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Introduction

Todo 1: Write introduction

Motivating Question (Profinite rigidity). Given a finitely generated
group G and a class of groups C. To what extent do the isomorphism classes
of finite quotients of G determine G amongst groups in C?
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CHAPTER I

Residual finiteness and the profinite topology

I.A. Residual finiteness

I.A.1. Definitions, examples, and basic properties. We will make
repeated use of the following lemma of Marshall Hall Jr. [Hal50]

Lemma I.A.1.1. A finitely generated group G has only finitely many sub-
groups of a given finite index n.

Proof. Let H be a subgroup of G of index n and consider the action
of G on the set of cosets G{H. Note that |G{H| “ n. The action defines a
homomorphism ψ : G Ñ SympG{Hq. Now, g P H if and only if gH “ H. So
H “ StabGpHq and this is completely determined by the homomorphism ψ.
Let X be a finite generating set for G. The homomorphism ψ is determined
by its images ψpxq for x P X. But Sympnq is finite so there can only be
finitely many possibilities for ψ and hence only finitely many possibilities for
H. □

We now turn to the star of the section: residual properties.

Definition I.A.1.2 (Residually P). Let P be a property of a group (e.g.
finite, nilpotent, soluble, amenable). A group G is residually P if for every
non-identity element g P G, there exists a homomorphism α : G ↠ Q such
that Q has P and αpgq ‰ 1Q.

Note that this is equivalent to the following: for every element g P G
there exists a normal subgroup N ŸG such that G{N has P and g R N .

We will now hone in on residual finiteness.

Examples I.A.1.3. We record a number of groups that are easily seen to
be residually finite.

(1) Finite groups are clearly residually finite.
(2) The group Z is residually finite.

Proof. for each n P Z such that n ‰ 0, there exists a quotient αkZ ↠
Z{k with k relatively prime to n. In particular, n pmod kq ı 0 so
αkpnq ‰ 0. ˛

(3) Direct products of residually finite groups are residually finite.
Proof. To see this note that every element has non-trivial image
when projected to one of the factors. Now, compose with a finite
quotient there. ˛

(4) Free groups are residually finite.
Proof. Let X be the generators of a free group F . Consider a word
xn . . . x1 in reduced form where xi or x´1

i is in X. We will build
a homomorphism F ↠ Sympn ` 1q, the group of permutations of
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Ω :“ t1, . . . , n` 1u. Define a function X Ñ Ω by fpyq “ 1 if y does
not equal any xi or x´1

i . For the remaining elements we define f as
follows:

Let A be the set of consisting of the i such that xi “ y and B
be the set of consisting of the j such that x´1

j “ y. Set fpyq as any
permutation σ that sends each i P A to i ` 1, and for each j P B,
sends j`1 to j. This is well-defined since an element and its inverse
cannot occur adjacently in the reduced form for a word.

The function f extends to a homomorphism ϕ : F Ñ Sympn`1q

by the universal property of F . Moreover, x has non-trivial image
since ϕpxqp1q “ n` 1. As x was arbitrary we are done. ˛

(5) An infinite simple group is not residually finite.

Lemma I.A.1.4. A group G is residually finite if and only if the intersection
of all finite index normal subgroups of G is trivial.

Proof. Suppose G is residually finite and let g P G be non-trivial. By
the definition of residual finiteness there is a finite quotient αg : Q↠ G such
that αgpgq ‰ 1Q. Now, kerα is a finite index normal subgroup of G such
that g R kerα. Since g was arbitrary it follows the intersection of all finite
index normal subgroups of G equals t1u.

Conversely, suppose that the intersection of all finite index normal sub-
groups of G is trivial and let g P G be non-trivial. By hypothesis there
exists a finite index normal subgroup N P G such that g R N . Thus, g has
non-trivial image in the finite quotient G{N . Since g was arbitrary it follows
that G is residually finite. □

For a general group G we will denote the intersection of all finite index
normal subgroups by Gp8q. We call this subgroup the finite residual of G.
By the previous lemma G is residually finite if and only if Gp8q is the trivial
group.

Exercise I.A.1.5. Explain how Lemma I.A.1.4 is equivalent to ‘the inter-
section of all finite index subgroups of G is trivial’.

Exercise I.A.1.6. Let G be a residually finite group. If H ď G, then H is
residually finite.

Exercise I.A.1.7. Let I be a set and let Gi be a residually finite group for
each i P I. Then,

ś

Gi is residually finite.

The following style of argument will appear a number of times. The
key idea dates back to work of McKinsey on symbolic logic [McK43], but
we provide an adaptation for groups first noticed independently by Dyson
[H.64] and Mostowski [Mos66]. As well as G. Higman and A. Turing (un-
published).

Theorem I.A.1.8 (McKinsey’s Algorithm). A finitely presented residu-
ally finite group G has solvable word problem.

Proof. Note that finite groups are recursively enumerable. For each
positive integer n we can generate all Cayley multiplication tables of size
n ˆ n and check whether both a given table represents a group and if the
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group is already on the list. Note that the existence of the table gives a
solution to the word problem for any given fintie group.

Fix an enumeration of all finite groups tQiu and presentation xX | Ry

of G. The set hompG;Qiq is finite since a homorphism is determined by its
images on the generators and Qi is finite. We need to check whether we can
extend a map f : X Ñ Qi to a homomorphism ϕ : G Ñ Qi. This amounts to
checking the relations r P R are satisfied. Fortunately, as R is finite a brute
force approach will terminate. Hence, we may list all elements of hompG,Qiq

in a finite amount of time. Fix an enumeration of all homomorphism from
G to finite groups ϕ1, ϕ2, . . .

Let g be a word in X. To solve the word problem we now run two
machines:

The machine runs over all homomorphism ϕi and checks if ϕipgq ‰ 1
(here we are using the solvability of the word problem in the codomain, a
finite group). Since G is residually finite, if g ‰G 1, this process will stop.

The second machine runs over all representatives wj of 1 in G and checks
whether g ” wi. If g “G 1 this process will stop.

Since exactly one of the machines must stop we can algorithmically decide
if g is the trivial word. □

Remark I.A.1.9. There exists a finitely generated residually finite group
with unsolvable word problem. See [Mes74].

A characteristic subgroup K ď G is one that is invariant under all auto-
morphisms of G. Note that if G is finitely generated, then then the intersec-
tion of all subgroups of index n is both finite index and characteristic in G.

Proposition I.A.1.10 (Baumslag). [Bau63] If G is a finitely generated
residually finite group, then AutpGq is residually finite.

Proof. Let a P AutpGq be non-trivial. There exists a g P G such
that apgq ‰ g. Let h “ apgqg´1. Since h ‰ 1 P G, by Lemma I.A.1.4,
there exists a finite index normal subgroup N P G such that h R N . Let
K denote the intersection of all subgroups of index |G : N | in G. Since
K is characteristic, the sujection α : G ↠ G{K induces a homomorphism
ψ : AutpGq Ñ AutpG{Kq. Moreover, ψpaq is a non-trivial automorphism of
G{K because πphq ‰ 1 P G{K. Since a was arbitrary, we have verified that
AutpGq is residually finite. □

Corollary I.A.1.11. Let N and Q be a residually finite groups. If N is
finitely generated, then any semi-direct product G “ N ¸ Q is residually
finite.

Proof. It is easy to see that elements of the form nq with n P N ,
q P Q and q ‰ 1 are non-trivial in a finite quotient. Indeed, the projection
π : G↠ Q composed with a finite quotient α of Q where αpqq ‰ 1 suffices. It
remains to find finite quotients for the elements n P N with n ‰ 1. Since N
is residually finite there is a finite quotient β : N ↠ L such that βpnq ‰ 1L.
Since N is finitely generated and L is finite there are only finitely many
homomorphisms N Ñ L. The intersection of these homomorphisms is a
finite index characteristic subgroup C of N and so preserved by Q. The
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subgroup CQ is normal and has finite index in G. Moreover, n has non-
trivial image in the finite group G{CQ. □

There is also a set of dynamical criterion for residual finiteness due to
Cairns, Davis, Elton, Kolganova, and Perversi.

Definition I.A.1.12. Suppose that a group G acts continuously on a Haus-
dorff topological space X. Then we say that the action of G on X is chaotic
if both of the following conditions hold

(1) (topological transitivity) for every pair of non-empty open subsets
U and V of X, there is an element g P G such that gpUq X V ‰ H;

(2) (finite orbits dense) the set of points in X whose orbit under G is
finite is a dense subset of X.

Theorem I.A.1.13. [CDE`95, Theorem 1] For a group G, the following
are equivalent:

(1) G is residually finite;
(2) there is a faithful action of G with finite orbits dense on some Haus-

dorff topological space X;
(3) there is a faithful action of G with all orbits finite on some Hausdorff

topological space X;
(4) there is a faithful chaotic action of G on some Hausdorff topological

space X.

Proof. https://www.e-periodica.ch/cntmng?pid=ens-001:1995:41::68
Todo 2: add proof

□

I.A.2. Mal’cev’s Theorem. In [Mal65] Mal’cev proved the following
remarkable theorem:

Theorem I.A.2.1 (Mal’cev’s Theorem). A finitely generated linear group
is residually finite.

To prove Mal’cev’s Theorem we will need to recall some basic ring theory.
Let R be a ring. Here a ring is associative and contains a multiplicative

unit 1. A ring without a multiplicative identity is a rng.
A zero-divisor is a non-zero element z P R such that there exists a

non-zero element z1 satisfying zz1 “ 0. A ring R is a domain if it has no
zero-divisors.

We say a ring R is left Noetherian if R has the ascending chain condition
on left ideals, that is, for every chain of left ideals I1 Ă I2 Ă . . . has a largest
element. Said differently, this means there exists an n such that IN “ IN`1

for N ą n.
Let S be a commutative ring and let R be an S-algebra. We say R is

finitely generated if there exists a finite set of elements x1, . . . , xn P R such
that every element of R can be expressed as a polynomial in the xi with
coefficients in S.

The key examples of a finitely generated Z- or Fp-algebra for us is as
follows.
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Example I.A.2.2. Let k be a field, let G ď GLnpkq be a finitely generated
subgroup, and let X be a finite set of matrices (closed under inversion)
generating G. The subring R of k generated as a k-algebra by the entries of
the matrices in X and the multiplicative identity of k is a finitely generated
algebra over Z if char k “ 0 and over Fp if char k “ p a prime. Moreover,
G ď GLnpRq.

Lemma I.A.2.3. Let S be a commutative Noetherian ring and let R be a
finitely generated S-algebra. The following assertions hold:

(1) R is Noetherian;
(2) if R is a field, then it is finite;
(3) the intersection of the maximal ideals of R is 0.

Proof of Theorem I.A.2.1. LetG be a finitely generated linear group
over some field k. Thus, G ď GLnpkq for some n ě 0. As in Example I.A.2.2
we find that G ď GLnpRq where R is a finitely generated Z-algebra.

For an ideal I Ď R, let ΓpIq to be the Ith principle congruence subgroup
of GLnpRq defined by

ΓpIq :“ kerpGLnpRq Ñ GLnpR{Iqq,

where the homomorphism is defined by taking entries of GLnpRq modulo I.
Now, since R is Noetherian (Lemma I.A.2.3(i)), if I is a maximal ideal

then R{I is a field and by Lemma I.A.2.3(ii) it is finite. Hence, GLnpR{Iq

is finite and so ΓpIq is a finite index normal subgroup of GLnpR{Iq. Now,
the intersection

č

IĂR

ΓpIq where I ranges over all maximal ideals

is finite by Lemma I.A.2.3(iii). The theorem follows from Lemma I.A.1.4. □

The following example of Druţu and Sapir gives an example of a non-
linear residually finite one-relator group.

Example I.A.2.4. [DS05] (Druţu–Sapir) The group xa, t | t2at´2 “ a2y is
non-linear but is residually finite. Their proof depends in an essential way
on [Weh73].

I.A.3. An aside: Hopficity.

Definition I.A.3.1. A group G is Hopfian if every surjection G ↠ G is
injective.

Another result of Mal’cev shows that for finitely generated groups the
Hopf property follows from residual finiteness.

Proposition I.A.3.2. Let G be a finitely generated group. If G is residually
finite, then G is Hopfian.

Proof. Suppose G – G{N for some normal subgroup N , our aim is
to show that N is trivial. As G is finitely generated, that the number of
subgroups of index m in G is finite. Moreover, the number of subgroups of
index n in G{N is equal to the number of subgroups of index n in G. The
bijection is Hi{N Ø Hi. But then it is clear that N ď Hi for every finite
index subgroup of G. Thus, N ď Gp8q “ t1u where the equality follows
from the fact G is residually finite and Lemma I.A.1.4. □
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Example I.A.3.3 (Baumslag–Solitar groups). We define a family of one-
relator groups, known as Baumslag–Solitar groups, by

BSpm,nq :“ xa, t | tamt´1 “ any.

We claim if p|m|, |n|q “ 1, then BSpm,nq is non-Hopfian. Let p be a prime
dividing m but not n. Define an homomorphism

ν : BSpm,nq Ñ BSpm,nq by

#

a ÞÑ ap,

t ÞÑ t.

We first prove that ν is an epimorphism. We have νptq “ t and

νprt, am{psq “ tamt´1a´m “ ana´m “ an´m,

now since νpaq “ ap and pp, n ´ mq “ 1, by Bézout’s Identity there exist
integers x, y such axpaypn´mq “ a. It remains to check that ker ν is non-
empty. Note that the element rt, am{pspam{p is non-trivial in BSpm,nq, but

νprt, am{pspam´nq “ ptamt´1amqpapm´nqp “ pana´mqpapm´nqp “ 1.

Hence, ν is not injective. ˛

In fact a complete study of the residual finiteness and Hopficity of Baumslag–
Solitar groups has been completed. The Hopfian property was verfied by
Baumslag and Solitar in [BS62], however, their claim of which BSpm,nq are
residually finite was incorrect. A correct and complete argument was later
given by Meskin [Mes72].

Theorem I.A.3.4 (Baumslag–Solitar, Meskin). The groups BSpm,nq are

(1) Hopfian if and only if m and n have the same prime factors;
(2) residually finite if and only if |m| “ |n| or at least or of |m| or |n|

equals 1.

Proof. To be added, for now see [Mes72, Section 2].
Todo 3: Add proof

□

Definition I.A.3.5. A group G is co-Hopfian if every injection G ↣ G is
surjective. We say G is finitely co-Hopfian is every injection G ↣ G whose
image has finite index is surjective.

Exercise I.A.3.6. Let G be a finitely generated group. Suppose XpGq is
a group invariant taking values in R which for every finite index subgroup
H ď G satisfies XpHq “ |G : H|XpGq. If XpGq ‰ 0, then G is finitely
co-Hopfian.

Examples of invariants (when they are defined) satisfying the hypothesis
of the exercise include: Euler characteristic χpGq, ℓ2-Betti numbers bp2q

i pGq,
and ℓ2-torsion ρp2qpGq.
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I.B. Subgroup separability

I.B.1. The definition. We will now extend the notion of residual finite-
ness to subgroups.

Definition I.B.1.1 (Separable subgroup). Let G be a group and let H ď G.
We say H is separable in G if for each g P GzH there exists a finite index
subgroup Kg ď G with H ď Kg and g R Kg.

It is easy to see a subgroup H is separable in G if and only if H is an
intersection of finite index subgroups of G. In particular, G is residually
finite if and only if the trivial subgroup is separable in G.

Lemma I.B.1.2. Let G be a finitely generated group and let H ď G. Then,
H is separable in G if and only if for every g P GzH there exists a finite
quotient α : G↠ Q with αpgq R αpHq.

Proof. Let g P GzH. We have a homomorphism α : G ↠ Q with Q
finite and αpgq R αpHq. Define K :“ α´1pαpHqq and note that K contains
H, but g R K. Thus, it suffices to show that K is finite index in G, but this
is clear since it contains kerα with has index |Q| in G.

Conversely, suppose H is separable in G and let g P GzH. By hypothesis
there exists a finite index subgroup Kg ď G containing H but not g. Let
N denote the core of Kg, that is the intersection of all of the conjugates
of a Kg in G. Since G is finitely generated, N is a finite index normal
subgroup of G. Let α denote the quotient G ↠ G{N . The claim that
αpgq R αpHq will follows from αpHq ď αpKgq once we show αpgq R αpKgq.
The latter statement follows from the finite index of N , the fourth (or lattice)
isomorphism theorem, and the fact that gKg and Kg are distinct cosets of
Kg. □

Exercise I.B.1.3. Let H be a separable subgroup in a finitely generated
group K. If K is a finite index subgroup of a group G, then H is separable
in G.

Let H ď G. We say H has solvable membership problem in G if there
exists an algorithm which takes as input an element g P G and decides if
g P H.

Theorem I.B.1.4. Let H be a finitely generated subgroup of a finitely
presented group G. If H is separable in G, then H has solvable membership
problem in G.

Proof. Let g P G and fix a generating set S “ th1, . . . , hku of H. The
algorithm consists of two processes run in parallel of which one will stop. The
first process enumerates finite quotients of G and checks to see if the image
of H contains the image of g. If the image of g is not contained in the image
of H, then the algorithm stops since g R H. The second process works in a
finitely generated free group F such that F ↠ G is a finite presentation with
relations R. We enumerate the words wℓ in the free monoid on S YS´1 and
the products pk in F of conjugates of relators r P R. We check to see if each
g´1wℓ is freely equal to pk, it is then the algorithm stops since g P H. □

The following result, due to Mihăılova [Mih58, Mih66], shows that
F2 ˆ F2 does not in fact have solvable subgroup membership problem.
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Theorem I.B.1.5 (Mihăılova). The group F2 ˆ F2 has unsolvable sub-
group membership problem.

Proof. Note that F 2
2 contains F 2

n for every n ě 1 so we may work in
F 2
n for some n. Let Q be a finitely presented group with unsolvable word

problem and let S generate Q. Let |S| “ n and let π : F 2
n ↠ Q2 be the

natural projection. Let D “ tpg, gqu ă Q2 be the diagonal subgroup and
define ∆ “ π´1pDq ă F 2

n . Now, px, yq P ∆ if and only if x and y project to
the same element in Q. But Q has unsolvable word problem so we cannot
decide if px, yq P ∆.

It remains to check that ∆ is finitely generated. Let R be a finite set of
relations for Q. We claim that

S :“ tpg, gq : g P Su Y tpr, 1q : r P Ru Y tp1, rq : r P Ru

is a generating set. The issue is that R only normally generates the kernel
of the map Fn ↠ Q, however, if w P Fn and r P R we have

pwrw´1, 1q “ pw,wqpr, 1qpw´1, w´1q

of which each term is in S. □

Corollary I.B.1.6. F2 ˆ F2 has inseparable subgroups.

I.B.2. LERF groups. We say a group G is extended residually finite
(ERF) if every subgroup of G is separable. We say G is locally extended
residually finite (LERF) if every finitely generated subgroup of G is separa-
ble.

Two groups G and H are commensurable if there exists finite index sub-
groups K ď G and L ď H such that K – L.

Exercise I.B.2.1. Let G be a finitely generated LERF group. If H is a
group commensurable with G, then H is LERF.

Examples I.B.2.2. We record a few examples:
(1) finite groups are trivially LERF;
(2) Z is also trivially seen to be LERF;
(3) Zn is LERF.

Proof. Let L ď Zn and let g P ZnzL. We may assume L has infinite
index since all finite index subgroups are separable by definition.
Since L Ÿ Zn we may consider the quotient πL : Zn ↠ A “ Zn{L.
Note that πLpgq ‰ 0. Now, A is a finitely generated abelian group
and hence residually finite. Thus, there exists a finite (abelian)
quotient α : A↠ Q where αpπLpgqq ‰ 0 P Q. Moreover, kerpα˝πLq

contains L. Hence, we have separated L from g in Q. ˛

(4) It follows from Corollary I.B.1.6 that F2 ˆ F2 is not LERF.

A particularly famous result due to Marshall Hall Jr. is that free groups
are LERF [Hal49]. We divert the proof to the next section.

Theorem I.B.2.3 (Marshall Hall Jr.’s Theorem). Free groups are LERF

It follows from Theorem I.B.2.3 and Corollary I.B.1.6 that direct prod-
ucts of LERF groups are not necessarily LERF.
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I.B.3. The connection with covering theory. Separability of sub-
groups has a particularly powerful interpretation when viewed from a topo-
logical lens. The following somewhat miraculous result of Scott allows one
to promote immersions to embeddings, at the cost of taking a finite cover,
when in the presence of subgroup separability.

Let X and Y be CW complexes. Recall that an immersion is map
f : X í Y such that f is a locally injective combinatorial map. The map f
map is combinatorial if it maps the interior of each cell homeomorphically
onto its image.

Theorem I.B.3.1. [Sco78] Let G be a finitely generated group and let
X be a CW complex with π1X “ G. Let H ď G and let Y Ñ X be the
cover corresponding to H. Then, H is separable if and only if for every
finite subcomplex K Ď Y , there exists an intermediate finite sheeted cover
Y Ñ Z Ñ X such that K embeds as a subcomplex of Z.

Proof. Suppose the geometric condition holds for some subgroup H

with cover Y Ñ X and let g P GzH. Pick a basepoint x P rX in the
universal cover of X and let K “ πpx Y gxq Ď Y , where π : rX Ñ Y is the
universal covering map. By hypothesis we obtain a finite covering Z Ñ X
with corresponding finite index subgroup G1 such that K Ď Z. But, then
g R G1. Hence, H is separable.

Now, suppose H is a separable subgroup of G with corresponding cover
Y Ñ X and let K be a finite subcomplex of Y . Let π : rX Ñ Y be the
universal cover and let C “ π´1K. Pick a finite subcomplex D of C such
that πpDq “ K and note that S :“ tg P G : gD XD ‰ Hu is finite. Since H
is separable we can find a finite index subgroup G1 of G such that H ď G

and G1 X S Ď H. The cover rX{G1 Ñ X is then the required intermediate
finite cover. □

We will also need the following easy lemma.

Lemma I.B.3.2. Let ∆ and Γ be finite graphs and let f : ∆ í Γ be an
immersion. Then extends f to a finite-sheeted covering Γ̂ Ñ Γ such that ∆
embeds in Γ̂.

Proof. Fix an orientation and a colouring on the edges of Γ. This lifts
to an orientation and a colouring on ∆. A combinatorial map is an immersion
if and only if at each vertex, we see each colour arriving exactly once and
leaving exactly once. Let n denote the number of vertices of ∆ and for each
colour c of Γ let nc be the number of edges of ∆ coloured c. There are n´nc
vertices of ∆ missing incoming edges with colour c and the same number of
vertices missing outgoing edges with colour c. Pick any bijection between
these sets and glue in n´nc edges coloured c. Repeating this for each colour
we eventually obtain a covering space Γ̂ of Γ such that ∆ Ă Γ̂. □

We now give Stalling’s proof of the Marshall Hall Theorem.

Proof of Theorem I.B.2.3. Now, let Γ be a finite rose and H a
finitely generated subgroup of F “ π1Γ. Let ∆ Ñ Γ be the covering cor-
responding to H, and consider a finite subcomplex K Ă ∆. Since H is
finitely generated, we may enlarge K to ensure that K is connected and
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that π1K “ H. But ∆ Ñ Γ is an immersion, so can be completed to a
finite-sheeted covering Γ̂ Ñ Γ by Lemma I.B.3.2. The result now follows
from Theorem I.B.3.1. □

I.C. Pro topologies on groups

I.C.1. The definition.

Definition I.C.1.1 (Profinite topology). Let N be a non-empty collection of
finite index normal subgroups of a group G. We say N is filtered from below if
whenever N1, N2 P N , there exists N P N such that N ď N1 XN2. We make
G into a topological group by taking N as a basis of open neighbourhoods
of the identity the collection. We refer to the corresponding topology as a
pro topology on G.

Let H1, . . . ,Hn be groups. A subdirect product of H “
śn

i“1Hi is any
subgroup G of H such that the projections πi : G Ñ Hi are surjective.

Definition I.C.1.2 (Formation). A class of finite groups C is called a for-
mation if C is closed under taking quotients and subdirect products.

Examples I.C.1.3. The following are examples of formations:
(1) the class of all finite groups;
(2) the class of all finite abelian groups;
(3) the class of all finite nilpotent groups;
(4) the class of all finite soluble groups;
(5) the class of all finite p-groups for a fixed prime p.

Definition I.C.1.4 (Pro-C topology). Let C be a formation of finite groups.
The (full) pro-C topology on G is the topology τCpGq on G given by taking
as a basis of open neighbourhoods of the identity the collection

NCpGq :“ tN Ĳ G | G{N P Cu.

When C is the class of all finite groups, we denote the topology by τG and
refer to it as the profinite topology on G.

Lemma I.C.1.5. Let C be a formation of finite groups. A group G is resid-
ually C if and only if its pro-C topology is Hausdorff.

Proof. Suppose G is residually-C. Let g ‰ h be elements of G. Since,
gh´1 is non-trivial, there exists a finite index subgroup N ă G such that
gh´1 R N . Hence, gN X hN “ H. This proves the topology is Hausdorff.
Reversing the argument yields the converse. □

Definition I.C.1.6 (Separable subset). Let S be subset of G. We say S is
C-separable if S is closed in pro-C topology on G.

Lemma I.C.1.7. Let C be a formation of finite groups and let G be a group.
Suppose H ď G. Then, H is closed in the pro-C topology on G if and only
if H is the intersection of open subgroups of G.

Proof. An open subgroup in the topology τCpGq has finite index so it is
also a closed subgroup. Hence, any intersection of open subgroups is closed.

For the converse suppose H is closed in τCpGq and let g P GzH. There
exists some N P NCpGq such that xN X H “ H. Thus, x R HN . It follows
that H “

Ş

N P NCpGqHN . But each HN is open, whence the lemma. □
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Exercise I.C.1.8. Let C be a formation of finite groups and let G be a
group. Suppose H is a finite index subgroup of G. Then, H is open in the
pro-C topology on G if and only if G{CoreGpHq is in C.

I.C.2. Virtual retracts.

Definition I.C.2.1 (Virtual retract). Recall that H ď G is a retract if
the inclusion i : H ↣ G has a left inverse r : G ↠ H, that is r ˝ i “ idH .
Similarly, we call H a virtual retract, written H ďvr G, if H is a retract of a
finite index subgroup of G.

The following useful lemma is due to Hsu and Wise [HW99, Lemma 3.9].

Lemma I.C.2.2. Let G be a residually finite group and let H ď G. If
r : G↠ H is retract, then

(1) H is closed in the profinite topology on G;
(2) if K is closed in profinite topology on H, then K is closed in the

profinite topology on G;
(3) the inclusion map H Ñ G induces a homemorphism onto its image

of profinite topologies.

Proof. We first prove (1). Let N “ ker r and note that G “ NH and
N X H “ 1 so we may express any element of G uniquely as a product nh
with n P N and h P H. Since G is residually finite we may pick a chain pGiq

of finite index normal subgroups of G such that
Ş

iGi “ 1. Let Ni “ Gi XN
and note that |G : NiH| “ |NH : NiH| “ |N : Ni| ď |G : Gi|. Hence, pNiHq

is a sequence of finite index subgroups of H whose intersection is exactly H.
We now prove (2). Let K be a closed subgroup of H. Since r : G Ñ H

is continuous with respect to the profinite topologies, the preimage r´1pKq

is closed in G. Now, K “ H X r´1pKq and so is the intersection of closed
subgroups and hence closed in G.

The claim (3) follows from (2). □

Lemma I.C.2.3. Let G be a finitely generated residually finite group and
let H ď G. If H ďvr G, then H is closed in the profinite topology on G.

Proof. Let K ď G be a finite index subgroup admitting a retract
r : K ↠ H. By Lemma I.C.2.2 we see that H is closed in the profinite
topology on K. But K is finite index in G, so every closed subset of K is
closed in G. Hence, H ic closed in the profinite topology on G. □

We state some elementary properties of virtual retracts first collected by
Minasyan [Min21, Lemma 3.2].

Exercise I.C.2.4. Suppose that G and G1 are groups.
(1) Let H ďvr G and A ď G such that H ď A. Then, H ďvr A.
(2) Suppose H ď G and that there exists a homomorphism ϕ : G Ñ G1

such that ϕ|H is injective. If ϕpHq ďvr G
1, then H ďvr G.

(3) If H ďvr G and α P AutpGq, then αpHq ďvr G.
(4) If H ďvr G and A ďvr H, then A ďvr G.
(5) If H ďvr G and H 1 ďvr G

1, then H ˆH 1 ďvr GˆG1.
(6) If G is finitely generated and H ďvr G, then H is undistorted in G.
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Let G be finitely generated by a set S and H ď G be finitely generated by
a set T . We say H is undistorted if there exists a C ą 0 such that for all
h P H we have |h|T ď C ¨ |h|S . Where | ¨ |S and | ¨ |T are the word metrics in
G and H with respect to T and S respectively.
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