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1. Review of group homology

1.A. Resolutions and finiteness properties.

Definition 1.1 (Projective resolution). Let R be a ring (associative and uni-
tal), let G be a group, and let M be an RG-module. A projective resolution
for M by RG-modules is an exact sequence

¨ ¨ ¨ P1 P0 M 0,

where each Pi is a projective RG-module.

Definition 1.2 (Type FPn). If there exists a projective resolution of M over
RG such that Pi is a finitely generated RG-module, then we say that M is
type FPn. If the trivial RG-module R is type FPn, then we say that G is
type FPnpRq.

Exercise 1.3. Every RG module admits a free resolution.

Often we can build free resolutions of the trivial module using topology.

Definition 1.4 (Model of a KpG, 1q space). We say X is a model for a
KpG, 1q space, if X is a topological space such that

πiX –

#

G i “ 1

0 otherwise.

Note that such a space is unique up to homotopy.

Remark 1.5. If G is a discrete group, then a model for a KpG, 1q is exactly
a classifying space BG. The universal cover of a classifying space is often
denoted EG. This latter space has the property of being a free contractible
G-space and is unique up to G-homotopy.

Exercise 1.6. Every group G admits a model for a KpG, 1q.

Example 1.7. Suppose that X is a CW-complex model for a KpG, 1q. The
universal cover rX of X is a contractible free G-CW complex. Since G acts on
rX, we obtain an action of G on C‚p rX;Rq, the cellular chain complex of rX.
Since the action on X is free, this turns the chain complex C‚p rX;Rq into a
chain complex of freeRG-modules. Now, the homology groupsHnp rX;Rq “ 0

for n ‰ 0 and equal R when n “ 0. Thus, the sequence C‚p rX;Rq ↠ R is a
free resolution of R over RG.

Definition 1.8. We say that G is type Fn if G admits a model for a KpG, 1q

with finitely many k-cells for k ď n.

Exercise 1.9. For a group G, the following are equivalent:
(1) G is finitely generated;
(2) G is type F1;
(3) G is type FP1pRq for any non-trivial ring R.

Exercise 1.10. A group G is finitely presented if and only if G is type F2.

Theorem 1.11 (Bestvina–Brady). There exist groups of type FP2 but not
F2.
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1.B. Group homology. Let P‚ ↠ R be a projective resolution of the triv-
ial RG-module R. The homology of G with coefficients in M , denoted,
H˚pG;Mq is defined to be H˚pP‚ bRG Mq, that is, the homology of the
chain complex

¨ ¨ ¨ P1 bRG M P0 bRG M 0.

Definition 1.12 (Fox derivatives). The Fox partial derivatives B
Bxi

are de-
fined by the rules

‚ B1
Bxi

“ 0, and
‚

Bxi
Bxi

“ 1.

We extend this to a product u “ y1 . . . yn where yi “ xk or yi “ x´1
k for

some k “ kpiq by the formula

Bu

Bxi
“

n
ÿ

s“1

y1 ¨ ¨ ¨ ys´1
Bys
Bxi

.

Exercise 1.13. Show that

(1) Bx´1
i

Bxi
“ ´x´1

i .

(2)
Bx˘1

j

Bxi
“ 0, i ‰ j.

(3) Bptat´1a´2q{Bt “ 1 ´ tat´1.
(4) Bptat´1a´2q{Ba “ t´ tat´1a´1 ´ tat´1a´2.

Exercise 1.14. Let G be your favourite one relator group xa, b | ry such
that r is not a proper power. Prove that the following chain complex

0 Ñ ZG B2
ÝÑ ZG2 B1

ÝÑ ZG B0
ÝÑ Z Ñ 0,

where

B2 “

ˆ

Br

Ba
,

Br

Bb

˙

, B1 “

ˆ

a´ 1
b´ 1

˙

, and B0pgq “ 1

is a free resolution.

Example 1.15 (Alexander modules). Let G “ BSp1, 2q, this is the soluble
Baumslag–Solitar group with presentation

xa, t | tat´1 “ a2y.

The group G admits a homomorphism φ : G↠ Z by φpaq “ 0 and φptq “ 1.
Let Zrt˘1s denote the ZG-module where the action is given by g ¨x “ tφpgqx.

A KpG, 1q space X is given by a rose with two circles with edge labels
σa and σt, as well a single 2-cell σ2 attached with the obvious attaching
map. Thus, we obtain a length two free resolution of the trivial module Z by
ZG-modules when passing to the universal cover and looking at the cellular
chain complex.

We shall compute HnpG;Zrt˘1sq. We have a chain complex

0 Ñ ZGxσ2ybZGZrt˘1s
B2
ÝÑ ZGxσa, σeybZGZrt˘1s

B1
ÝÑ ZGxσ0ybZGZrt˘1s Ñ 0.

Computing the tensor products we obtain

0 Ñ Zrt˘1sxσ2y
B2
ÝÑ Zrt˘1sxσa, σty

B1
ÝÑ Zrt˘1sxσ0y Ñ 0.
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The differentials become

B1pσaq “ pσ0 ´ a ¨ σ0q b 1

“ 0;

B1pσtq “ pσ0 ´ t ¨ σ0q b 1

“ p1 ´ tqσ0;

B2pσ2q “

ˆ

Br

Ba
,

Br

Bt

˙T

pσ2q

“
`

pt´ tat´1a´1 ´ tat´1a´2q b 1, p1 ´ tat´1q b 1
˘

“ pt´ 2, 0q.

Computing homology we obtain

HnpBSp1, 2q;Zrt˘1s “

$

’

&

’

%

Zrt˘1s{p1 ´ tq – Z n “ 0

Zrt˘1s{p2 ´ tq – Zr12 s n “ 1

0 otherwise.

Exercise 1.16. Generalise the previous computation to BSpm,nq.

1.C. Equivariant homology.

Definition 1.17 (G-CW complex). A G-CW complex is a CW complex X
equipped with a G action that permutes the cells of X such that if g P G
fixes a cell σ P X setwise, then it fixes it pointwise. Equivalently X is a
G-space equipped with a filtration

H “ X´1 Ă X1 Ă ¨ ¨ ¨ Ă Xn Ă . . .
ď

ně´1

Xn “ X

such that X carries the colimit topology with respect to this filtration and
such that Xn is obtained from Xn´1 by a G-pushout

š

iPI G{Hi ˆ Sn´1 Xn´1

š

iPI G{Hi ˆDn Xn.

A G-CW complex is finite if it has finitely many G-orbits of cells, or equiva-
lently finitely many equivariant cells, or equivalently, if G acts on X cocom-
pactly, that is if X{G is compact.

Define indcued space.

Definition 1.18 (Naïve equivariant homology). LetX be a G-CW-complex,
let C‚pXq denote its cellular chain complex, and let M be a G-module.
The (naïve) G-equivariant homology of X with coefficients in M , denoted
HG

n pX;Mq, is the homology of the complex C‚pXq bZG M .

Example 1.19. Let X be a finite CW complex. The space rX is a finite
free π1X-CW complex, where each cell of X lifts to a free orbit of cells in
rX. Moreover, for the trivial ZG-module Z we have HG

n p rX;Zq “ HnpX;Zq.
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2. Enter ℓ2-homology

We will begin with a very analytic definition of ℓ2-homology and slowly in-
troduce more machinery from operator theory to give the theory an algebraic
foundation.

2.A. A first attempt. In this section we will give the naïve approach to
ℓ2-cohomology.

Definition 2.1. Let X be a CW-complex and let

C‚p rXq :“ C0
B0

ÐÝ C1
B1
ÝÑ C2 ÐÝ ¨ ¨ ¨

denote the cellular chain complex of the universal cover rX. Let C‚p rXq “

hompC‚p rXq;Rq denote the cellular cochain complex with differential dn and
let Cp2q

‚ p rXq be the subcomplex consisting of square summable cochains Note
that the differential dn restricts to C‚

p2q
and we denote the restriction by dp2q

n .
We define the unreduced ℓ2-cohomology of X to be

Hn
p2qpXq “ ker dp2q

n { im d
p2q

n`1

and the reduced ℓ2-cohomology of X to be

H
p2q

n pXq “ ker dp2q
n {im d

p2q

n`1

where im d
p2q

n`1 is the closure of im d
p2q

n`1 in ker d
p2q
n .

For a discrete group G we define Hn
p2q

pGq “ Hn
p2q

pEGq.

Remark 2.2. The ℓ2-cohomology groupsHp2q

n p´q are functorial with respect
to bi-Lipschitz maps.

Theorem 2.3 (Pansu, Sauer). Suppose G and H are finitely generated
groups. If G and H are quasi-isometric, then H

n
p2qpGq – H

n
p2qpHq.

2.B. A second attempt. In our next version we will switch to homology,
this approach requires defining a new algebra.

Definition 2.4. Define ℓ2G to be the set of square summable sequences on
G. That is,

ℓ2G “

#

ÿ

gPG

cgg | cg P C,
ÿ

gPG

cgcg ă 8

+

.

This is exactly the completion of CG with respect to the inner product

x¨, ¨y : CGˆ CG Ñ C by

C

ÿ

gPG

agg,
ÿ

gPG

bgG

G

ÞÑ
ÿ

gPG

ag ¨ bg.

Note that the inner product extends from CG to ℓ2G.

Lemma 2.5. Let X be a free cocompact G-CW complex. Then,

HG
n pX; ℓ2Gq – Hn

p2qpXq.
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Example 2.6. Let G “ Z “ xty and X “ S1. We have that Y “ rX “ R
with vertices indexed by Z. The ℓ2-chain complex of R is then given by

0 C
p2q

1 pY q C
p2q

0 pY q 0
B

p2q

1

Note that both C
p2q

0 pT q and C
p2q

1 pT q are isomorphic to ℓ2pZq with bases e
and v respectively. We also have B

p2q

1 peq “ p1´ tqv which is clearly injective.
Hence, Hp2q

1 pZq “ kerpB
p2q

1 q “ 0. Now, we have a right exact sequence

C
p2q

1 pT q C
p2q

0 pT q ℓ2pZq bZrZs Z 0
B

p2q

1

so impB
p2q

1 q
K

is mapped injectively into the coinvariants ℓ2pZq bZrZs Z. But,
this consists of Z-invariant elements and so is trivial. It follows that impB

p2q

1 q

is dense and Hp2q

0 pZq “ 0.
We still want to show the zeroth unreduced homology group is non-zero.

Observe that 1 is not in impB
p2q

1 q, because

1 “ p1 ´ tq
ÿ

iPZ
ait

i

implies that the ai are all equal for all i ă 0 hence are all 0, but also that
the ai are all equal for i ě 0, hence are all 0.

Adapting the arguments in the previous example we can deduce two facts.

Proposition 2.7. The following hold:

(1) If G is an infinite discrete group, then H
p2q

0 pGq “ 0.
(2) If X is an aspherical n-manifold and G “ π1pXq, then Hp2q

n pGq “ 0.

Exercise 2.8. Compute Hp2q

˚ pZ2q.

Example 2.9. Let F2 be a free group, let X be a wedge of 2-circles, and let
T “ rX denote the 4-valent tree with edges labelled by the free group on a
and b. We have the ℓ2 chain complex

0 C
p2q

1 pT q C
p2q

0 pT q 0.
B

p2q

1

We claim that Hp2q

1 pF2q ‰ 0 for n ě 2.
Let us construct an ℓ2-1-chain as follows:

ce “

ˆ

1 `
1

2

`

a` a´1 ` b` b´1
˘

`
1

4

`

a2 ` ab` ba` b2 ` a´2 ` a´1b´1 ` b´1a´1 ` b´2
˘

` . . .

˙

e

for some edge e in T . Note that the chain is square summable. Indeed,

1 ` ¨4
1

22
` 8 ¨

1

42
` 16 ¨

1

82
` ¨ ¨ ¨ “ 1 `

ÿ

ně2

2n

22n´2
“ 1 ` 2 “ 3.
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Now, we compute the boundary of the chain

B
p2q

1 pceq “ p1 ´ aqv `
1

2

`

pa´ a2q ` pa´1 ´ 1q ` pb´ abq ` b´1 ´ ab´1
˘

v ` . . .

“

ˆ

1 ´
1

2
´

1

4
´

1

8
´ . . .

˙

v ´

ˆ

1 ´
1

2
´

1

4
´

1

8
´ . . .

˙

av ` . . .

“ 0.

Whence, it is an ℓ2-1-cycle as required.

Exercise 2.10. Show that the non-trivial cycle constructed in the previous
example has a boundary in Cp2q

2 pZ ˆ Fnq.

Exercise 2.11. Find a non-trivial cycle in Cp2q

2 pTˆT q. DeduceHp2q

2 pF2ˆF2q

is non-trivial.

2.C. Group von Neumann algebras and trace. An operator A on a
Hilbert space H is bounded if there exists a constant C such that for all
v P H we have ||Av|| ď C||v||.

We define the group von Neumann algebra NG of G to be the algebra of
G-equivariant bounded operators ℓ2G Ñ ℓ2G.

A Hilbert G-module is a complex Hilbert space V equipped with an isomet-
ric G-action such that there exists an isometric G-embedding V Ñ pℓ2Gqn

for some n. A morphism of Hilbert G-modules V Ñ W is a bounded C-linear
G-map.

The algebra NG comes equipped with a trace

trG : NG Ñ C by a ÞÑ xapeq, eyℓ2G

where e P G is the identity.

Lemma 2.12. The von Neumann trace satisfies the following properties:
(1) For all a, b P NG we have trGpabq “ trGpbaq.
(2) For all a P NG we have trGpaa˚q “ 0 if and only if a “ 0

Exercise 2.13. Let H be a finite subgroup of G. Show that ℓ2pG{Hq is a
Hilbert G-module and that dimG ℓ

2pG{Hq “ |H|´1.

[Hint: use the projection 1
|H|

ř

hPH h.]
We can extend the trace to matrices over the von Neumann algebra as

follows

trG : MnpNGq Ñ C by pMi,jq ÞÑ

n
ÿ

i“1

trGMi,i.

The von Neumann dimension dimG V of a Hilbert G-module V is defined
as follows: let i : V Ñ pℓ2Gqn be the given embedding and let π : pℓ2Gqn ↠
ipV q denote the orthogonal projection. We set

dimG V “ trGpπq P Rě0 Y t8u.

Theorem 2.14. The above definition is independent of the embedding i.

Proposition 2.15. Let G be a countable group and let U, V,W be Hilbert
G-modules.
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(1) dimG ℓ
2G “ 1;

(2) dimG V “ 0 if and only if V “ 0;
(3) if 0 Ñ U Ñ V Ñ W Ñ 0 is exact then dimG V “ dimG U`dimGW .

2.D. Lück’s formulation. So far all of the definitions have required a free
action and we have to worry about closures. This can be extremely limiting.
To remedy this, the category of Hilbert G-modules embeds into the category
of NG-modules. Moreover, Lück shows that this embedding can be refined
to an equivalence of categories F between the category of Hilbert G modules
and the category of finitely generated projective NG-modules, such that
F pℓ2Gq “ NG. Lück shows for finitely generated modules that dimG V “

dimG F pV q. For a non finitely generated module we take the supremum of
the dimensions of finitely generated projective sub-modules.

From here on out for a G-CW complex X we define the ℓ2-homology of
X to be the homology groups HG

n pX;NGq. (Note there is no hypothesis on
the stabilisers.)

The upshot of all this is we can use things like spectral sequences to
compute the ℓ2-homology.

2.E. Betti numbers. Let X be a G-CW-complex. We define the nth ℓ2-
Betti number of X to be

bp2q
n pXq “ dimGH

G
n pX;NGq.

For a group G we set
bp2q
n pGq “ bp2q

n pEGq.

That these are well defined group invariants follows from the next theorem.

Theorem 2.16 (Properties). Let G,H be groups.
(1) If f : X Ñ Y is a G-homotopy equivalence, then

bp2q
p pXq “ bp2q

p pY q for p ě 0.

(2) Let X be a G-CW complex and Y be an H-CW complex. Then,
X ˆ Y is a GˆH-CW complex and

bp2q
n pX ˆ Y q “

ÿ

p`q“n

bp2q
p pXq ¨ bp2q

q pY q.

(3) Let K be a finite index subgroup of G. If X is a G-CW complex (and
hence a K-CW complex by restriction), then

bp2q
p pX;Kq “ |G : K| ¨ bp2q

p pX;Gq.

In particular,

bp2q
p pKq “ |G : K| ¨ bp2q

p pGq.

(4) Suppose H ď G and let X be an H-CW complex. Then,

bp2q
p pGˆH X;Gq “ bp2q

p pX;Hq.

(5) bp2q

0 pX;Gq “ |G|´1, where |G|´1 “ 0 if G is infinite.
(6) bp2q

n pXq ď cn, where cn is the number of equivariant n-cells in X.
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(7) If X is a finite free G-CW-complex, then

χpX{Gq “
ÿ

iě0

p´1qib
p2q

i pXq.

(8) If M is an n-manifold, then

b
p2q

i pĂMq “ b
p2q

n´ip
ĂMq.

(9) Let X be a finite CW-complex. Then, bp2q

1 p rXq “ b
p2q

1 pπ1Xq.
(10) Let X1, . . . Xr be pointed CW complexes and let X “

Žr
i“1Xi. Then,

b
p2q

1 p rXq ´ b
p2q

0 p rXq “ r ´ 1 `

r
ÿ

j“1

´

b
p2q

1 p rXjq ´ b
p2q

0 p rXjq

¯

bp2q
p p rXq “

r
ÿ

j“1

bp2q
p p rXjq for 2 ď p.

Exercise 2.17. Compute the ℓ2-Betti numbers of surface groups, free groups,
and direct products of free groups.

Exercise 2.18. Let X be a closed (triangulated) 4-manifold with Euler
characteristic c. Compute bp2q

p p rXq, for all p, in terms of c and bp2q

1 pπ1Xq.

2.F. Measure equivalence invariance. Two groups are measure equiva-
lent if they admit free, measure-preserving actions on a common standard
probability space that share the same orbits (almost everywhere).

The key example of measure equivalent groups are lattices in the same
locally compact groups.

Theorem 2.19 (Gaboriau). Let G and H be countable measure equivalent
groups with measure coupling C. Then, bp2q

p pGq “ C ¨ b
p2q
p pHq.

Exercise 2.20. Let Γ be a lattice in AutpT1q ˆAutpT2q where each Ti is an
ni-regular tree with ni ě 3. Show b

p2q
p pΓq “ 0 for p ‰ 2.

Theorem 2.21 (Lück). Let G be an infinite amenable group. Then, bp2q
p pGq “

0 for all p ě 0.

Proof. Every infinite amenable group is measure equivalent to Z. The result
follows from Gaboriau’s Theorem. □

Remark 2.22. Lück’s original proof instead shows: if G is amenable, then
NG is dimension-flat over CG, i.e. dimGTorCGp pNG;Mq “ 0 for p ě 1 and
every CG-module M .
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3. Mayer–Vietoris sequences

Recall the classical Mayer–Vietoris sequence for singular homology. Namely,
given a space X which can be written as a union X1 YX2 with intersection
Z “ X1 XX2, there is a long exact sequence in singular homomology

¨ ¨ ¨ Ñ Hn`1pX;Rq
δn
ÝÑ HnpZ;Rq

pin,jnq
ÝÝÝÝÑ HnpX1;Rq‘HnpX2;Rq

kn´ℓn
ÝÝÝÝÑ HnpX;Rq Ñ ¨ ¨ ¨

where i, j, k, ℓ are the natural inclusions.
In group homology there is a very natural situation where this occurs.

Namely, given a group G written as an amalgamated free product A1 ˚C A2,
we obtain a long exact sequence in group homology

¨ ¨ ¨ Ñ Hn`1pG;Mq
δn
ÝÑ HnpC;Mq

pin,jnq
ÝÝÝÝÑ HnpA1;Mq‘HnpA2;Mq

kn´ℓn
ÝÝÝÝÑ HnpG;Rq Ñ ¨ ¨ ¨

for any G-module M . Note that the coefficients for A1, A2, C are the restric-
tions of M to each group.

The main challenge in computations (especially with non-trivial coeffi-
cients) is understanding the maps involved.

Remark 3.1. The following observation is often helpful when computing
L2-homology. Suppose A ď G. Then,

dimAHnpA;NAq “ dimGH
G
n pGˆA EA;NGq

and
HG

n pGˆA EA;NGq – HnpA;NGq.

In particular, we have

dimAHnpA;NAq “ dimGHnpA;NGq.

Example 3.2 (Fernós–Valette, Chatterji–H.–Kropholler). Let G be the fun-
damental group of a finite graph of groups such that each edge group satisfies
b

p2q

1 pGeq “ 0. Then,

b
p2q

1 pGq “
1

|G|
`

ÿ

vPV

ˆ

b
p2q

1 pGvq ´
1

|Fv|

˙

`
ÿ

ePE

1

|Fe|
.

Consider the relevant portion of the Mayer–Vietoris sequence

¨ ¨ ¨ Ñ H2pG;NGq Ñ
à

ePE

H1pGe;NGq Ñ
à

vPV

H1pGv;NGq Ñ H1pG;NGq Ñ . . .

and using the remark and the hypothesis this becomes the exact sequence

0 Ñ
à

vPV

H1pGv;NGq Ñ H1pG;NGq Ñ
à

ePE

H0pGe;NGq Ñ
à

vPV

H0pGv;NGq Ñ H0pG : NGq Ñ 0.

Computing von Neumann dimensions with respect to G and rearranging
gives the equation

b
p2q

1 pGq “
1

|G|
`

ÿ

vPV

ˆ

b
p2q

1 pGvq ´
1

|Fv|

˙

`
ÿ

ePE

1

|Fe|

as required. ■
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4. The Mapping Torus Theorem

Let f : X Ñ X be a selfmap. It mapping torus Tf is the space

X ˆ r0, 1s{ „ where px, 0q „ pfpxq, 1q.

There is a canonical map p : Tf Ñ S1 by px, tq ÞÑ e2iπt. If X is path con-
nected, then p induces a canonical epimorphism π1Tf ↠ Z.

Theorem 4.1 (Lück). Let f : X Ñ X be a cellular self map of a finite
connected CW complex. Let Tf denote the mapping torus with G “ π1Tf .
Then, bp2q

p p rTf q “ 0 for all p ě 0.

Proof. Write G “ π1X¸Z with the Z factor corresponding to ‘going-around-
the-mapping-torus’. Let Gn denote the preimage of nZ under the projection
ψ : G↠ Z. Note |G : Gn| “ n.

We have

(1) bp2q
p p rTf ;Gq “

1

n
bp2q
p p rTf ;Gnq.

There is a homotopy equivalence

h : Tfn Ñ rTf{Gn

where fn “ f ˝ ¨ ¨ ¨ ˝ f . The map h induces a Gn homotopy equivalence
rTfn Ñ Tf .

Thus,

(2) bp2q
p pĂTf ;Gnq “ bp2q

p p rTfn ;Gnq.

Let cp denote the number of p-cells in X. We may endow Tfn with a CW
structure consisting of cp ` cp´1 many p-cells [exercise]. Hence,

(3) bp2q
p p rTfnq ď cp ` cp´1.

Now, combining (1), (2), and (3) we obtain

bp2q
p p rTf q ď

1

n
pcp ` cp´1q .

Since cp ` cp´1 is independent of n, the claim follows from taking the limit
as n Ñ 8. □

4.A. Fibring theorems.

Theorem 4.2 (H.–Kielak). Let G be a group of type FPnpQq. If bp2q
n pGq ‰ 0,

then ΣnpG;Qq “ H.

Theorem 4.3 (Kielak, Fisher). Suppose G is a RFRS group of type FPnpQq.
Then, G is virtually FPnpQq-fibred if and only if bp2q

i pGq “ 0 for i ď n.

Theorem 4.4 (Kielak–Linton, Fisher). Suppose G is a finitely generated
RFRS group with cdQpGq “ 2. If bp2q

2 pGq “ 0, then G is virtually free-by-
cyclic.
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4.B. Normal subgroups.

Theorem 4.5 (Gaboriau, Sánchez-Peralta). Let G be a countable group and
let N ŸG have infinite index. If bp2q

p pNq “ 0 for p ď n´1 and bp2q
n pNq ă 8,

then b
p2q
n pGq “ 0.

Corollary 4.6 (Gaboriau). Let G be a finitely generated group. If bp2q

1 pGq ‰

0, then every infinite index normal subgroup is infinitely generated.

5. Lück’s approximation theorem

Let G be a residually finite group. We say a chain G “ G0 ě G1 ě ¨ ¨ ¨

of finite index subgroups of G is a residual chain if each Gi P G and if
Ş

iě0Gi “ 1.

Theorem 5.1 (Lück). Let X be a G-space with finite pn ` 1q-skeleton and
let pGiq be a residual chain. Then,

bp2q
n pXq “ lim

iÑ8

bnpX{Giq

|G : Gi|
.

Note that even the statement that the right hand side is a limit and not
a limit supremum is non-trivial.

State Lück–Osin.

Open Question 5.2. Let X be a G-space with finite pn ` 1q-skeleton and
let pGiq be a residual chain. Is the quantity

lim sup
nÑ8

bnpX{Gi;Fpq

|G : Gi|

a genuine limit? Is it independent of the residual chain? What does it
converge to?

5.A. Deficiency and rank gradient. Define the deficiency of G to be
maximum gpP q ´ rpP q where P runs over all finite presentations of G. Here
gpP q is the number of generators and rpP q is the number of relations in P .

Exercise 5.3. Let G “ xS | Ry be a finitely presented group. Then,
defpGq ď 1 ´ b

p2q

0 pGq ` b
p2q

1 pGq ´ b
p2q

2 pGq.

For a residually finite group G and residual chain of finite index normal
subgroups pGnq, the rank gradient of G with respect to pGnq is

RGpG; pGnqq “ lim
nÑ8

dpGnq ´ 1

|G : Gn|

Exercise 5.4. Let G be a finitely presented residually finite group. Then,

b
p2q

1 pGq ď RGpG; pGnqq.

Open Question 5.5. Let G be a finitely presented residually finite group.
Is bp2q

1 pGq “ RGpG; pGnqq?
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5.B. Profinite invariance.

Theorem 5.6. Let G and H be finitely generated residually finite groups
such that pG “ pH.

(1) [Bridson–Conder–Reid] Then, bp2q

1 pGq “ b
p2q

1 pHq.
(2) [Kammeyer–Kionke–Raimbault–Sauer] bp2q

n pGq is not a profinite in-
variant for n ě 2.

6. Affiliated operators

6.A. Ore localisation. In this section we will describe an analogue of lo-
calisation for non-commutative rings.

Definition 6.1. Let R be a ring. An element x P R is a zero-divisor if
x ‰ 0, and xy “ 0 or yx “ 0 for some non-zero y P R. A non-zero element
that is not a zero-divisor will be called regular.

Definition 6.2 (Right Ore condition). Let R be a ring and S Ď R a mul-
tiplicatively closed subset consisting of regular elements. The pair pR,Sq

satisfies the right Ore condition if for every r P R and s P S there are
elements r1 P R and s1 P S satisfying rs1 “ sr1.

Definition 6.3 (Right Ore localisation). If pR,Sq satisfies the right Ore
condition we may define the right Ore localisation, denoted RS´1, to be
the following ring. Elements are represented by pairs pr, sq P R ˆ S up to
the following equivalence relation: pr, sq „ pr1, s1q if and only if there exists
u, u1 P R such that the equations ru “ r1u1 and su “ s1u1 hold, and su “ s1u1

belongs to S. The addition is given by

pr, sq ` pr1, s1q “ prc` r1d, tq, where t “ sc “ s1d P S,

and the multiplication is given by

pr, sqpr1, s1q “ prc, s1tq, where sc “ r1t with t P S.

6.B. The algebra of affiliated operators. Let G be a group. An operator
A on a Hilbert space H is closed if the graph of A is closed; is densely defined
if its domain dompfq is dense in H; is a G-operator if dompfq is a linear G-
invariant subspace and f satisfies fpxq ¨ g “ fpx ¨ gq for all g P G.

Definition 6.4 (Affiliated operators). We say that an operator

f : dompfq Ñ ℓ2G

with dompfq Ď ℓ2G is affiliated (to NG) if f is densely defined closed G-
operator (recall that G acts on ℓ2G on the right). The set of all operators
affiliated to NG forms the algebra of affiliated operators UG of G.

Since an adjoint of a densely defined closed operator is densely defined
and closed, every x P UG has a well-defined adjoint x˚ P UG.

Note that we have inclusions of QG-modules

QG↣ CG↣ NG↣ UG.
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Theorem 6.5 (Roos). The set S of regular elements of NG forms a right
Ore set. Moreover, UG is canonically isomorphic to pNGqS´1.

Definition 6.6. For a finitely generated projective UG-module Q define

dimUGQ :“ dimG P

where P is any finitely generated NG-module P such that UGbNGP –UG Q.
For a general UG-module Q we take the supremum of dimUG-dimensions of
the finitely generated projective submodules.

Since UG is flat over NG we obtain that

bp2q
p pX;Gq “ dimUGH

G
p pG;UGq.

Wolfgang Lück describes the passage of NG to UG as being like the pas-
sage from Z to Q. One loses all of the torsion submodule information, but
often computations are simpler.

6.C. The Linnell ring.

Definition 6.7 (Division and rational closure). Let R be a ring and S a
subring. We say that S is division closed if every element of S invertible
over R is invertible over S. We say that S is rationally closed if every finite
square matrix over S invertible over R is invertible over S.

Define the division closure of S in R, denoted by DpS Ă Rq, to be the
smallest division-closed subring ofR containing S. Define the rational closure
of S in R, denoted by RpS Ă Rq, to be the smallest rationally closed subring
of R containing S.

Definition 6.8. For a group G, the Linnell ring DQG is defined ot be the
ring DpQG Ă UGq.

6.D. The Atiyah Conjecture.

Conjecture 6.9 (The Atiyah Conjecture). For every countable torsionfree
group G and every A P MnpQGq, the kernel K of the operator A : pℓ2Gqn Ñ

pℓ2Gqn satisfies dimGK P Z.

Theorem 6.10 (Linnell). For a torsionfree group G the following are equiv-
alent:

(1) the Atiyah Conjecture is true for G;
(2) DQG is a skew field.

Theorem 6.11 (Jaikin Zapirain–López-Álvarez). Locally indicable groups
satisfy the Atiyah Conjecture.
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6.E. One relator groups.

Theorem 6.12 (Dicks–Linnell). Let G be a non-trivial torsion-free one-
relator group. Then, bp2q

p pGq “ 0 for all p ‰ 1 and bp2q

1 pGq “ ´χpGq.

Proof. For a one-relator group G “ xx1, . . . , xs | ry we have a free resolution
of Z over ZG coming from an aspherical presentation 2-complex, namely

(4) 0 Ñ ZG.r J
ÝÑ ZG.tx1, . . . , xsu

B0
ÝÑ ZG Ñ Z Ñ 0,

where J is Jacobian of fox derivatives. Unaugmenting the resolution and
tensoring with UG we obtain

(5) 0 Ñ UG.r J
ÝÑ UG.tx1, . . . , xsu

B0
ÝÑ UG Ñ 0.

Claim 6.13. Let G be a left orderable group. Let y P UG and a P CG both
be non-zero. Then, y ¨ a ‰ 0.

Lets see how the claim proves the theorem.
In (4) the map J is injective. So either r “ 0 or there exists some xi such

that Br{Bx ‰ 0. The claim then implies that J is injective in (5). Hence,
HppG;UGq “ 0 for all p ě 2. Taking UG-dimensions we obtain that

dimUG ker B0 “ s´ 1

dimUG im J “ 1.

In particular, bp2q

1 pGq “ s´ 2 “ ´χpGq. □

Proof of Claim 6.13. We first establish the fact that a is invertible in UG.
Observe that since locally indicable groups satisfy the Atiyah Conjecture we
have

0 ‰ dimUG a ¨ UG ě 1 “ 1.

Whence, a is invertible. To prove the claim we now suppose that ya “ 0
and that a ‰ 0. Then, y˚yaa˚ “ 0 with y˚y P UG and 0 ‰ aa˚ P CG. But,
aa˚ is invertible in UG since both a and a˚ are. Hence, y˚y “ 0 and so
y “ 0. ■

7. Right-angled Artin groups

Let C‚,‚ be a double complex with horizontal differential dh and vertical
differential dv. The total complex in degree n is given by TCn “

À

i`j“nCi,j .
The total differential dt : TCn Ñ TCn´1 is given by dt “ dh ` p´1qidv. We
have two filtrations, the horizontal filtration

F h
p TCn “

à

i`j“n,iďp

Ci,j

and the vertical filtration

F v
q TCn “

à

i`j“n,jďq

Ci,j .
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Each filtration gives rise to a spectral sequence E˚
˚,˚ converging to the ho-

mology of the total complex. The spectral sequence consists of a series of
“pages" En and in favourable circumstances we get a stabilisation

En “ En`1 “ ¨ ¨ ¨ “ E8.

In theory each page can be computed from the previous one, but in practice
this can be rather tricky.

Theorem 7.1 (Davis–Leary). Let L be a connected flag complex and let AL

be a right-angled Artin group. Then, bp2q
n pALq “ rbn´1pLq.

Proof. Let L denote the maximal simplicies in L. For σ P L let Xσ denote
the subcomplex of the Salvetti complex X spanned by the vertices σ. Note
that Xσ is a k-torus for some k. Let Yσ be the union of the lifts of Xσ to
the universal cover rX. For H ‰ S Ď L define

YS “
č

σPS

Yσ.

Note that each YS is a free AL-CW complex (in fact it is an AL-orbit of
m-flats).

If S ‰ H, then we have that HAL
˚ pYS ;NALq – H˚pZm;NZmq which,

after applying Lück’s equivalence of categories, vanishes.
If S “ H, then YS “ rX.
We define a double complex so we can run a spectral sequence argument.

The double complex comes from filtering rX by the Yσ. Let

‚ C‚,0 “ C‚p rXq;
‚ C‚, j “

À

SĎL, |S|“j C‚pYSq for j ą 0;
‚ the boundary map of degree p´1, 0q are the boundary maps in C‚pYSq;
‚ the boundary map of degree p0,´1q are given by matrices whose

pS, T q entry is given by ϵpS, T q times the map induced by the inclu-
sion of YS Ñ YT , where ϵpS, T q “ p´1qi if T is obtained from S by
omitting the ith element of S (for some fixed ordering of Lq.

Note that this double complex has trivial homology because the boundary
map of degree p0,´1q is exact. Since Ci,j is free, the chain complex C‚,i is
split exact.

Define a double complex E0
i,j :“ Ci,j bAL

NAL and let E˚
i,j denote the

spectral sequence of the double complex with differential d0 induced by the
boundary map of degree p´1, 0q.
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3 C0,3 bA NA C1,3 bA NA C2,3 bA NA C3,3 bA NA

2 C0,2 bA NA C1,2 bA NA C2,2 bA NA C3,2 bA NA

1 C0,1 bA NA C1,1 bA NA C2,1 bA NA C3,1 bA NA

0 C0p rXq bA NA C1p rXq bA NA C2p rXq bA NA C3p rXq bA NA

j{i 0 1 2 3

The boundary map of degree p0,´1q is exact and so the homology of the
total complex TEn vanishes. It follows that E8

i,j “ 0 for all i, j.
We have that the jth row is
à

SĎL, |S|“j

C0pYSqbANA Ð
à

SĎL, |S|“j

C1pYSqbANA Ð
à

SĎL, |S|“j

C2pYSqbANA Ð ¨ ¨ ¨

We now describe the E1-page,
‚ E1

i,0 “ HipA;NAq if i ą 0;
‚ E1

i,j “ 0 if both i, j ą 0;
‚ E1

0,j “
À

kj
NA;

‚ kj is the number of j-element subsets of L such that the intersection
of the corresponding simplices of L is empty.

3
À

k3
NA 0

2
À

k2
NA 0

1
À

k1
NA 0 0 0

0
À

k0
NA H1pA;NAq H2pA;NAq H3pA;NAq

j{i 0 1 2 3

d2

d3

Claim 7.2. E2
0,j “ rHjpL;NAq for j ą 0.

Proof of claim. The chain complex E1
0,‚ embeds as a subcomplex in an exact

complex C‚, where
Cj “

à

SĎL, |S|“j

LA.

Let Q‚ “ C‚{E1
0,‚. The short exact sequence of chain complexes

0 Ñ E1
0,‚ Ñ C‚ Ñ Q‚ Ñ 0
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gives a homology long exact sequence

¨ ¨ ¨ Ñ HnpE1
0,‚q Ñ HnpC‚q Ñ HnpQ‚q Ñ Hn´1pE1

0,‚q Ñ ¨ ¨ ¨

and so HnpE1
0,‚q – Hn´1pQ‚q.

Now, Q‚ is isomorphic to the augmented chain complex for the nerve of the
covering of L by the elements of L shifted in degree by one (with coefficients
in NAq. That is, Hn´1pQ‚q “ rHnpL;NAq. ■

Thus, we have

3 H3pL;NAq 0

2 H2pL;NAq 0

1 H1pL;NAq 0 0 0

0 H0pA;NAq H1pA;NAq H2pA;NAq H3pA;NAq

j{i 0 1 2 3

d2

d3

and the di must be isomorphisms. □

Theorem 7.3 (Fisher–H.–Leary). Let R be a skew field, let AL be a right-
angled Artin group, and let RAL Ñ D be an embedding where D is skew-field.
Then, bDn pALq “ rbn´1pL;Rq.

Theorem 7.4 (Avramidi–Okun–Schreve). Let AL be a RAAG and let pGiq

be a residual chain. Then,

lim
iÑ8

bnpGi;Fpq

|G : Gi|
“ rbn´1pL;Fpq.

Theorem 7.5 (Fisher–H.–Leary). Let F be a skew field, let φ : AL Ñ Z be
an epimorphism and let BBφ

L denote kerφ. If BBφ
L is of type FPn`1pFq then

b
DFBB

φ
L

m pBBφ
Lq “ bp2q

m pBBφ
L;Fq “

ÿ

vPLp0q

|φpvq| ¨ rbm´1pLkpvq;Fq.

for all m ď n.

8. Some other applications

8.A. Acylindrical hyperbolicity.

Theorem 8.1 (Osin). Let G be a finitely presented indicable group. If
b

p2q

1 pGq ‰ 0, then G is acylindrically hyperbolic.
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8.B. Simple algebras.

Theorem 8.2 (Breuillard–Kalantar–Kennedy–Ozawa). If a group G has no
non-trivial finite normal subgroup and some bp2q

k pGq ‰ 0, then C˚
r pGq is a

simple algebra.

8.C. Coherence.

Theorem 8.3 (Jaikin-Zapirain–Linton). Let G be a locally indicable group
of type FP2 with cdpGq “ 2. If bp2q

2 pGq “ 0, then G is coherent.
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