may assume that H and K are of this form.

If at least one of H or K is generated by a hyperbolic element, then HK is
separable by Theorem 6.2 and Theorem 6.3. If both H and K are elliptic and
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Fix(H) ∩ Fix(K) ≠ ∅ then the result follows by Theorem 6.4. Hence, let us
assume that H and K are elliptic and Fix(H) ∩ Fix(K) = ∅. Let [a, b] ⊂ T be
the segment that realises the distance between Fix(H) and Fix(K) where a is
fixed by K and b is fixed by H. We define

THK = ⋃
h∈H

h ⋅ [a, b]

and let g ∈ G ∖HK.
Note that by the root-closed property of the edge groups, if there is an edge

on [a, b] fixed by a proper power of the generator of H, then it is fixed by all of
H. Hence, no edge on [a, b] is fixed by a non-trivial element of H. Let e be the
edge on [a, b] adjacent to b.
Case 1: g ⋅ a ∈HK ⋅ a.

Let h ∈ H be such that g ⋅ a = h ⋅ a, note that such h exists because K fixes a
by assumption. Since g /∈HK, we have that h−1g ∈ Ga ∖K.

Claim 6.7. For a sufficiently high prime p, there exists a p-periodic quotient
Ga → Ga such that h−1g /∈K and the image of every incident edge group has order
p.

Proof. We will show that ⟨k⟩ ∩ ⟨h−1g⟩ = 1 or [k, h−1g] ≠ 1.
Suppose first that k and h−1g are elements of the fibre F and ⟨k⟩ ∩ ⟨h−1g⟩ ≠ 1.

Then k and h−1g must be powers of a common element. Since k ∈ F is not a
proper power (by our initial assumptions on H and K), it follows that h−1g ∈K,
a contradiction. If exactly one of {k, h−1g} is contained in the fibre, then it
is clear that ⟨k⟩ ∩ ⟨h−1g⟩ = 1. Finally, if both are not contained in the fibre
then in particular k ∈ F ⋅ t (by our initial assumptions on H and K), and thus
CG(k) = (CG(k) ∩ F ) ⊕ ⟨k⟩. Hence, if k and h−1g commute and ⟨k⟩ ∩ ⟨h−1g⟩ ≠ 1
then it must be the case that h−1g ∈ ⟨k⟩, another contradiction.

Now, by Theorem D there exists a positive integer La > 0 such that for any
prime p > La, there is a p-periodic quotient Ga → Ga such that the images of the
generators of incident edge groups and the elements h−1g and k are non-trivial
and such that ⟨h−1g⟩ ∩ ⟨k⟩ = 1. In particular, h−1g /∈K.

□

Claim 6.8. For a sufficiently high prime p, there exists a p-periodic quotient
Gb → Gb such that the image of H and Ge have trivial intersection and each
incident edge group has order p.

Proof. This is essentially the same argument as Theorem 6.7.
□

Claim 6.9. There is a virtually free filling G → G such that the images of Ge and
H have trivial intersection, and the image of h−1g is not contained in the image
of K.

Proof. For each vertex v ∈ V (X) ∖ {a, b}, we use Theorem 3.15 to construct a
finite quotient such that each incident edge group is isomorphic to Z/pZ for a
sufficiently high prime p. By Theorem 6.7 and Theorem 6.8, there is a sufficiently
high prime p such that we may find a p-periodic quotient of Ga and Gb such that
all incident edge groups are isomorphic to Z/pZ, the image of Ge and H have
trivial intersection, and the image of h−1g is not contained in the image of K.
Then, we may assemble all such quotients to construct a virtually free vertex
filling G → G. □

We now complete the proof of Case 1. To this end, consider the filling G → G
constructed in Theorem 6.9 and suppose for contradiction that ḡ ∈ HK. Then
ḡ = h̄′k̄ for some h′ ∈H and k ∈K. Thus h̄′−1ḡ ∈ Ga. Hence (h̄′−1ḡ)(ḡ−1h̄) ∈ Ga. It



CONJUGACY SEPARABILITY IN FREE-BY-CYCLIC GROUPS 39

follows that h̄′−1h̄ ∈ Ga∩Gb ≤ Ge. Hence, h̄′−1h̄ ∈ Ge∩H. However, by Theorem 6.9
we have constructed a virtually free vertex filling such that the images of Ge
and H have trivial intersection. Hence, we must have that h̄′−1h̄ = 1. Thus,
h̄−1ḡ ∈ K. Again by Theorem 6.9, in the constructed virtually free vertex filling
the image of h−1g is not contained in the image of K and thus we have arrived
at a contradiction. It follows that ḡ /∈HK as required. ∎
Case 2: g ⋅ a /∈HK ⋅ a.

Let e′ be the edge on [g ⋅ a, b] adjacent to b.
Subcase i: There is some h ∈H such that h ⋅ e = e′.

By assumption, we have that h−1g ⋅ a ≠ a and e is an edge in the intersection
h−1[g ⋅ a, b] ∩ [a, b]. Let η be the geodesic in T that joins a to h−1g ⋅ a. Note that
the path η does not contain b. Using Theorem 3.15 there exists some L > 0 such
that for every prime p > L there is a virtually free vertex filling of T such that
η is mapped injectively to T and the order of every edge group is p. Moreover,
we may find some further L′ > L such that for any prime p > L′, there is a finite
quotient Qb of Gb′ so that the images of H and Ge have trivial intersection and
every incident edge has order p. As before, we may replace the image of Gb in the
original virtually free vertex filling with the quotient Qb, to obtain a virtually
free vertex filling G → G so that the images of H and Ge have trivial intersection
and the segment η is mapped injectively via the folding map T → T .

Suppose now that ḡ = h̄′ ⋅ k̄ for h′ ∈ H and k ∈ K. Then h̄′ ⋅ ē = h̄ ⋅ ē and thus
h̄′
−1
h̄ ∈ Ge ∩H. But by construction of the virtually free vertex filling, we have

that H ∩ Ge = 1 and thus h̄′ = h̄. It follows that h̄−1ḡ ⋅ ā = ā. However, the fact
that the geodesic η is mapped injectively via the vertex filling T → T implies
that h̄−1ḡ ⋅ ā ≠ ā, which gives a contradiction. Hence in this case also we have
that ḡ /∈HK. ˛

Subcase ii: There is no h ∈H such that h ⋅ e = e′.
Let G → G be a virtually free vertex filling such that no edges in [a, b] are

folded in the image and the same is true for [g ⋅ a, b]. If e and e′ are not in the
same G-orbit then it cannot be the case that ē and ē′ are in the same G-orbit by
Theorem 4.3. Then, we must have that ḡ /∈HK.

Let us then assume then that there exists some x ∈ G such that x ⋅ e = e′. It
must then be the case that x /∈HGe. By induction, using double coset separability
of abelian subgroups in the vertex groups, we may construct a deeper virtually
free vertex filling such that the image of x is not in the image of the double coset
HGe. Hence, again we have that ḡ ⋅ ā will not be in the image of HK ⋅ ā. ˛

The two subcases together complete the proof of Case 2 ∎
Cases 1 and 2 exhaust all possibilities and the result follows. □

We end the section with a sketch of the proof of Theorem 6.5. The argument
follows the same outline as the proof of Theorem C and thus we give a detailed
account of only one of the cases, leaving the others as an exercise.

Proof of Theorem 6.5. As before, after possibly passing to a further finite index
subgroup, we may assume that G = F ⋊⟨t⟩ and H = ⟨ut⟩ or H = ⟨v⟩, and K = ⟨u′t⟩
or K = ⟨v′⟩ for some u,u′, v, v′ ∈ F and v and v′ not proper powers.

Let [a, b] ⊂ T be the segment realising the distance between Fix(K) and
Fix(H), with a ∈ Fix(K) and b ∈ Fix(H). Note that since the edge groups
map surjectively onto the black vertex groups, it must be the case that both a
and b are white vertices and thus are of the form Ga = Fa⊕⟨ta⟩ and Gb = Fb⊕⟨tb⟩
where Fa and Fb are finite rank non-abelian subgroup of the fibre F .

Let THK = ⋃h∈H h ⋅ [a, b]. Let e be the edge in [a, b] adjacent to b. Let
g ∈ G ∖HK.
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We begin by assuming that g ⋅a ∈HK ⋅a . Thus, there is some h ∈H such that
h−1g ∈ Ga and thus h−1g ∈ Ga ∖K. Now since Ga is cyclic subgroup separable,
there is a finite index normal subgroup Na ⊴ Ga such that the image of h−1g is
separated from the image of K in of Ga/Na. Let ta ∈ Ga be the central element.
By Theorem 5.2 and Theorem 5.3, we may find some positive integer N > 0 such
that for every i ∈ N, there is a virtually free vertex filling of G associated to {Na}
such that the image of each edge group is of the form (Z/iNZ)2 and quotients of
white vertices are of the form Fw ⊕⟨tw⟩ ↠ Fw/Dw ⊕⟨tw⟩ where tw has order iN .

The image of Ge in Gb is ⟨ce, tb⟩ for some ce ∈ F ∩Gb =∶ Fb and h = utkb for some
k ∈ Z and u ∈ Fb. Note that no conjugate of a power of h fixes the edge e. Hence,
u and ce are independent in Fb. Now for every other incident edge e′ at b, let
ce′ be a generator of the cyclic subgroup Ge′ ∩ F . By strong omnipotence of free
groups, there exists some positive integer L > 0 such that for any positive integer
j > 0, there is a finite index normal subgroup (F ′b)j ⊴f Fb such that the images
of the subgroups generated by u and ce have trivial intersection and the order of
the image of ce′ for every edge e′ incident at b is jL. In particular, the quotient
Gb → Gb/⟨(F ′b)LN , tLNb ⟩ is such that the image of each incident edge group is of
the form

⟨c̄e⟩ ⊕ ⟨tb⟩ ≅ Z/LNZ ×Z/LNZ,

and the intersection of the image of the cyclic subgroup generated by h with the
image of the incident edge group Ge is trivial.

Now, construct a vertex filling G → G as described two paragraphs above,
setting i = L. Replace the image of the vertex group corresponding to the vertex
b in the filling by the quotient constructed in the previous paragraph,

Gb = Gb/⟨(F ′b)LN , tLNb ⟩.

As a result, we obtain a filling of G such that ⟨h̄⟩ ∩ Ge = 1 and h−1g /∈ K. Now
we may apply the same argument as in the proof of Section 6 to conclude that
ḡ /∈HK.

The other case, that is when g ⋅a /∈HK ⋅a, follows the same outline as Section 6,
again using the strong omnipotence of free groups to construct finite quotients of
the white vertex groups with the required intersection properties of subgroups.

□

7. Conjugacy separability

7.1. The unipotent case. In order to prove that all free-by-cyclic groups with
unipotent monodromies are conjugacy separable, we will induct on the degree of
growth and use the following combination theorem of Wilton–Zalesskii:

Theorem 7.1 (Wilton–Zalesskii [WZ10]). Let G be a graph of groups with conju-
gacy separable vertex groups and suppose that the profinite topology on G = π1(G)
is efficient. Suppose that the following conditions are satisfied for all vertices
v ∈ V (X) and edges e, f ∈ E(X) that are adjacent to v.

(1) The edge group Ge is conjugacy distinguished in Gv.
(2) For any g ∈ Gv, the double coset GegGf is separable in Gv.
(3) The intersection Ge ∩ Gf of the closures of Ge and Gf in the profinite

completion of Gv, is equal to the profinite completion Ĝe ∩ Gv.
(4) The graph of groups G is profinitely 2-acylindrical.

Then G is conjugacy separable.

We are now ready to prove the main result for unipotent and polynomially
growing automorphisms.
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Theorem 7.2. Let G be a free-by-cyclic group with unipotent and polynomially
growing monodromy. Then G is conjugacy separable and every cyclic subgroup is
conjugacy distinguished.

Proof. We will argue by induction on the degree d of growth. If d = 0 then
G ≅ F × Z where F is a finitely generated free group. It is not hard to see that
G is conjugacy separable and that every infinite cyclic subgroup is conjugacy
distinguished, since those properties hold for the fibre F .

When d = 1, both results follow by Theorem 5.17.
Suppose now that d ≥ 2. Let G ≅ π1(G, v) be the standard splitting (as in

Theorem 2.18). We will show that all the hypotheses of Theorem 7.1 are satisfied
and thus G is conjugacy separable.

We begin by noting that the vertex groups are of the form Fw ⋊ϕ Z where
ϕ ∈ Aut(Fw) is a representative of a unipotent and polynomially growing outer
automorphism with polynomial growth of degree dw ≤ d−1, and thus each vertex
group is conjugacy separable by induction. Moreover, the edge groups are cyclic
and thus conjugacy distinguished in the vertex groups by induction.

The profinite topology on G ≅ π1(G, v) is efficient by Theorem 4.7.
The vertex groups are double-Z-coset separable by Theorem C, and thus for

any vertex v and incident edge groups Ge and Gf , and for any finite index sub-
group G′f ≤f Gf , the double coset GeG′f ⊆ G is separable. It follows by Theorem 2.8
that Ge ∩ Gf = Ge ∩ Gf = Ĝe ∩ Gf .

Finally, the group G admits an epimorphism ϕ∶G→ Z that is surjective on edge
groups. Hence, for any two edge groups Ge and Gf , we must have that Ge ∩ Gf
is either trivial or Ge = Gf . It follows by Theorem 2.12 that Ĝ is profinitely
2-acylindrical.

Hence, the conditions of Theorem 7.1 are satisfied and thus G is conjugacy
separable.

To show that cyclic subgroups are conjugacy distinguished, we apply Theo-
rem 4.11 and Theorem 4.12, noting that the hypotheses are satisfied by Theo-
rem 4.7. □

7.2. The bootstrap. We will show that all polynomially growing free-by-cyclic
groups are conjugacy separable using the following:

Theorem 7.3 (Chagas–Zalesskii [CZ10, Theorem 2.4]). Let G be a finitely gen-
erated torsion free group that admits a conjugacy separable normal subgroup of
finite index. Suppose also that for every g ∈ G ∖ 1, the centraliser CG(g) is
conjugacy separable and CG(g) = ĈG(g). Then G is conjugacy separable.

Lemma 7.4. Let G be free-by-cyclic. Then for every g ∈ G ∖ 1, the centraliser
CG(g) is either infinite cyclic or isomorphic to a free-by-cyclic subgroup with
finite order monodromy.

Proof. Let G = F ⋊ϕ ⟨t⟩ and let χ∶G→ Z be the map that sends F ↦ 0 and t↦ 1.
Let g ∈ G ∖ 1.

Suppose first that g ∈ F . Then,

CG(g) ∩ F = CF (g) ≅ Z.
Hence, either χ(CG(g)) = 0, in which case

CG(g) = CG(g) ∩ F ≅ Z,
or χ is non-trivial on CG(g), and

CG(g) ≅ Z ⋊Z.
Suppose now that χ(g) ≠ 0. Then,

CG(g) = (CG(g) ∩ F ) ⋊ ⟨s⟩,
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for some s ∈ G ∖ F . We must have that g = ysl for some y ∈ CG(g) ∩ F and
l ∈ Z ∖ 0. Then CG(g) admits a finite index subgroup generated by

⟨CG(g) ∩ F, ysl⟩ = (CG(g) ∩ F ) ⊕ ⟨g⟩.
Let ψ ∈ Aut(F ) be the automorphism induced by conjugation action by g. Then,
CG(g) ∩ F = FixF (ψ). By the work of Gersten, FixF (ψ) is finitely generated
[Ger87]. It follows that ⟨CG(g) ∩ F, ysl⟩ ≅ F ′ × Z where F ′ is finite rank free.
Hence, CG(g) is a free-by-cyclic group with finite order monodromy. □

We will need the following result due to G. Bartlett:

Theorem 7.5 (Bartlett [Bar25, Proposition 2.7]). Let G be free-by-cyclic with
finite order monodromy. Then G is conjugacy separable.

We are now ready to prove our main result.

Theorem A. Let G be a free-by-cyclic group with polynomially growing mon-
odromy. Then G is conjugacy separable.

Proof. Every free-by-cyclic group with polynomially growing monodromy ad-
mits a finite index normal subgroup that is free-by-cyclic with UPG monodromy
[BFH05, Corollary 5.7.6]. Thus, G admits a finite index normal subgroup that
is conjugacy separable by Theorem 7.2.

The centraliser of every non-trivial element is cyclic or free-by-cyclic with finite
order monodromy by Theorem 7.4 and thus conjugacy separable by Theorem 7.5.
Moreover, every free-by-cyclic or abelian subgroup H of G is fully separable by
[HK25, Proposition 2.9], and thus we have that CG(g) = ĈG(g).

The result now follows from Theorem 7.3. □
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