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1. REVIEW OF GROUP HOMOLOGY
1.A. Resolutions and finiteness properties.

Definition 1.1 (Projective resolution). Let R be a ring (associative and uni-
tal), let G be a group, and let M be an RG-module. A projective resolution
for M by RG-modules is an exact sequence

Pl P() M 07

where each P; is a projective RG-module.

Definition 1.2 (Type FP,,). If there exists a projective resolution of M over
RG such that P; is a finitely generated RG-module, then we say that M is
type FP,. If the trivial RG-module R is type FP,, then we say that G is
type FP,(R).

Exercise 1.3. Every RG module admits a free resolution.
Often we can build free resolutions of the trivial module using topology.

Definition 1.4 (Model of a K(G,1) space). We say X is a model for a
K (G, 1) space, if X is a topological space such that

=1
WiXé{G !

0 otherwise.
Note that such a space is unique up to homotopy.

Remark 1.5. If G is a discrete group, then a model for a K(G, 1) is exactly
a classifying space BG. The universal cover of a classifying space is often
denoted EG. This latter space has the property of being a free contractible
G-space and is unique up to G-homotopy.

Exercise 1.6. Every group G admits a model for a K(G,1).

Example 1.7. Suppose that X is a CW-complex model for a K(G,1). The
universal cover X of X is a contractible free G-CW complex. Since G acts on
X, we obtain an action of G on C, ()? ; R), the cellular chain complex of X.
Since the action on X is free, this turns the chain complex C, ()? ; R) into a
chain complex of free RG-modules. Now, the homology groups Hn()N( ;R) =0
for n # 0 and equal R when n = 0. Thus, the sequence C’.()Nf; R) » Ris a
free resolution of R over RG.

Definition 1.8. We say that G is type F,, if G admits a model for a K (G, 1)
with finitely many k-cells for k < n.
Exercise 1.9. For a group G, the following are equivalent:

(1) G is finitely generated;
(2) G is type Fy;
(3) G is type FP1(R) for any non-trivial ring R.

Exercise 1.10. A group G is finitely presented if and only if G is type Fs.

Theorem 1.11 (Bestvina-Brady). There exist groups of type FPo but not
Fo.



LECTURE NOTES ON ¢2-HOMOLOGY 2

1.B. Group homology. Let P, — R be a projective resolution of the triv-
ial RG-module R. The homology of G with coefficients in M, denoted,
H.(G; M) is defined to be Hy(Ps ®rc M), that is, the homology of the
chain complex

- —— PP®Qre M —— Py ®prg M —— 0.

Definition 1.12 (Fox derivatives). The Foz partial derivatives 8%1- are de-

fined by the rules
° a% =0, and

Ox; _
* 621 - 1

We extend this to a product u = y; ...y, where y; = xp or y; = x;l for
some k = k(i) by the formula

51'1 ; yl yS 1

Exercise 1.13. Show that
ozt _
(1) ;;Z = —; L
(2) 52— =0, i#].

(‘)xil
(3) a(tat—l ~2)/ot =1 —tat™L.
(4) o(tat™ta=2)/0a =t — tat ta=! —tat~ta2.

Exercise 1.14. Let G be your favourite one relator group <{a,b | r) such
that r is not a proper power. Prove that the following chain complex

072G 2762 % 76 2 7 - 0,

or or a—1
62 = <8a’6b> s 61 = <b— 1> s and 60(9) =

is a free resolution.

where

Example 1.15 (Alexander modules). Let G = BS(1,2), this is the soluble
Baumslag—Solitar group with presentation

la,t | tat™ = a?).

The group G admits a homomorphism ¢: G — Z by ¢(a) = 0 and ¢(t) = 1.
Let Z[t*!] denote the ZG-module where the action is given by g-x = t#(9)z.

A K(G,1) space X is given by a rose with two circles with edge labels
o0, and oy, as well a single 2-cell oo attached with the obvious attaching
map. Thus, we obtain a length two free resolution of the trivial module Z by
ZG-modules when passing to the universal cover and looking at the cellular
chain complex.

We shall compute H,(G;Z[t*']). We have a chain complex

0 — ZG(o)Ruc L[] 2 2G040, 0@ L[t 2 ZG o0 @ L[] — 0.

Computing the tensor products we obtain

0 — Z[tE oo) 2 Z[tE o, 00) 2 Z[tT (o0 — 0.
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The differentials become

01(%) = (00 —a '00) ®1

01(o¢) = (oo —t-009)®1
= (1 —t)oy;
or or\ "’
02(02) = oa’ 6t> (02)
= ((t—tat o —tat'a ) @1, (1 —tat ") ®1)
= (t —2,0)

H,(BS(1,2); Z[t*] = { Z[t*1]/(2 — ) Z Z[3] n=1
0 otherwise.

Exercise 1.16. Generalise the previous computation to BS(m,n).

1.C. Equivariant homology.

Definition 1.17 (G-CW complex). A G-CW complex is a CW complex X
equipped with a G action that permutes the cells of X such that if g € G
fixes a cell 0 € X setwise, then it fixes it pointwise. Equivalently X is a
G-space equipped with a filtration
F=X cXiccXpe... () X=X

n=—1
such that X carries the colimit topology with respect to this filtration and
such that X, is obtained from X,,_; by a G-pushout

[le; G/Hi x "1 —— X,

| |

[lie; G/Hi x D" — X,,.

A G-CW complex is finite if it has finitely many G-orbits of cells, or equiva-
lently finitely many equivariant cells, or equivalently, if G acts on X cocom-
pactly, that is if X /G is compact.

Define indcued space.

Definition 1.18 (Naive equivariant homology). Let X be a G-CW-complex,
let Co(X) denote its cellular chain complex, and let M be a G-module.
The (naive) G-equivariant homology of X with coefficients in M, denoted
HS(X; M), is the homology of the complex C\4(X) ®zc M.

Example 1.19. Let X be a finite CW complex. The space X is a finite
free m1 X-CW complex, where each cell of X lifts to a free orbit of cells in
X. Moreover, for the trivial ZG-module Z we have HS (X;Z) = H,(X;Z).
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2. ENTER /2-HOMOLOGY

We will begin with a very analytic definition of #2-homology and slowly in-
troduce more machinery from operator theory to give the theory an algebraic
foundation.

2.A. A first attempt. In this section we will give the naive approach to
¢?-cohomology.

Definition 2.1. Let X be a CW-complex and let

Co(X) = Cop 2 O 25 Oy o
denote the cellular chain complex of the universal cover X. Let Cy(X) =
hom(C.(X);R) denote the cellular cochain complex with differential d,, and
let C£2) ()N( ) be the subcomplex consisting of square summable cochains Note
that the differential d,, restricts to C('Q) and we denote the restriction by d,(f).
We define the unreduced ¢?-cohomology of X to be

Hpy (X) = kerd?) /im d;)

n+1

and the reduced ¢2-cohomology of X to be

HY(X) = ker d? /im d)

n n+1

where im dfﬁl is the closure of im dgi)rl in ker dg) )

For a discrete group G we define H&)(G) = Hp (EG).

Remark 2.2. The #2-cohomology groups FS) (—) are functorial with respect
to bi-Lipschitz maps.

Theorem 2.3 (Pansu, Sauer). Suppose G and H are finitely generated

groups. If G and H are quasi-isometric, then F&)(G) = H?Q)(H).

2.B. A second attempt. In our next version we will switch to homology,
this approach requires defining a new algebra.

Definition 2.4. Define £2G to be the set of square summable sequences on

G. That is,
G = {Ecgg | ¢q € C, chcg<oo}.

geG geG
This is exactly the completion of CG with respect to the inner product

(91 CGxCG—C by { Dl agg, Y b,G )— > ag b,
geG geG geG
Note that the inner product extends from CG to £G.
Lemma 2.5. Let X be a free cocompact G-CW complex. Then,
G ~ n
HY (X5 02G) = Hiy (X)),
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Example 2.6. Let G = Z = (t) and X = S*. We have that Y = X = R
with vertices indexed by Z. The #?-chain complex of R is then given by

a(2>
0—— cPv) 2 cPiy)y — 0

Note that both 0(52) (T') and 0{2) (T) are isomorphic to ¢?(Z) with bases e
and v respectively. We also have 8%2)(6) = (1 —t)v which is clearly injective.
Hence, H 1(2) (zZ) = ker((?&?)) = 0. Now, we have a right exact sequence

o

oP(T) 2 cPNT) —— () @y Z —— 0

— 1
SO im(ag)) is mapped injectively into the coinvariants ¢2(Z) ®z(z] Z. But,
this consists of Z-invariant elements and so is trivial. It follows that im(&f))

is dense and F(()z) (z) = 0.
We still want to show the zeroth unreduced homology group is non-zero.

6(2)

Observe that 1 is not in im(d;™’), because
1=(1-1t)) at’
i€Z
implies that the a; are all equal for all ¢ < 0 hence are all 0, but also that
the a; are all equal for ¢ > 0, hence are all 0.

Adapting the arguments in the previous example we can deduce two facts.

Proposition 2.7. The following hold:
(2)

(1) If G is an infinite discrete group, then Hy ' (G) = 0.
(2) If X is an aspherical n-manifold and G = m(X), then HT(lQ)(G) = 0.

Exercise 2.8. Compute ﬁf) (Z?).

Example 2.9. Let F5 be a free group, let X be a wedge of 2-circles, and let
T = X denote the 4-valent tree with edges labelled by the free group on a
and b. We have the ¢2 chain complex

(2)
0 —— @) 2 ) —— .

We claim that F?) (Fy) # 0 for n > 2.
Let us construct an ¢2-1-chain as follows:

ce = <1+;(a+a1+b+b1)

1
+5 (@ +ab+bat b’ +a™ +a7 b 0 NaT 4+ 07Y) +> e

for some edge e in T'. Note that the chain is square summable. Indeed,

1 1 1 2"
1+-4—+8-—+16-8—2+--~=1+2W

=142=3.
2
2 4 n=2
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Now, we compute the boundary of the chain

o (ce)

1
(1—a)v+§((a—a2)+(a_l—1)+(b—ab)+b_1—ab_1)v+...
(111 RS .
= 571 8 )Y 571 8 et

0.

Whence, it is an ¢£2-1-cycle as required.

Exercise 2.10. Show that the non-trivial cycle constructed in the previous
example has a boundary in CéQ) (Z x Fy,).

Exercise 2.11. Find a non-trivial cycle in C§2) (T'xT). Deduce H2(2) (Fox Fy)
is non-trivial.

2.C. Group von Neumann algebras and trace. An operator A on a
Hilbert space H is bounded if there exists a constant C' such that for all
v € H we have ||Av|| < C||v]].

We define the group von Neumann algebra N'G of G to be the algebra of
G-equivariant bounded operators G — ¢2G.

A Hilbert G-module is a complex Hilbert space V' equipped with an isomet-
ric G-action such that there exists an isometric G-embedding V — (£2G)"
for some n. A morphism of Hilbert G-modules V- — W is a bounded C-linear
G-map.

The algebra N'G comes equipped with a trace

trg: NG —C by aw—{a(e),eypq
where e € G is the identity.

Lemma 2.12. The von Neumann trace satisfies the following properties:

(1) For all a,b e NG we have trg(ab) = trg(ba).
(2) For all a € NG we have trg(aa®) = 0 if and only if a = 0

Exercise 2.13. Let H be a finite subgroup of G. Show that (?(G/H) is a
Hilbert G-module and that dimg ¢?(G/H) = |H|~'.

[Hint: use the projection ﬁ Doner Pl

We can extend the trace to matrices over the von Neumann algebra as
follows
n
trg: Mp(NG) » C by (M) — > trg Mi,.
i=1
The von Neumann dimension dimg V of a Hilbert G-module V is defined
as follows: let i: V — (£2G)™ be the given embedding and let 7 : (2G)" —»
i(V') denote the orthogonal projection. We set

dimg V = trg(m) € Ry U {0}.
Theorem 2.14. The above definition is independent of the embedding i.

Proposition 2.15. Let G be a countable group and let U, V,W be Hilbert
G-modules.
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(1) dimg *°G = 1;
(2) dimgV =0 if and only if V = 0;
(8) if0 > U -V - W — 0 is exact then dimg V = dimg U 4+ dimg W'

2.D. Liick’s formulation. So far all of the definitions have required a free
action and we have to worry about closures. This can be extremely limiting.
To remedy this, the category of Hilbert G-modules embeds into the category
of NG-modules. Moreover, Liick shows that this embedding can be refined
to an equivalence of categories F' between the category of Hilbert G modules
and the category of finitely generated projective N'G-modules, such that
F(/2G) = NG. Liick shows for finitely generated modules that dimgV =
dimg F (V). For a non finitely generated module we take the supremum of
the dimensions of finitely generated projective sub-modules.

From here on out for a G-CW complex X we define the #2-homology of
X to be the homology groups HS (X; N'G). (Note there is no hypothesis on
the stabilisers.)

The upshot of all this is we can use things like spectral sequences to
compute the ¢2-homology.

2.E. Betti numbers. Let X be a G-CW-complex. We define the nth ¢2-
Betti number of X to be

b?(X) = dimg HS (X; NG).

n
For a group G we set

b2(@) = b (EQ).

n

That these are well defined group invariants follows from the next theorem.
Theorem 2.16 (Properties). Let G, H be groups.
(1) If f: X = Y is a G-homotopy equivalence, then
b (X) =bP(Y) forp=0.

(2) Let X be a G-CW complex and Y be an H-CW complex. Then,
X xY is a G x H-CW complezx and

BP(X xY)= Y b(X) b (Y).
p+g=n

(3) Let K be a finite index subgroup of G. If X is a G-CW complex (and
hence a K-CW complex by restriction) then

b (X;K) = |G : K| - b (X;G).
In particular,
b (K) = |G : K|-b2(G).
(4) Suppose H < G and let X be an H-CW complex. Then,
b2 (G xy X;G) = b2 (X; H).
(5) b(()Q)(X;G) = |G|7Y, where |G|7! = 0 if G is infinite.

(6) b2 (X) < ¢pn, where ¢y, is the number of equivariant n-cells in X .
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(7) If X is a finite free G-CW-complezx, then

X(x/6) = Y (-1 (x).

=0

(8) If M is an n-manifold, then
b (M) = b (D).

(9) Let X be a finite CW-complex. Then, b§2) (X) = 652) (m X).
(10) Let Xy, ... X, be pointed CW complexes and let X = \/;_, X;. Then,

Exercise 2.17. Compute the £2-Betti numbers of surface groups, free groups,
and direct products of free groups.

Exercise 2.18. Let X be a closed (triangulated) 4-manifold with Euler

characteristic ¢. Compute b;(,2) (X), for all p, in terms of ¢ and 652) (mX).

2.F. Measure equivalence invariance. Two groups are measure equiva-
lent if they admit free, measure-preserving actions on a common standard
probability space that share the same orbits (almost everywhere).

The key example of measure equivalent groups are lattices in the same
locally compact groups.

Theorem 2.19 (Gaboriau). Let G and H be countable measure equivalent
groups with measure coupling C. Then, 61(92) (G)=C"- béz)(H).

Exercise 2.20. Let I' be a lattice in Aut(77) x Aut(72) where each 7; is an
n;-regular tree with n; > 3. Show b1(,2) (') = 0 for p # 2.

Theorem 2.21 (Liick). Let G be an infinite amenable group. Then, bl()Q)(G) =
0 for all p = 0.

Proof. Every infinite amenable group is measure equivalent to Z. The result
follows from Gaboriau’s Theorem. (]

Remark 2.22. Liick’s original proof instead shows: if GG is amenable, then
NG is dimension-flat over CG, i.e. dimg TorgG (NG; M) =0 for p>1 and
every CG-module M.
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3. MAYER—VIETORIS SEQUENCES

Recall the classical Mayer—Vietoris sequence for singular homology. Namely,
given a space X which can be written as a union X; u X5 with intersection
Z = X1 n Xa, there is a long exact sequence in singular homomology

On nyJn kn
> Hyat (X3 R) 25 Ho(Z3 R) % H, (X0 RIOH, (X3 R) 225
where i, j, k, £ are the natural inclusions.

In group homology there is a very natural situation where this occurs.
Namely, given a group G written as an amalgamated free product A = As,
we obtain a long exact sequence in group homology

o Hoot (G M) 25 Hy (05 M) Y, 1 (A M)®H, (Ag; M) 275 H,(G: R) -

for any G-module M. Note that the coefficients for A1, As, C are the restric-
tions of M to each group.

The main challenge in computations (especially with non-trivial coeffi-
cients) is understanding the maps involved.

Remark 3.1. The following observation is often helpful when computing
L?-homology. Suppose A < G. Then,

dimy H,(A; NA) = dimg HY (G x4 EA;NG)
and
HY (G x4 EA;NG) = H,(A;NG).
In particular, we have
dimg H,(A; N A) = dimg H,(A;NG).

Example 3.2 (Fernés—Valette, Chatterji—-H.—Kropholler). Let G be the fun-
damental group of a finite graph of groups such that each edge group satisfies

b§2)(Ge) = 0. Then,

iy m+2< Gv) @0*2;'

veV

Consider the relevant portion of the Mayer—Vietoris sequence
—>H2GNG @Hl e,NG)—>@Hl(GU,NG)%Hl(G,NG)—’
eeE veV
and using the remark and the hypothesis this becomes the exact sequence
0— @ Hi(Gy; NG) — Hi(G;NG) — @ Ho(Ge; NG) — @ Ho(Go; NG) — Ho(G
veV ecE veV

Computing von Neumann dimensions with respect to G and rearranging
gives the equation

() _ b @ 1 1
g |+Z(b “|m0+2wa

veV

as required. |

&y H, (X;R) —

. NG) — 0.
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4. THE MAPPING TORUS THEOREM

Let f: X — X be a selfmap. It mapping torus Ty is the space
X x[0,1]/ ~ where (z,0) ~ (f(x),1).

There is a canonical map p: Ty — S by (x,t) — *™. If X is path con-
nected, then p induces a canonical epimorphism Ty — Z.

Theorem 4.1 (Liick). Let f: X — X be a cellular self map of a finite
connected CW complex. Let Ty denote the mapping torus with G = mT}.

Then, b,(f)(ff) =0 for allp = 0.

Proof. Write G = m1 X xZ with the Z factor corresponding to ‘going-around-
the-mapping-torus’. Let G,, denote the preimage of nZ under the projection
¥: G — Z. Note |G : G| = n.

We have

(1) b2 (Ty; G) = —bP(Ty; Gy).

3=

There is a homotopy equivalence

where f* = fo-..-o f. The map h induces a G,, homotopy equivalence

Thus,
(2) B2 (T3 G) = b (Tyn; Gy).

Let ¢, denote the number of p-cells in X. We may endow T¢» with a CW
structure consisting of ¢, + ¢,—1 many p-cells [exercise]. Hence,

(3) b (Tyn) < cp + cpo1.
Now, combining (1), (2), and (3) we obtain
~ 1
b (Ty) < — (ep + cp1).

Since ¢, + ¢,—1 is independent of n, the claim follows from taking the limit
as n — o0. U

4.A. Fibring theorems.

Theorem 4.2 (H.—Kielak). Let G be a group of type FP,(Q). If bng)(G) # 0,
then X"(G;Q) = &.

Theorem 4.3 (Kielak, Fisher). Suppose G is a RFRS group of type FP,(Q).
Then, G is virtually FP,(Q)-fibred if and only if bZ@)(G) =0 fori<n.

Theorem 4.4 (Kielak—Linton, Fisher). Suppose G is a finitely generated
RFRS group with cdgo(G) = 2. If 652)(6’) = 0, then G is virtually free-by-
cyclic.
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4.B. Normal subgroups.

Theorem 4.5 (Gaboriau, Sanchez-Peralta). Let G be a countable group and
let N <G have infinite index. If bl(,Q) (N)=0forp<n-—1 and bg)(N) < o0,
then bg)(G) =0.

Corollary 4.6 (Gaboriau). Let G be a finitely generated group. If bgz)(G) #
0, then every infinite index normal subgroup is infinitely generated.

5. LUCK’S APPROXIMATION THEOREM

Let G be a residually finite group. We say a chain G = Gog = Gy = - --
of finite index subgroups of G is a residual chain if each G; < G and if

mizo G =1

Theorem 5.1 (Liick). Let X be a G-space with finite (n + 1)-skeleton and
let (G;) be a residual chain. Then,

. b(X/GH)
b (X) = Jim /G
Note that even the statement that the right hand side is a limit and not

a limit supremum is non-trivial.
State Liick—Osin.

Open Question 5.2. Let X be a G-space with finite (n + 1)-skeleton and
let (G;) be a residual chain. Is the quantity

. bn(X/Gi; Fp)

lim sup —=~—2_P7
a genuine limit? Is it independent of the residual chain? What does it
converge to?

5.A. Deficiency and rank gradient. Define the deficiency of G to be
maximum ¢(P) —r(P) where P runs over all finite presentations of G. Here
g(P) is the number of generators and r(P) is the number of relations in P.

Exercise 5.3. Let G = (S | R) be a finitely presented group. Then,
def(G) < 1-b2(G) +b2(@) — b2 (@).
For a residually finite group G and residual chain of finite index normal

subgroups (Gy,), the rank gradient of G with respect to (G,,) is

| _ gy UG -1
RG(G; (Gn)) = lim G- Gl

Exercise 5.4. Let G be a finitely presented residually finite group. Then,
b1 (G) < RG(G5 (G)-

Open Question 5.5. Let G be a finitely presented residually finite group.
Is BP(G) = RG(G; (Gn)) ?
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5.B. Profinite invariance.

TheoremA5.6.ALet G and H be finitely generated residually finite groups
such that G = H.
(1) |Bridson—Conder—Reid| Then, ng)(G) = ng) (H).
(2) [Kammeyer—Kionke-Raimbault—Sauer| bg)(G) is not a profinite in-
variant forn = 2.

6. AFFILIATED OPERATORS

6.A. Ore localisation. In this section we will describe an analogue of lo-
calisation for non-commutative rings.

Definition 6.1. Let R be a ring. An element z € R is a zero-divisor if
x # 0, and zy = 0 or yx = 0 for some non-zero y € R. A non-zero element
that is not a zero-divisor will be called regular.

Definition 6.2 (Right Ore condition). Let R be a ring and S € R a mul-
tiplicatively closed subset consisting of regular elements. The pair (R, .S)
satisfies the right Ore condition if for every r € R and s € S there are
elements 7" € R and s’ € S satisfying rs’ = sr’.

Definition 6.3 (Right Ore localisation). If (R,S) satisfies the right Ore
condition we may define the right Ore localisation, denoted RS™!, to be
the following ring. Elements are represented by pairs (r,s) € R x S up to
the following equivalence relation: (r,s) ~ (', s’) if and only if there exists
u,u’ € R such that the equations ru = r’u’ and su = s’u’ hold, and su = s'u/
belongs to S. The addition is given by

(r,s) + (r',s") = (rc+1'd,t), where t = sc = s'd € S,
and the multiplication is given by

(r,8)(r',s") = (rc,s't), where sc = r't with t € S.

6.B. The algebra of affiliated operators. Let GG be a group. An operator
A on a Hilbert space H is closed if the graph of A is closed; is densely defined
if its domain dom(f) is dense in H; is a G-operator if dom(f) is a linear G-
invariant subspace and f satisfies f(x)-g = f(z - g) for all g € G.

Definition 6.4 (Affiliated operators). We say that an operator
f: dom(f) — £*G

with dom(f) € £2G is affiliated (to NG) if f is densely defined closed G-
operator (recall that G acts on £2G on the right). The set of all operators
affiliated to N'G forms the algebra of affiliated operators UG of G.

Since an adjoint of a densely defined closed operator is densely defined
and closed, every x € UG has a well-defined adjoint z* € UG.
Note that we have inclusions of QG-modules

QG — CG — NG — UG.
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Theorem 6.5 (Roos). The set S of reqular elements of NG forms a right
Ore set. Moreover, UG is canonically isomorphic to (NG)S™1.

Definition 6.6. For a finitely generated projective UG-module @) define
dimyg Q = dimg P

where P is any finitely generated N'G-module P such that UGRn ¢ P ~ua Q.
For a general YG-module () we take the supremum of dimyg-dimensions of
the finitely generated projective submodules.

Since UG is flat over N'G we obtain that
b (X;G) = dimyg HY (GiUG),

Wolfgang Liick describes the passage of NG to UG as being like the pas-
sage from Z to Q. One loses all of the torsion submodule information, but
often computations are simpler.

6.C. The Linnell ring.

Definition 6.7 (Division and rational closure). Let R be a ring and S a
subring. We say that S is division closed if every element of S invertible
over R is invertible over S. We say that S is rationally closed if every finite
square matrix over S invertible over R is invertible over S.

Define the division closure of S in R, denoted by D(S < R), to be the
smallest division-closed subring of R containing S. Define the rational closure
of S in R, denoted by R(S < R), to be the smallest rationally closed subring
of R containing S.

Definition 6.8. For a group G, the Linnell ring Dgq is defined ot be the
ring D(QG < UG).

6.D. The Atiyah Conjecture.

Conjecture 6.9 (The Atiyah Conjecture). For every countable torsionfree
group G and every A € M,(QG), the kernel K of the operator A: ({2G)" —
(P2G)" satisfies dimg K € Z.

Theorem 6.10 (Linnell). For a torsionfree group G the following are equiv-
alent:

(1) the Atiyah Conjecture is true for G

(2) Dog is a skew field.

Theorem 6.11 (Jaikin Zapirain-Lopez-Alvarez). Locally indicable groups
satisfy the Atiyah Conjecture.
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6.E. One relator groups.

Theorem 6.12 (Dicks-Linnell). Let G be a non-trivial torsion-free one-
relator group. Then, b,(,Q) (G) =0 forallp #1 and bgz)(G) = —x(G).

Proof. For a one-relator group G = {(x1,...,zs | r) we have a free resolution
of Z over Z(G coming from an aspherical presentation 2-complex, namely

(4) 0— ZG.r 5 2G{a1,. .. 25} % ZG — 7. — 0,

where J is Jacobian of fox derivatives. Unaugmenting the resolution and
tensoring with UG we obtain

(5) 0—UGT L UG Lz, ... 25} 2 UG — 0.

Claim 6.13. Let G be a left orderable group. Let y € UG and a € CG both
be non-zero. Then, y-a # 0.

Lets see how the claim proves the theorem.

In (4) the map J is injective. So either r = 0 or there exists some z; such
that 0r/dx # 0. The claim then implies that J is injective in (5). Hence,
H,(G;UG) = 0 for all p > 2. Taking UG-dimensions we obtain that

dimygkerdy = s —1
dimygimJ = 1.

In particular, ng)(G) =s5—2=—x(G). O

Proof of Claim 6.13. We first establish the fact that a is invertible in UG.
Observe that since locally indicable groups satisfy the Atiyah Conjecture we
have

0 # dimyga- UG =1 = 1.
Whence, a is invertible. To prove the claim we now suppose that ya = 0
and that a # 0. Then, y*yaa® = 0 with y*y € UG and 0 # aa™ € CG. But,

aa® is invertible in UG since both a and a* are. Hence, y*y = 0 and so
y=0. |

7. RIGHT-ANGLED ARTIN GROUPS
Let C, o be a double complex with horizontal differential dj, and vertical

differential d,,. The total complex in degree n is given by T'C,, = (—Biﬂ:n Cij-
The total differential dy : TC,, — TC,_1 is given by d; = dj, + (—l)idv. We
have two filtrations, the horizontal filtration

F'TC,= P Ci,

i+j=ni<p

and the vertical filtration

F)TC,= @ Ciy.

i+j:n7j<q
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Each filtration gives rise to a spectral sequence E} , converging to the ho-
mology of the total complex. The spectral sequence consists of a series of
“pages” E™ and in favourable circumstances we get a stabilisation

En:ETH_l:"':EOO.

In theory each page can be computed from the previous one, but in practice
this can be rather tricky.

Theorem 7.1 (Davis—Leary). Let L be a connected flag complex and let A,
be a right-angled Artin group. Then, b? (Ar) = Zn_l(L).

Proof. Let £ denote the maximal simplicies in L. For ¢ € L let X, denote
the subcomplex of the Salvetti complex X spanned by the vertices o. Note
that X, is a k-torus for some k. Let Y, be the union of the lifts of X, to
the universal cover X. For J # S < L define

Ys=[)Ye.

oeS

Note that each Yy is a free A7-CW complex (in fact it is an Ap-orbit of
m-flats).

If S # ¢, then we have that HAL (Yg;NAL) =~ H,(Z™; N'Z™) which,
after applying Liick’s equivalence of categories, vanishes.

If S = &, then Yg = X.

We define a double complex so we can run a spectral sequence argument.
The double complex comes from filtering X by the Y,. Let

Cop = Co(X);

Ce.j = @scr, 51=j Co(Ys) for j > 0;

the boundary map of degree (—1,0) are the boundary maps in C,(Ys);
the boundary map of degree (0,—1) are given by matrices whose
(S,T) entry is given by €(S,T) times the map induced by the inclu-
sion of Y — Y, where €(S,T) = (—1)* if T is obtained from S by
omitting the ith element of S (for some fixed ordering of L).

Note that this double complex has trivial homology because the boundary
map of degree (0,—1) is exact. Since C; ; is free, the chain complex C,; is
split exact.

Define a double complex E = Ci; ®a, NAp and let E* denote the
spectral sequence of the double complex with differential dy 1nduced by the
boundary map of degree (—1,0).



LECTURE NOTES ON ¢2-HOMOLOGY 16

3 Co3R@UNA+—— C13@ANA +—— Co3@QUNA +—— C33R04NA
2 Co2@UNA +—— C1o@ANA +—— Coa@UNA +—— C32Q04NA
1 Co1 @UANA +—— C11 QANA +—— Co1 @QANA +—— C31 Q4 NA
0 Co(X) @aANA +—— CLX)QUNA +—— Co(X)@uNA +——— C5(X) @4 NA
J/i 0 1 2 3

The boundary map of degree (0, —1) is exact and so the homology of the
total complex T E,, vanishes. It follows that E;CJ =0 for all ¢, j.
We have that the jth row is

D CVs)QUNA— @ CiYs)QuNA— B Co(Ys)QANA — -
ScL, |S|=j ScL, |S|=j ScL, |S|=j
We now describe the E'-page,
. Eil’0 = H;(A;NA) ifi > 0;
. E},j = 0 if both 4,j > 0;
* E(%,j = @kj NA;
e k; is the number of j-element subsets of £ such that the intersection
of the corresponding simplices of L is empty.

3 Py, NA 0
1 B, NA 0 T 0
d2
0 @kONA Hl(A,NA) HQ(A7NA) Hg(A,NA)
j/i 0 1 2 3

Claim 7.2. E}; = Hj(L;N'A) for j > 0.
Proof of claim. The chain complex Eé,- embeds as a subcomplex in an exact
complex C,, where
C; = (—B LA.
SSL, |S|=j
Let Qo = C,/ E&,. The short exact sequence of chain complexes

0 Ejy— Co—Qu—0
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gives a homology long exact sequence
B HTZ(E[%,O) - HTZ(C°) - HTL(Q') - Hn—l(Eé,o) -
and so Hn(E(%’.) ~ H,_1(Q.).
Now, (), is isomorphic to the augmented chain complex for the nerve of the

covering of L by the elements of £ shifted in degree by one (with coefficients
in NA). That is, H,—1(Q.) = Hp(L; N A). [ |

Thus, we have

3 Hs(L; NA) 0
1 Hy(L; NA) 0 e 0 0
d2
j/i 0 1 2 3
and the d° must be isomorphisms. O

Theorem 7.3 (Fisher-H.-Leary). Let R be a skew field, let Ap, be a right-
angled Artin group, and let RA;, — D be an embedding where D is skew-field.
Then, b2 (AL) = bp_1(L; R).

Theorem 7.4 (Avramidi-Okun—Schreve). Let Ay, be a RAAG and let (G;)
be a residual chain. Then,
bn, (G’L;F )
lim X\ p)
25&\0 Gil
Theorem 7.5 (Fisher—H.—Leary). Let F be a skew field, let o: Ay, — Z be
an epimorphism and let BB} denote ker ¢. If BBf is of type FP,41(F) then

D]FBB

bm  L(BBY) = b (BBYiF) = > |p(v)| - by1(Lk(v); F).
veL(0)

= bp1(L; ).

for all m < n.

8. SOME OTHER APPLICATIONS
8.A. Acylindrical hyperbolicity.

Theorem 8.1 (Osin). Let G be a finitely presented indicable group. If
ng)(G) # 0, then G is acylindrically hyperbolic.
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8.B. Simple algebras.

Theorem 8.2 (Breuillard-Kalantar-Kennedy-Ozawa). If a group G has no
non-trivial finite normal subgroup and some b,(f)(G) # 0, then C}(G) is a
sitmple algebra.

8.C. Coherence.

Theorem 8.3 (Jaikin-Zapirain-Linton). Let G be a locally indicable group
of type FPy with ¢d(G) = 2. If ng)(G) =0, then G is coherent.
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