LECTURE NOTES ON ℓ^2 -HOMOLOGY

SAM HUGHES

ABSTRACT. These lecture notes are for a minicourse I taught at GTA:Gran Bilbao VI. The lectures will cover the following topics:

- Review of group cohomology via chain complexes, example computations, finiteness properties, G-CW complexes, equivariant cohomology.
- (2) Group von Neumann algebras, trace, dimension, ℓ^2 -Betti numbers, basic properties and examples.
- (3) Applications to mapping tori, approximation, and more.
- (4) The algebra of affiliated operators, the Linnell ring, and the Atiyah Conjecture.
- (5) ℓ^2 -homology of right-angled Artin groups.

Acknowledgements. Sam Hughes was supported by a Humboldt Research Fellowship at Universität Bonn.

Not for wide distribution. Use at own risk!

Other resources I recommend are

- *H. Kammeyer*, Introduction to ℓ^2 -invariants. Cham: Springer (2019; Zbl 1458.55001)
- B. Eckmann, Introduction to ℓ_2 -methods in topology. Isr. J. Math. 117, 183–219 (2000; Zbl 0948.55006)
- W. Lück, L^2 -invariants: Theory and applications to geometry and K-theory. Berlin: Springer (2002; Zbl 1009.55001)

 $E\text{-}mail\ address:$ sam.hughes.maths@gmail.com, hughes@math.uni-bonn.de. $Date:\ 8^{\rm th}\ {\rm April},\ 2025.$

Universität Bonn, Mathematical Institute, Endenicher Allee 60, 53115 Bonn, Germany

1

1. Review of group homology

1.A. Resolutions and finiteness properties.

Definition 1.1 (Projective resolution). Let R be a ring (associative and unital), let G be a group, and let M be an RG-module. A projective resolution for M by RG-modules is an exact sequence

$$\cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0,$$

where each P_i is a projective RG-module.

Definition 1.2 (Type FP_n). If there exists a projective resolution of M over RG such that P_i is a finitely generated RG-module, then we say that M is $type \; \mathsf{FP}_n$. If the trivial RG-module R is $type \; \mathsf{FP}_n$, then we say that G is $type \; \mathsf{FP}_n(R)$.

Exercise 1.3. Every RG module admits a free resolution.

Often we can build free resolutions of the trivial module using topology.

Definition 1.4 (Model of a K(G,1) space). We say X is a model for a K(G,1) space, if X is a topological space such that

$$\pi_i X \cong \begin{cases} G & i = 1\\ 0 & \text{otherwise.} \end{cases}$$

Note that such a space is unique up to homotopy.

Remark 1.5. If G is a discrete group, then a model for a K(G, 1) is exactly a classifying space BG. The universal cover of a classifying space is often denoted EG. This latter space has the property of being a free contractible G-space and is unique up to G-homotopy.

Exercise 1.6. Every group G admits a model for a K(G,1).

Example 1.7. Suppose that X is a CW-complex model for a K(G,1). The universal cover \widetilde{X} of X is a contractible free G-CW complex. Since G acts on \widetilde{X} , we obtain an action of G on $C_{\bullet}(\widetilde{X};R)$, the cellular chain complex of \widetilde{X} . Since the action on X is free, this turns the chain complex $C_{\bullet}(\widetilde{X};R)$ into a chain complex of free RG-modules. Now, the homology groups $H_n(\widetilde{X};R) = 0$ for $n \neq 0$ and equal R when n = 0. Thus, the sequence $C_{\bullet}(\widetilde{X};R) \to R$ is a free resolution of R over RG.

Definition 1.8. We say that G is $type \, \mathsf{F}_n$ if G admits a model for a K(G,1) with finitely many k-cells for $k \leq n$.

Exercise 1.9. For a group G, the following are equivalent:

- (1) G is finitely generated;
- (2) G is type F_1 ;
- (3) G is type $\mathsf{FP}_1(R)$ for any non-trivial ring R.

Exercise 1.10. A group G is finitely presented if and only if G is type F_2 .

Theorem 1.11 (Bestvina–Brady). There exist groups of type FP_2 but not F_2 .

1.B. Group homology. Let $P_{\bullet} \twoheadrightarrow R$ be a projective resolution of the trivial RG-module R. The homology of G with coefficients in M, denoted, $H_*(G;M)$ is defined to be $H_*(P_\bullet \otimes_{RG} M)$, that is, the homology of the chain complex

$$\cdots \longrightarrow P_1 \otimes_{RG} M \longrightarrow P_0 \otimes_{RG} M \longrightarrow 0.$$

Definition 1.12 (Fox derivatives). The Fox partial derivatives $\frac{\partial}{\partial x_i}$ are defined by the rules

- $\frac{\partial 1}{\partial x_i} = 0$, and $\frac{\partial x_i}{\partial x_i} = 1$.

We extend this to a product $u = y_1 \dots y_n$ where $y_i = x_k$ or $y_i = x_k^{-1}$ for some k = k(i) by the formula

$$\frac{\partial u}{\partial x_i} = \sum_{s=1}^n y_1 \cdots y_{s-1} \frac{\partial y_s}{\partial x_i}.$$

Exercise 1.13. Show that

- (1) $\frac{\partial x_i^{-1}}{\partial x_i} = -x_i^{-1}$. (2) $\frac{\partial x_j^{\pm 1}}{\partial x_i} = 0, \quad i \neq j$. (3) $\frac{\partial (tat^{-1}a^{-2})}{\partial t} = 1 tat^{-1}$. (4) $\frac{\partial (tat^{-1}a^{-2})}{\partial a} = t tat^{-1}a^{-1} tat^{-1}a^{-2}$.

Exercise 1.14. Let G be your favourite one relator group $\langle a, b \mid r \rangle$ such that r is not a proper power. Prove that the following chain complex

$$0 \to \mathbb{Z}G \xrightarrow{\partial_2} \mathbb{Z}G^2 \xrightarrow{\partial_1} \mathbb{Z}G \xrightarrow{\partial_0} \mathbb{Z} \to 0,$$

where

$$\partial_2 = \left(\frac{\partial r}{\partial a}, \frac{\partial r}{\partial b}\right), \quad \partial_1 = \begin{pmatrix} a-1\\b-1 \end{pmatrix}, \text{ and } \partial_0(g) = 1$$

is a free resolution.

Example 1.15 (Alexander modules). Let G = BS(1,2), this is the soluble Baumslag-Solitar group with presentation

$$\langle a, t \mid tat^{-1} = a^2 \rangle.$$

The group G admits a homomorphism $\varphi \colon G \to \mathbb{Z}$ by $\varphi(a) = 0$ and $\varphi(t) = 1$. Let $\mathbb{Z}[t^{\pm 1}]$ denote the $\mathbb{Z}G$ -module where the action is given by $g \cdot x = t^{\varphi(g)}x$.

A K(G,1) space X is given by a rose with two circles with edge labels σ_a and σ_t , as well a single 2-cell σ_2 attached with the obvious attaching map. Thus, we obtain a length two free resolution of the trivial module \mathbb{Z} by $\mathbb{Z}G$ -modules when passing to the universal cover and looking at the cellular chain complex.

We shall compute $H_n(G; \mathbb{Z}[t^{\pm 1}])$. We have a chain complex

$$0 \to \mathbb{Z}G\langle \sigma_2 \rangle \otimes_{\mathbb{Z}G} \mathbb{Z}[t^{\pm 1}] \xrightarrow{\partial_2} \mathbb{Z}G\langle \sigma_a, \sigma_e \rangle \otimes_{\mathbb{Z}G} \mathbb{Z}[t^{\pm 1}] \xrightarrow{\partial_1} \mathbb{Z}G\langle \sigma_0 \rangle \otimes_{\mathbb{Z}G} \mathbb{Z}[t^{\pm 1}] \to 0.$$

Computing the tensor products we obtain

$$0 \to \mathbb{Z}[t^{\pm 1}]\langle \sigma_2 \rangle \xrightarrow{\partial_2} \mathbb{Z}[t^{\pm 1}]\langle \sigma_a, \sigma_t \rangle \xrightarrow{\partial_1} \mathbb{Z}[t^{\pm 1}]\langle \sigma_0 \rangle \to 0.$$

The differentials become

$$\partial_{1}(\sigma_{a}) = (\sigma_{0} - a \cdot \sigma_{0}) \otimes 1$$

$$= 0;$$

$$\partial_{1}(\sigma_{t}) = (\sigma_{0} - t \cdot \sigma_{0}) \otimes 1$$

$$= (1 - t)\sigma_{0};$$

$$\partial_{2}(\sigma_{2}) = \left(\frac{\partial r}{\partial a}, \frac{\partial r}{\partial t}\right)^{T} (\sigma_{2})$$

$$= ((t - tat^{-1}a^{-1} - tat^{-1}a^{-2}) \otimes 1, (1 - tat^{-1}) \otimes 1)$$

$$= (t - 2, 0).$$

Computing homology we obtain

$$H_n(\mathrm{BS}(1,2); \mathbb{Z}[t^{\pm 1}]) = \begin{cases} \mathbb{Z}[t^{\pm 1}]/(1-t) \cong \mathbb{Z} & n = 0\\ \mathbb{Z}[t^{\pm 1}]/(2-t) \cong \mathbb{Z}[\frac{1}{2}] & n = 1\\ 0 & \text{otherwise.} \end{cases}$$

Exercise 1.16. Generalise the previous computation to BS(m, n).

1.C. Equivariant homology.

Definition 1.17 (G-CW complex). A G-CW complex is a CW complex X equipped with a G action that permutes the cells of X such that if $g \in G$ fixes a cell $\sigma \in X$ setwise, then it fixes it pointwise. Equivalently X is a G-space equipped with a filtration

$$\varnothing = X_{-1} \subset X_1 \subset \cdots \subset X_n \subset \ldots \bigcup_{n \geqslant -1} X_n = X$$

such that X carries the colimit topology with respect to this filtration and such that X_n is obtained from X_{n-1} by a G-pushout

$$\coprod_{i \in I} G/H_i \times S^{n-1} \longrightarrow X_{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\coprod_{i \in I} G/H_i \times D^n \longrightarrow X_n.$$

A G-CW complex is *finite* if it has finitely many G-orbits of cells, or equivalently finitely many equivariant cells, or equivalently, if G acts on X cocompactly, that is if X/G is compact.

Define indcued space.

Definition 1.18 (Naïve equivariant homology). Let X be a G-CW-complex, let $C_{\bullet}(X)$ denote its cellular chain complex, and let M be a G-module. The $(na\"{i}ve)$ G-equivariant homology of X with coefficients in M, denoted $H_n^G(X;M)$, is the homology of the complex $C_{\bullet}(X) \otimes_{\mathbb{Z}G} M$.

Example 1.19. Let X be a finite CW complex. The space \widetilde{X} is a finite free $\pi_1 X$ -CW complex, where each cell of X lifts to a free orbit of cells in \widetilde{X} . Moreover, for the trivial $\mathbb{Z}G$ -module \mathbb{Z} we have $H_n^G(\widetilde{X};\mathbb{Z}) = H_n(X;\mathbb{Z})$.

2. Enter ℓ^2 -homology

We will begin with a very analytic definition of ℓ^2 -homology and slowly introduce more machinery from operator theory to give the theory an algebraic foundation.

2.A. A first attempt. In this section we will give the naïve approach to ℓ^2 -cohomology.

Definition 2.1. Let X be a CW-complex and let

$$C_{\bullet}(\widetilde{X}) := C_0 \stackrel{\partial_0}{\longleftarrow} C_1 \stackrel{\partial_1}{\longrightarrow} C_2 \longleftarrow \cdots$$

denote the cellular chain complex of the universal cover \widetilde{X} . Let $C_{\bullet}(\widetilde{X}) = \text{hom}(C_{\bullet}(\widetilde{X}); \mathbb{R})$ denote the cellular cochain complex with differential d_n and let $C_{\bullet}^{(2)}(\widetilde{X})$ be the subcomplex consisting of square summable cochains Note that the differential d_n restricts to $C_{(2)}^{\bullet}$ and we denote the restriction by $d_n^{(2)}$. We define the $unreduced \ \ell^2$ -cohomology of X to be

$$H_{(2)}^n(X) = \ker d_n^{(2)} / \operatorname{im} d_{n+1}^{(2)}$$

and the reduced ℓ^2 -cohomology of X to be

$$\overline{H}_n^{(2)}(X) = \ker d_n^{(2)} / \overline{\operatorname{im} d_{n+1}^{(2)}}$$

where $\overline{\operatorname{im} d_{n+1}^{(2)}}$ is the closure of $\operatorname{im} d_{n+1}^{(2)}$ in $\ker d_n^{(2)}$. For a discrete group G we define $H_{(2)}^n(G) = H_{(2)}^n(EG)$.

Remark 2.2. The ℓ^2 -cohomology groups $\overline{H}_n^{(2)}(-)$ are functorial with respect to bi-Lipschitz maps.

Theorem 2.3 (Pansu, Sauer). Suppose G and H are finitely generated groups. If G and H are quasi-isometric, then $\overline{H}_{(2)}^n(G) \cong \overline{H}_{(2)}^n(H)$.

2.B. A second attempt. In our next version we will switch to homology, this approach requires defining a new algebra.

Definition 2.4. Define $\ell^2 G$ to be the set of square summable sequences on G. That is,

$$\ell^2 G = \left\{ \sum_{g \in G} c_g g \mid c_g \in \mathbb{C}, \ \sum_{g \in G} c_g \overline{c_g} < \infty \right\}.$$

This is exactly the completion of $\mathbb{C}G$ with respect to the inner product

$$\langle \cdot, \cdot \rangle \colon \mathbb{C}G \times \mathbb{C}G \to \mathbb{C} \quad \text{by} \quad \left\langle \sum_{g \in G} a_g g, \sum_{g \in G} b_g G \right\rangle \mapsto \sum_{g \in G} a_g \cdot \bar{b}_g.$$

Note that the inner product extends from $\mathbb{C}G$ to ℓ^2G .

Lemma 2.5. Let X be a free cocompact G-CW complex. Then,

$$H_n^G(X;\ell^2G) \cong H_{(2)}^n(X).$$

Example 2.6. Let $G = \mathbb{Z} = \langle t \rangle$ and $X = S^1$. We have that $Y = \widetilde{X} = \mathbb{R}$ with vertices indexed by \mathbb{Z} . The ℓ^2 -chain complex of \mathbb{R} is then given by

$$0 \longrightarrow C_1^{(2)}(Y) \xrightarrow{\widehat{\mathcal{O}}_1^{(2)}} C_0^{(2)}(Y) \longrightarrow 0$$

Note that both $C_0^{(2)}(T)$ and $C_1^{(2)}(T)$ are isomorphic to $\ell^2(\mathbb{Z})$ with bases e and v respectively. We also have $\partial_1^{(2)}(e) = (1-t)v$ which is clearly injective. Hence, $H_1^{(2)}(\mathbb{Z}) = \ker(\hat{c}_1^{(2)}) = 0$. Now, we have a right exact sequence

$$C_1^{(2)}(T) \xrightarrow{\partial_1^{(2)}} C_0^{(2)}(T) \longrightarrow \ell^2(\mathbb{Z}) \otimes_{\mathbb{Z}[\mathbb{Z}]} \mathbb{Z} \longrightarrow 0$$

so $\overline{\operatorname{im}(\hat{c}_1^{(2)})}^{\perp}$ is mapped injectively into the coinvariants $\ell^2(\mathbb{Z}) \otimes_{\mathbb{Z}[\mathbb{Z}]} \mathbb{Z}$. But, this consists of \mathbb{Z} -invariant elements and so is trivial. It follows that $\operatorname{im}(\hat{c}_1^{(2)})$ is dense and $\overline{H}_0^{(2)}(\mathbb{Z}) = 0$. We still want to show the zeroth unreduced homology group is non-zero.

Observe that 1 is not in $\operatorname{im}(\partial_1^{(2)})$, because

$$1 = (1 - t) \sum_{i \in \mathbb{Z}} a_i t^i$$

implies that the a_i are all equal for all i < 0 hence are all 0, but also that the a_i are all equal for $i \ge 0$, hence are all 0.

Adapting the arguments in the previous example we can deduce two facts.

Proposition 2.7. The following hold:

- (1) If G is an infinite discrete group, then H̄₀⁽²⁾(G) = 0.
 (2) If X is an aspherical n-manifold and G = π₁(X), then H_n⁽²⁾(G) = 0.

Exercise 2.8. Compute $\overline{H}_*^{(2)}(\mathbb{Z}^2)$.

Example 2.9. Let F_2 be a free group, let X be a wedge of 2-circles, and let $T = \tilde{X}$ denote the 4-valent tree with edges labelled by the free group on a and b. We have the ℓ^2 chain complex

$$0 \longrightarrow C_1^{(2)}(T) \xrightarrow{\widehat{\sigma}_1^{(2)}} C_0^{(2)}(T) \longrightarrow 0.$$

We claim that $\overline{H}_1^{(2)}(F_2) \neq 0$ for $n \geq 2$. Let us construct an ℓ^2 -1-chain as follows:

$$ce = \left(1 + \frac{1}{2}\left(a + a^{-1} + b + b^{-1}\right) + \frac{1}{4}\left(a^2 + ab + ba + b^2 + a^{-2} + a^{-1}b^{-1} + b^{-1}a^{-1} + b^{-2}\right) + \dots\right)e$$

for some edge e in T. Note that the chain is square summable. Indeed,

$$1 + 4\frac{1}{2^2} + 8 \cdot \frac{1}{4^2} + 16 \cdot \frac{1}{8^2} + \dots = 1 + \sum_{n>2} \frac{2^n}{2^{2n-2}} = 1 + 2 = 3.$$

Now, we compute the boundary of the chain

$$\partial_1^{(2)}(ce) = (1-a)v + \frac{1}{2}\left((a-a^2) + (a^{-1}-1) + (b-ab) + b^{-1} - ab^{-1}\right)v + \dots$$

$$= \left(1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8} - \dots\right)v - \left(1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8} - \dots\right)av + \dots$$

$$= 0.$$

Whence, it is an ℓ^2 -1-cycle as required.

Exercise 2.10. Show that the non-trivial cycle constructed in the previous example has a boundary in $C_2^{(2)}(\mathbb{Z} \times F_n)$.

Exercise 2.11. Find a non-trivial cycle in $C_2^{(2)}(T \times T)$. Deduce $H_2^{(2)}(F_2 \times F_2)$ is non-trivial.

2.C. Group von Neumann algebras and trace. An operator A on a Hilbert space H is bounded if there exists a constant C such that for all $v \in H$ we have $||Av|| \leq C||v||$.

We define the group von Neumann algebra $\mathcal{N}G$ of G to be the algebra of G-equivariant bounded operators $\ell^2G \to \ell^2G$.

A Hilbert G-module is a complex Hilbert space V equipped with an isometric G-action such that there exists an isometric G-embedding $V \to (\ell^2 G)^n$ for some n. A morphism of Hilbert G-modules $V \to W$ is a bounded \mathbb{C} -linear G-map.

The algebra $\mathcal{N}G$ comes equipped with a trace

$$\operatorname{tr}_G : \mathcal{N}G \to \mathbb{C}$$
 by $a \mapsto \langle a(e), e \rangle_{\ell^2G}$

where $e \in G$ is the identity.

Lemma 2.12. The von Neumann trace satisfies the following properties:

- (1) For all $a, b \in \mathcal{N}G$ we have $\operatorname{tr}_G(ab) = \operatorname{tr}_G(ba)$.
- (2) For all $a \in \mathcal{N}G$ we have $\operatorname{tr}_G(aa^*) = 0$ if and only if a = 0

Exercise 2.13. Let H be a finite subgroup of G. Show that $\ell^2(G/H)$ is a Hilbert G-module and that $\dim_G \ell^2(G/H) = |H|^{-1}$.

[Hint: use the projection $\frac{1}{|H|} \sum_{h \in H} h.]$

We can extend the trace to matrices over the von Neumann algebra as follows

$$\operatorname{tr}_G \colon \mathbf{M}_n(\mathcal{N}G) \to \mathbb{C} \quad \text{by} \quad (M_{i,j}) \mapsto \sum_{i=1}^n \operatorname{tr}_G M_{i,i}.$$

The von Neumann dimension $\dim_G V$ of a Hilbert G-module V is defined as follows: let $i: V \to (\ell^2 G)^n$ be the given embedding and let $\pi: (\ell^2 G)^n \to i(V)$ denote the orthogonal projection. We set

$$\dim_G V = \operatorname{tr}_G(\pi) \in \mathbb{R}_{\geq 0} \cup \{\infty\}.$$

Theorem 2.14. The above definition is independent of the embedding i.

Proposition 2.15. Let G be a countable group and let U, V, W be Hilbert G-modules.

- (1) $\dim_G \ell^2 G = 1$;
- (2) $\dim_G V = 0$ if and only if V = 0;
- (3) if $0 \to U \to V \to W \to 0$ is exact then $\dim_G V = \dim_G U + \dim_G W$.
- 2.D. Lück's formulation. So far all of the definitions have required a free action and we have to worry about closures. This can be extremely limiting. To remedy this, the category of Hilbert G-modules embeds into the category of $\mathcal{N}G$ -modules. Moreover, Lück shows that this embedding can be refined to an equivalence of categories F between the category of Hilbert G modules and the category of finitely generated projective NG-modules, such that $F(\ell^2 G) = \mathcal{N}G$. Lück shows for finitely generated modules that $\dim_G V =$ $\dim_G F(V)$. For a non finitely generated module we take the supremum of the dimensions of finitely generated projective sub-modules.

From here on out for a G-CW complex X we define the ℓ^2 -homology of X to be the homology groups $H_n^G(X; \mathcal{N}G)$. (Note there is no hypothesis on the stabilisers.)

The upshot of all this is we can use things like spectral sequences to compute the ℓ^2 -homology.

2.E. Betti numbers. Let X be a G-CW-complex. We define the nth ℓ^2 -Betti number of X to be

$$b_n^{(2)}(X) = \dim_G H_n^G(X; \mathcal{N}G).$$

For a group G we set

$$b_n^{(2)}(G) = b_n^{(2)}(EG).$$

That these are well defined group invariants follows from the next theorem.

Theorem 2.16 (Properties). Let G, H be groups.

(1) If $f: X \to Y$ is a G-homotopy equivalence, then

$$b_p^{(2)}(X) = b_p^{(2)}(Y)$$
 for $p \ge 0$.

(2) Let X be a G-CW complex and Y be an H-CW complex. $X \times Y$ is a $G \times H$ -CW complex and

$$b_n^{(2)}(X\times Y) = \sum_{p+q=n} b_p^{(2)}(X)\cdot b_q^{(2)}(Y).$$

(3) Let K be a finite index subgroup of G. If X is a G-CW complex (and hence a K-CW complex by restriction), then

$$b_p^{(2)}(X;K) = |G:K| \cdot b_p^{(2)}(X;G).$$

In particular,

$$b_p^{(2)}(K) = |G:K| \cdot b_p^{(2)}(G).$$

(4) Suppose $H \leq G$ and let X be an H-CW complex. Then,

$$b_p^{(2)}(G \times_H X; G) = b_p^{(2)}(X; H).$$

- (5) $b_0^{(2)}(X;G) = |G|^{-1}$, where $|G|^{-1} = 0$ if G is infinite. (6) $b_n^{(2)}(X) \leq c_n$, where c_n is the number of equivariant n-cells in X.

(7) If X is a finite free G-CW-complex, then

$$\chi(X/G) = \sum_{i \ge 0} (-1)^i b_i^{(2)}(X).$$

(8) If M is an n-manifold, then

$$b_i^{(2)}(\widetilde{M}) = b_{n-i}^{(2)}(\widetilde{M}).$$

- (9) Let X be a finite CW-complex. Then, $b_1^{(2)}(\widetilde{X}) = b_1^{(2)}(\pi_1 X)$. (10) Let $X_1, \ldots X_r$ be pointed CW complexes and let $X = \bigvee_{i=1}^r X_i$. Then,

$$b_1^{(2)}(\widetilde{X}) - b_0^{(2)}(\widetilde{X}) = r - 1 + \sum_{j=1}^r \left(b_1^{(2)}(\widetilde{X}_j) - b_0^{(2)}(\widetilde{X}_j) \right)$$
$$b_p^{(2)}(\widetilde{X}) = \sum_{j=1}^r b_p^{(2)}(\widetilde{X}_j) \text{ for } 2 \leq p.$$

Exercise 2.17. Compute the ℓ^2 -Betti numbers of surface groups, free groups, and direct products of free groups.

Exercise 2.18. Let X be a closed (triangulated) 4-manifold with Euler characteristic c. Compute $b_p^{(2)}(\widetilde{X})$, for all p, in terms of c and $b_1^{(2)}(\pi_1 X)$.

2.F. Measure equivalence invariance. Two groups are measure equivalent if they admit free, measure-preserving actions on a common standard probability space that share the same orbits (almost everywhere).

The key example of measure equivalent groups are lattices in the same locally compact groups.

Theorem 2.19 (Gaboriau). Let G and H be countable measure equivalent groups with measure coupling C. Then, $b_p^{(2)}(G) = C \cdot b_p^{(2)}(H)$.

Exercise 2.20. Let Γ be a lattice in $\operatorname{Aut}(\mathcal{T}_1) \times \operatorname{Aut}(\mathcal{T}_2)$ where each \mathcal{T}_i is an n_i -regular tree with $n_i \ge 3$. Show $b_p^{(2)}(\Gamma) = 0$ for $p \ne 2$.

Theorem 2.21 (Lück). Let G be an infinite amenable group. Then, $b_p^{(2)}(G) =$ 0 for all $p \ge 0$.

Proof. Every infinite amenable group is measure equivalent to \mathbb{Z} . The result follows from Gaboriau's Theorem.

Remark 2.22. Lück's original proof instead shows: if G is amenable, then $\mathcal{N}G$ is dimension-flat over $\mathbb{C}G$, i.e. $\dim_G \operatorname{Tor}_p^{\mathbb{C}G}(\mathcal{N}G;M)=0$ for $p\geqslant 1$ and every $\mathbb{C}G$ -module M.

3. Mayer-Vietoris sequences

Recall the classical Mayer–Vietoris sequence for singular homology. Namely, given a space X which can be written as a union $X_1 \cup X_2$ with intersection $Z = X_1 \cap X_2$, there is a long exact sequence in singular homomology

$$\cdots \to H_{n+1}(X;R) \xrightarrow{\delta_n} H_n(Z;R) \xrightarrow{(i_n,j_n)} H_n(X_1;R) \oplus H_n(X_2;R) \xrightarrow{k_n-\ell_n} H_n(X;R) \to \cdots$$

where i, j, k, ℓ are the natural inclusions.

In group homology there is a very natural situation where this occurs. Namely, given a group G written as an amalgamated free product $A_1 *_C A_2$, we obtain a long exact sequence in group homology

$$\cdots \to H_{n+1}(G;M) \xrightarrow{\delta_n} H_n(C;M) \xrightarrow{(i_n,j_n)} H_n(A_1;M) \oplus H_n(A_2;M) \xrightarrow{k_n-\ell_n} H_n(G;R) \to \cdots$$

for any G-module M. Note that the coefficients for A_1, A_2, C are the restrictions of M to each group.

The main challenge in computations (especially with non-trivial coefficients) is understanding the maps involved.

Remark 3.1. The following observation is often helpful when computing L^2 -homology. Suppose $A \leq G$. Then,

$$\dim_A H_n(A; \mathcal{N}A) = \dim_G H_n^G(G \times_A EA; \mathcal{N}G)$$

and

$$H_n^G(G \times_A EA; \mathcal{N}G) \cong H_n(A; \mathcal{N}G).$$

In particular, we have

$$\dim_A H_n(A; \mathcal{N}A) = \dim_G H_n(A; \mathcal{N}G).$$

Example 3.2 (Fernós–Valette, Chatterji–H.–Kropholler). Let G be the fundamental group of a finite graph of groups such that each edge group satisfies $b_1^{(2)}(G_e) = 0$. Then,

$$b_1^{(2)}(G) = \frac{1}{|G|} + \sum_{v \in V} \left(b_1^{(2)}(G_v) - \frac{1}{|F_v|} \right) + \sum_{e \in E} \frac{1}{|F_e|}.$$

Consider the relevant portion of the Mayer–Vietoris sequence

$$\cdots \to H_2(G; \mathcal{N}G) \to \bigoplus_{e \in E} H_1(G_e; \mathcal{N}G) \to \bigoplus_{v \in V} H_1(G_v; \mathcal{N}G) \to H_1(G; \mathcal{N}G) \to \cdots$$

and using the remark and the hypothesis this becomes the exact sequence

$$0 \to \bigoplus_{v \in V} H_1(G_v; \mathcal{N}G) \to H_1(G; \mathcal{N}G) \to \bigoplus_{e \in E} H_0(G_e; \mathcal{N}G) \to \bigoplus_{v \in V} H_0(G_v; \mathcal{N}G) \to H_0(G: \mathcal{N}G) \to 0.$$

Computing von Neumann dimensions with respect to G and rearranging gives the equation

$$b_1^{(2)}(G) = \frac{1}{|G|} + \sum_{v \in V} \left(b_1^{(2)}(G_v) - \frac{1}{|F_v|} \right) + \sum_{e \in E} \frac{1}{|F_e|}$$

as required.

4. The Mapping Torus Theorem

Let $f: X \to X$ be a selfmap. It mapping torus T_f is the space

$$X \times [0,1]/\sim \text{ where } (x,0) \sim (f(x),1).$$

There is a canonical map $p: T_f \to S^1$ by $(x,t) \mapsto e^{2i\pi t}$. If X is path connected, then p induces a canonical epimorphism $\pi_1 T_f \to \mathbb{Z}$.

Theorem 4.1 (Lück). Let $f: X \to X$ be a cellular self map of a finite connected CW complex. Let T_f denote the mapping torus with $G = \pi_1 T_f$. Then, $b_p^{(2)}(\tilde{T}_f) = 0$ for all $p \ge 0$.

Proof. Write $G = \pi_1 X \rtimes \mathbb{Z}$ with the \mathbb{Z} factor corresponding to 'going-around-the-mapping-torus'. Let G_n denote the preimage of $n\mathbb{Z}$ under the projection $\psi \colon G \twoheadrightarrow \mathbb{Z}$. Note $|G \colon G_n| = n$.

We have

(1)
$$b_p^{(2)}(\widetilde{T}_f;G) = \frac{1}{n}b_p^{(2)}(\widetilde{T}_f;G_n).$$

There is a homotopy equivalence

$$h: T_{f^n} \to \widetilde{T}_f/G_n$$

where $f^n = f \circ \cdots \circ f$. The map h induces a G_n homotopy equivalence

$$\widetilde{T}_{f^n} \to T_f$$
.

Thus,

(2)
$$b_p^{(2)}(\widetilde{T}_f; G_n) = b_p^{(2)}(\widetilde{T}_{f^n}; G_n).$$

Let c_p denote the number of p-cells in X. We may endow T_{f^n} with a CW structure consisting of c_p+c_{p-1} many p-cells [exercise]. Hence,

(3)
$$b_p^{(2)}(\widetilde{T}_{f^n}) \leqslant c_p + c_{p-1}.$$

Now, combining (1), (2), and (3) we obtain

$$b_p^{(2)}(\widetilde{T}_f) \leqslant \frac{1}{n} \left(c_p + c_{p-1} \right).$$

Since $c_p + c_{p-1}$ is independent of n, the claim follows from taking the limit as $n \to \infty$.

4.A. Fibring theorems.

Theorem 4.2 (H.–Kielak). Let G be a group of type $\mathsf{FP}_n(\mathbb{Q})$. If $b_n^{(2)}(G) \neq 0$, then $\Sigma^n(G;\mathbb{Q}) = \emptyset$.

Theorem 4.3 (Kielak, Fisher). Suppose G is a RFRS group of type $\mathsf{FP}_n(\mathbb{Q})$. Then, G is virtually $\mathsf{FP}_n(\mathbb{Q})$ -fibred if and only if $b_i^{(2)}(G) = 0$ for $i \leq n$.

Theorem 4.4 (Kielak–Linton, Fisher). Suppose G is a finitely generated RFRS group with $\operatorname{cd}_{\mathbb{Q}}(G)=2$. If $b_2^{(2)}(G)=0$, then G is virtually free-by-cyclic.

4.B. Normal subgroups.

Theorem 4.5 (Gaboriau, Sánchez-Peralta). Let G be a countable group and let $N \triangleleft G$ have infinite index. If $b_p^{(2)}(N) = 0$ for $p \leqslant n-1$ and $b_n^{(2)}(N) < \infty$, then $b_n^{(2)}(G) = 0$.

Corollary 4.6 (Gaboriau). Let G be a finitely generated group. If $b_1^{(2)}(G) \neq 0$, then every infinite index normal subgroup is infinitely generated.

5. Lück's approximation theorem

Let G be a residually finite group. We say a chain $G = G_0 \geqslant G_1 \geqslant \cdots$ of finite index subgroups of G is a residual chain if each $G_i \triangleleft G$ and if $\bigcap_{i\geqslant 0} G_i = 1$.

Theorem 5.1 (Lück). Let X be a G-space with finite (n + 1)-skeleton and let (G_i) be a residual chain. Then,

$$b_n^{(2)}(X) = \lim_{i \to \infty} \frac{b_n(X/G_i)}{|G:G_i|}.$$

Note that even the statement that the right hand side is a limit and not a limit supremum is non-trivial.

State Lück-Osin.

Open Question 5.2. Let X be a G-space with finite (n + 1)-skeleton and let (G_i) be a residual chain. Is the quantity

$$\limsup_{n\to\infty} \frac{b_n(X/G_i; \mathbb{F}_p)}{|G:G_i|}$$

a genuine limit? Is it independent of the residual chain? What does it converge to?

5.A. **Deficiency and rank gradient.** Define the *deficiency* of G to be maximum g(P) - r(P) where P runs over all finite presentations of G. Here g(P) is the number of generators and r(P) is the number of relations in P.

Exercise 5.3. Let $G = \langle S \mid R \rangle$ be a finitely presented group. Then, $\operatorname{def}(G) \leq 1 - b_0^{(2)}(G) + b_1^{(2)}(G) - b_2^{(2)}(G)$.

For a residually finite group G and residual chain of finite index normal subgroups (G_n) , the rank gradient of G with respect to (G_n) is

$$RG(G; (G_n)) = \lim_{n \to \infty} \frac{d(G_n) - 1}{|G : G_n|}$$

Exercise 5.4. Let G be a finitely presented residually finite group. Then,

$$b_1^{(2)}(G) \leqslant \mathrm{RG}(G; (G_n)).$$

Open Question 5.5. Let G be a finitely presented residually finite group. Is $b_1^{(2)}(G) = RG(G; (G_n))$?

5.B. Profinite invariance.

Theorem 5.6. Let G and H be finitely generated residually finite groups such that G = H.

- (1) [Bridson–Conder–Reid] Then, $b_1^{(2)}(G)=b_1^{(2)}(H)$. (2) [Kammeyer–Kionke–Raimbault–Sauer] $b_n^{(2)}(G)$ is not a profinite invariant for $n \ge 2$.

6. Affiliated operators

6.A. Ore localisation. In this section we will describe an analogue of localisation for non-commutative rings.

Definition 6.1. Let R be a ring. An element $x \in R$ is a zero-divisor if $x \neq 0$, and xy = 0 or yx = 0 for some non-zero $y \in R$. A non-zero element that is not a zero-divisor will be called regular.

Definition 6.2 (Right Ore condition). Let R be a ring and $S \subseteq R$ a multiplicatively closed subset consisting of regular elements. The pair (R, S)satisfies the right Ore condition if for every $r \in R$ and $s \in S$ there are elements $r' \in R$ and $s' \in S$ satisfying rs' = sr'.

Definition 6.3 (Right Ore localisation). If (R, S) satisfies the right Ore condition we may define the right Ore localisation, denoted RS^{-1} , to be the following ring. Elements are represented by pairs $(r, s) \in R \times S$ up to the following equivalence relation: $(r,s) \sim (r',s')$ if and only if there exists $u, u' \in R$ such that the equations ru = r'u' and su = s'u' hold, and su = s'u'belongs to S. The addition is given by

$$(r,s) + (r',s') = (rc + r'd,t)$$
, where $t = sc = s'd \in S$,

and the multiplication is given by

$$(r,s)(r',s')=(rc,s't)$$
, where $sc=r't$ with $t\in S$.

6.B. The algebra of affiliated operators. Let G be a group. An operator A on a Hilbert space H is closed if the graph of A is closed; is densely defined if its domain dom(f) is dense in H; is a G-operator if dom(f) is a linear Ginvariant subspace and f satisfies $f(x) \cdot g = f(x \cdot g)$ for all $g \in G$.

Definition 6.4 (Affiliated operators). We say that an operator

$$f : \operatorname{dom}(f) \to \ell^2 G$$

with dom $(f) \subseteq \ell^2 G$ is affiliated (to $\mathcal{N}G$) if f is densely defined closed Goperator (recall that G acts on $\ell^2 G$ on the right). The set of all operators affiliated to NG forms the algebra of affiliated operators UG of G.

Since an adjoint of a densely defined closed operator is densely defined and closed, every $x \in \mathcal{U}G$ has a well-defined adjoint $x^* \in \mathcal{U}G$.

Note that we have inclusions of $\mathbb{Q}G$ -modules

$$\mathbb{Q}G \rightarrowtail \mathbb{C}G \rightarrowtail \mathcal{N}G \rightarrowtail \mathcal{U}G.$$

Theorem 6.5 (Roos). The set S of regular elements of NG forms a right Ore set. Moreover, UG is canonically isomorphic to $(NG)S^{-1}$.

Definition 6.6. For a finitely generated projective $\mathcal{U}G$ -module Q define

$$\dim_{\mathcal{U}G} Q := \dim_G P$$

where P is any finitely generated $\mathcal{N}G$ -module P such that $\mathcal{U}G \otimes_{\mathcal{N}G} P \cong_{\mathcal{U}G} Q$. For a general $\mathcal{U}G$ -module Q we take the supremum of $\dim_{\mathcal{U}G}$ -dimensions of the finitely generated projective submodules.

Since $\mathcal{U}G$ is flat over $\mathcal{N}G$ we obtain that

$$b_p^{(2)}(X;G) = \dim_{\mathcal{U}G} H_p^G(G;\mathcal{U}G).$$

Wolfgang Lück describes the passage of $\mathcal{N}G$ to $\mathcal{U}G$ as being like the passage from \mathbb{Z} to \mathbb{Q} . One loses all of the torsion submodule information, but often computations are simpler.

6.C. The Linnell ring.

Definition 6.7 (Division and rational closure). Let R be a ring and S a subring. We say that S is division closed if every element of S invertible over R is invertible over S. We say that S is rationally closed if every finite square matrix over S invertible over R is invertible over S.

Define the division closure of S in R, denoted by $\mathcal{D}(S \subset R)$, to be the smallest division-closed subring of R containing S. Define the rational closure of S in R, denoted by $\mathcal{R}(S \subset R)$, to be the smallest rationally closed subring of R containing S.

Definition 6.8. For a group G, the Linnell ring $\mathcal{D}_{\mathbb{Q}G}$ is defined ot be the ring $\mathcal{D}(\mathbb{Q}G \subset \mathcal{U}G)$.

6.D. The Atiyah Conjecture.

Conjecture 6.9 (The Atiyah Conjecture). For every countable torsionfree group G and every $A \in \mathbf{M}_n(\mathbb{Q}G)$, the kernel K of the operator $A: (\ell^2 G)^n \to (\ell^2 G)^n$ satisfies $\dim_G K \in \mathbb{Z}$.

Theorem 6.10 (Linnell). For a torsionfree group G the following are equivalent:

- (1) the Atiyah Conjecture is true for G;
- (2) $\mathcal{D}_{\mathbb{Q}G}$ is a skew field.

Theorem 6.11 (Jaikin Zapirain–López-Álvarez). Locally indicable groups satisfy the Atiyah Conjecture.

6.E. One relator groups.

Theorem 6.12 (Dicks-Linnell). Let G be a non-trivial torsion-free one-relator group. Then, $b_p^{(2)}(G) = 0$ for all $p \neq 1$ and $b_1^{(2)}(G) = -\chi(G)$.

Proof. For a one-relator group $G = \langle x_1, \dots, x_s \mid r \rangle$ we have a free resolution of \mathbb{Z} over $\mathbb{Z}G$ coming from an aspherical presentation 2-complex, namely

$$(4) 0 \to \mathbb{Z}G.r \xrightarrow{J} \mathbb{Z}G.\{x_1, \dots, x_s\} \xrightarrow{\partial_0} \mathbb{Z}G \to \mathbb{Z} \to 0,$$

where J is Jacobian of fox derivatives. Unaugmenting the resolution and tensoring with $\mathcal{U}G$ we obtain

(5)
$$0 \to \mathcal{U}G.r \xrightarrow{J} \mathcal{U}G.\{x_1, \dots, x_s\} \xrightarrow{\partial_0} \mathcal{U}G \to 0.$$

Claim 6.13. Let G be a left orderable group. Let $y \in \mathcal{U}G$ and $a \in \mathbb{C}G$ both be non-zero. Then, $y \cdot a \neq 0$.

Lets see how the claim proves the theorem.

In (4) the map J is injective. So either r = 0 or there exists some x_i such that $\partial r/\partial x \neq 0$. The claim then implies that J is injective in (5). Hence, $H_p(G; \mathcal{U}G) = 0$ for all $p \geq 2$. Taking $\mathcal{U}G$ -dimensions we obtain that

$$\dim_{\mathcal{U}G} \ker \partial_0 = s - 1$$
$$\dim_{\mathcal{U}G} \operatorname{im} J = 1.$$

In particular,
$$b_1^{(2)}(G) = s - 2 = -\chi(G)$$
.

Proof of Claim 6.13. We first establish the fact that a is invertible in $\mathcal{U}G$. Observe that since locally indicable groups satisfy the Atiyah Conjecture we have

$$0 \neq \dim_{\mathcal{U}G} a \cdot \mathcal{U}G \geqslant 1 = 1.$$

Whence, a is invertible. To prove the claim we now suppose that ya = 0 and that $a \neq 0$. Then, $y^*yaa^* = 0$ with $y^*y \in \mathcal{U}G$ and $0 \neq aa^* \in \mathbb{C}G$. But, aa^* is invertible in $\mathcal{U}G$ since both a and a^* are. Hence, $y^*y = 0$ and so y = 0.

7. RIGHT-ANGLED ARTIN GROUPS

Let $C_{\bullet,\bullet}$ be a double complex with horizontal differential d_h and vertical differential d_v . The total complex in degree n is given by $TC_n = \bigoplus_{i+j=n} C_{i,j}$. The total differential $d_t: TC_n \to TC_{n-1}$ is given by $d_t = d_h + (-1)^i d_v$. We have two filtrations, the horizontal filtration

$$F_p^h T C_n = \bigoplus_{i+j=n, i \leqslant p} C_{i,j}$$

and the vertical filtration

$$F_q^v T C_n = \bigoplus_{i+j=n, j \leq q} C_{i,j}.$$

Each filtration gives rise to a spectral sequence $E_{*,*}^*$ converging to the homology of the total complex. The spectral sequence consists of a series of "pages" E^n and in favourable circumstances we get a stabilisation

$$E^n = E^{n+1} = \dots = E^{\infty}$$
.

In theory each page can be computed from the previous one, but in practice this can be rather tricky.

Theorem 7.1 (Davis-Leary). Let L be a connected flag complex and let A_L be a right-angled Artin group. Then, $b_n^{(2)}(A_L) = \widetilde{b}_{n-1}(L)$.

Proof. Let \mathcal{L} denote the maximal simplicies in L. For $\sigma \in L$ let X_{σ} denote the subcomplex of the Salvetti complex X spanned by the vertices σ . Note that X_{σ} is a k-torus for some k. Let Y_{σ} be the union of the lifts of X_{σ} to the universal cover \widetilde{X} . For $\emptyset \neq S \subseteq \mathcal{L}$ define

$$Y_S = \bigcap_{\sigma \in S} Y_{\sigma}.$$

Note that each Y_S is a free A_L -CW complex (in fact it is an A_L -orbit of m-flats).

If $S \neq \emptyset$, then we have that $H_*^{A_L}(Y_S; \mathcal{N}A_L) \cong H_*(\mathbb{Z}^m; \mathcal{N}\mathbb{Z}^m)$ which, after applying Lück's equivalence of categories, vanishes.

If
$$S = \emptyset$$
, then $Y_S = X$.

We define a double complex so we can run a spectral sequence argument. The double complex comes from filtering \widetilde{X} by the Y_{σ} . Let

- $C_{\bullet,0} = C_{\bullet}(\widetilde{X});$
- $C_{\bullet}, j = \bigoplus_{S \subseteq \mathcal{L}, |S|=j} C_{\bullet}(Y_S)$ for j > 0;
- the boundary map of degree (-1,0) are the boundary maps in $C_{\bullet}(Y_S)$;
- the boundary map of degree (0, -1) are given by matrices whose (S, T) entry is given by $\epsilon(S, T)$ times the map induced by the inclusion of $Y_S \to Y_T$, where $\epsilon(S, T) = (-1)^i$ if T is obtained from S by omitting the ith element of S (for some fixed ordering of \mathcal{L}).

Note that this double complex has trivial homology because the boundary map of degree (0, -1) is exact. Since $C_{i,j}$ is free, the chain complex $C_{\bullet,i}$ is split exact.

Define a double complex $E_{i,j}^0 := C_{i,j} \otimes_{A_L} \mathcal{N}A_L$ and let $E_{i,j}^*$ denote the spectral sequence of the double complex with differential d_0 induced by the boundary map of degree (-1,0).

$$3 C_{0,3} \otimes_A \mathcal{N}A \longleftarrow C_{1,3} \otimes_A \mathcal{N}A \longleftarrow C_{2,3} \otimes_A \mathcal{N}A \longleftarrow C_{3,3} \otimes_A \mathcal{N}A$$

$$2 C_{0,2} \otimes_A \mathcal{N}A \longleftarrow C_{1,2} \otimes_A \mathcal{N}A \longleftarrow C_{2,2} \otimes_A \mathcal{N}A \longleftarrow C_{3,2} \otimes_A \mathcal{N}A$$

$$1 C_{0,1} \otimes_A \mathcal{N}A \longleftarrow C_{1,1} \otimes_A \mathcal{N}A \longleftarrow C_{2,1} \otimes_A \mathcal{N}A \longleftarrow C_{3,1} \otimes_A \mathcal{N}A$$

$$0 C_0(\widetilde{X}) \otimes_A \mathcal{N}A \longleftarrow C_1(\widetilde{X}) \otimes_A \mathcal{N}A \longleftarrow C_2(\widetilde{X}) \otimes_A \mathcal{N}A \longleftarrow C_3(\widetilde{X}) \otimes_A \mathcal{N}A$$

$$j/i$$
 0 1 2 3

The boundary map of degree (0,-1) is exact and so the homology of the total complex TE_n vanishes. It follows that $E_{i,j}^{\infty} = 0$ for all i,j.

We have that the jth row is

$$\bigoplus_{S\subseteq\mathcal{L},\ |S|=j} C_0(Y_S)\otimes_A\mathcal{N}A \leftarrow \bigoplus_{S\subseteq\mathcal{L},\ |S|=j} C_1(Y_S)\otimes_A\mathcal{N}A \leftarrow \bigoplus_{S\subseteq\mathcal{L},\ |S|=j} C_2(Y_S)\otimes_A\mathcal{N}A \leftarrow \cdots$$

We now describe the E^1 -page,

- $E_{i,0}^1 = H_i(A; \mathcal{N}A) \text{ if } i > 0;$
- $E_{i,j}^{1} = 0$ if both i, j > 0;
- $E_{0,j}^1 = \bigoplus_{k_i} \mathcal{N}A;$
- k_j is the number of j-element subsets of \mathcal{L} such that the intersection of the corresponding simplices of L is empty.

$$3 \qquad \bigoplus_{k_3} \mathcal{N}A \qquad 0$$

Claim 7.2. $E_{0,j}^2 = \widetilde{H}_j(L; \mathcal{N}A) \text{ for } j > 0.$

Proof of claim. The chain complex $E_{0,\bullet}^1$ embeds as a subcomplex in an exact complex C_{\bullet} , where

$$C_j = \bigoplus_{S \subseteq \mathcal{L}, |S| = j} \mathcal{L}A.$$

Let $Q_{\bullet} = C_{\bullet}/E_{0,\bullet}^1$. The short exact sequence of chain complexes

$$0 \to E_0^1 \to C_{\bullet} \to Q_{\bullet} \to 0$$

gives a homology long exact sequence

$$\cdots \to H_n(E_{0,\bullet}^1) \to H_n(C_{\bullet}) \to H_n(Q_{\bullet}) \to H_{n-1}(E_{0,\bullet}^1) \to \cdots$$

and so $H_n(E_{0,\bullet}^1) \cong H_{n-1}(Q_{\bullet})$.

Now, Q_{\bullet} is isomorphic to the augmented chain complex for the nerve of the covering of L by the elements of \mathcal{L} shifted in degree by one (with coefficients in $\mathcal{N}A$). That is, $H_{n-1}(Q_{\bullet}) = \widetilde{H}_n(L; \mathcal{N}A)$.

Thus, we have

$$3 H_3(L; \mathcal{N}A) 0$$

$$j/i$$
 0 1 2 3

and the d^i must be isomorphisms.

Theorem 7.3 (Fisher–H.–Leary). Let R be a skew field, let A_L be a right-angled Artin group, and let $RA_L \to \mathcal{D}$ be an embedding where \mathcal{D} is skew-field. Then, $b_n^{\mathcal{D}}(A_L) = \widetilde{b}_{n-1}(L;R)$.

Theorem 7.4 (Avramidi–Okun–Schreve). Let A_L be a RAAG and let (G_i) be a residual chain. Then,

$$\lim_{i\to\infty}\frac{b_n(G_i;\mathbb{F}_p)}{|G:G_i|}=\widetilde{b}_{n-1}(L;\mathbb{F}_p).$$

Theorem 7.5 (Fisher–H.–Leary). Let \mathbb{F} be a skew field, let $\varphi \colon A_L \to \mathbb{Z}$ be an epimorphism and let BB_L^{φ} denote $\ker \varphi$. If BB_L^{φ} is of type $\mathsf{FP}_{n+1}(\mathbb{F})$ then

$$b_m^{\mathcal{D}_{\mathbb{F}BB_L^{\varphi}}}(BB_L^{\varphi}) = b_m^{(2)}(BB_L^{\varphi}; \mathbb{F}) = \sum_{v \in L^{(0)}} |\varphi(v)| \cdot \widetilde{b}_{m-1}(\mathrm{Lk}(v); \mathbb{F}).$$

for all $m \leq n$.

8. Some other applications

8.A. Acylindrical hyperbolicity.

Theorem 8.1 (Osin). Let G be a finitely presented indicable group. If $b_1^{(2)}(G) \neq 0$, then G is acylindrically hyperbolic.

8.B. Simple algebras.

Theorem 8.2 (Breuillard–Kalantar–Kennedy–Ozawa). If a group G has no non-trivial finite normal subgroup and some $b_k^{(2)}(G) \neq 0$, then $C_r^*(G)$ is a simple algebra.

8.C. Coherence.

Theorem 8.3 (Jaikin-Zapirain–Linton). Let G be a locally indicable group of type FP_2 with $\mathsf{cd}(G) = 2$. If $b_2^{(2)}(G) = 0$, then G is coherent.