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Introduction

Todo 1: Write introduction

For a group G we denote by FpGq the set of isomorphism classes of
finite quotients of G. Two groups G and H are said to have the same finite
quotients if FpGq “ FpHq. A group G is called profinitely rigid relative to a
class of groups C ifG P C and for any groupH in the class C whenever FpGq “

FpHq, then G – H. By definition, a finitely generated residually finite group
G is called profinitely rigid (in the absolute sense) if G is profinitely rigid
relative to the class consisting of all finitely generated residually finite groups.
If G is not profinitely rigid then we say G is profinitely flexible.

Motivating Question (Profinite rigidity). Given a finitely generated
group G and a class of groups C. To what extent do the isomorphism classes
of finite quotients of G determine G amongst groups in C?

1



CHAPTER I

Residual finiteness and the profinite topology

I.A. Residual finiteness

I.A.1. Definitions, examples, and basic properties. We will make
repeated use of the following lemma of Marshall Hall Jr. [Hal50]

Lemma I.A.1.1. A finitely generated group G has only finitely many sub-
groups of a given finite index n.

Proof. Let H be a subgroup of G of index n and consider the action
of G on the set of cosets G{H. Note that |G{H| “ n. The action defines a
homomorphism ψ : G Ñ SympG{Hq. Now, g P H if and only if gH “ H. So
H “ StabGpHq and this is completely determined by the homomorphism ψ.
Let X be a finite generating set for G. The homomorphism ψ is determined
by its images ψpxq for x P X. But Sympnq is finite so there can only be
finitely many possibilities for ψ and hence only finitely many possibilities for
H. □

We now turn to the star of the section: residual properties.

Definition I.A.1.2 (Residually P). Let P be a property of a group (e.g.
finite, nilpotent, soluble, amenable). A group G is residually P if for every
non-identity element g P G, there exists a homomorphism α : G ↠ Q such
that Q has P and αpgq ‰ 1Q.

Note that this is equivalent to the following: for every element g P G
there exists a normal subgroup N ŸG such that G{N has P and g R N .

We will now hone in on residual finiteness.

Examples I.A.1.3. We record a number of groups that are easily seen to
be residually finite.

(1) Finite groups are clearly residually finite.
(2) The group Z is residually finite.

Proof. for each n P Z such that n ‰ 0, there exists a quotient
αk : Z ↠ Z{k with k relatively prime to n. In particular, n pmod kq ı

0 so αkpnq ‰ 0. ˛

(3) Direct products of residually finite groups are residually finite.
Proof. To see this note that every element has non-trivial image
when projected to one of the factors. Now, compose with a finite
quotient there. ˛

(4) Free groups are residually finite.
Proof. Let X be the generators of a free group F . Consider a word
xn . . . x1 in reduced form where xi or x´1

i is in X. We will build
a homomorphism F ↠ Sympn ` 1q, the group of permutations of

2



I.A. RESIDUAL FINITENESS 3

Ω :“ t1, . . . , n` 1u. Define a function X Ñ Ω by fpyq “ 1 if y does
not equal any xi or x´1

i . For the remaining elements we define fpyq

as follows:
Let A Ď Ω be the set of consisting of the i such that xi “ y and

B Ď Ω be the set of consisting of the j such that x´1
j “ y. Set fpyq

as any permutation σ that sends each i P A to i ` 1, and for each
j P B, sends j ` 1 to j. This is well-defined since an element and
its inverse cannot occur adjacently in the reduced form for a word.

The function f extends to a homomorphism ϕ : F Ñ Sympn`1q

by the universal property of F . Moreover, x has non-trivial image
since ϕpxqp1q “ n` 1. As x was arbitrary we are done. ˛

(5) An infinite simple group is not residually finite.
lem:rf_int

Lemma I.A.1.4. A group G is residually finite if and only if the intersection
of all finite index normal subgroups of G is trivial.

Proof. Suppose G is residually finite and let g P G be non-trivial. By
the definition of residual finiteness there is a finite quotient αg : Q↠ G such
that αgpgq ‰ 1Q. Now, kerα is a finite index normal subgroup of G such
that g R kerα. Since g was arbitrary it follows the intersection of all finite
index normal subgroups of G equals t1u.

Conversely, suppose that the intersection of all finite index normal sub-
groups of G is trivial and let g P G be non-trivial. By hypothesis there
exists a finite index normal subgroup N P G such that g R N . Thus, g has
non-trivial image in the finite quotient G{N . Since g was arbitrary it follows
that G is residually finite. □

For a general group G we will denote the intersection of all finite index
normal subgroups by Gp8q. We call this subgroup the finite residual of G.
By the previous lemma G is residually finite if and only if Gp8q is the trivial
group.

Exercise I.A.1.5. Explain how Lemma I.A.1.4 is equivalent to ‘the inter-
section of all finite index subgroups of G is trivial’.

ex.rf_subgroupClosed
Exercise I.A.1.6. Let G be a residually finite group. If H ď G, then H is
residually finite.

ex.rf_productClosed
Exercise I.A.1.7. Let I be a set and let Gi be a residually finite group for
each i P I. Then,

ś

Gi is residually finite.

The following style of argument will appear a number of times. The
key idea dates back to work of McKinsey on symbolic logic [McK43], but
we provide an adaptation for groups first noticed independently by Dyson
[H.64] and Mostowski [Mos66]. As well as G. Higman and A. Turing (un-
published).

Theorem I.A.1.8 (McKinsey’s Algorithm). A finitely presented residu-
ally finite group G has solvable word problem.

Proof. Note that finite groups are recursively enumerable. For each
positive integer n we can generate all Cayley multiplication tables of size
n ˆ n and check whether both a given table represents a group and if the
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group is already on the list. Note that the existence of the table gives a
solution to the word problem for any given fintie group.

Fix an enumeration of all finite groups tQiu and presentation xX | Ry

of G. The set hompG;Qiq is finite since a homorphism is determined by its
images on the generators and Qi is finite. We need to check whether we can
extend a map f : X Ñ Qi to a homomorphism ϕ : G Ñ Qi. This amounts to
checking the relations r P R are satisfied. Fortunately, as R is finite a brute
force approach will terminate. Hence, we may list all elements of hompG,Qiq
in a finite amount of time. Fix an enumeration of all homomorphism from
G to finite groups ϕ1, ϕ2, . . .

Let g be a word in X. To solve the word problem we now run two
machines:

The machine runs over all homomorphism ϕi and checks if ϕipgq ‰ 1
(here we are using the solvability of the word problem in the codomain, a
finite group). Since G is residually finite, if g ‰G 1, this process will stop.

The second machine runs over all representatives wj of 1 in G and checks
whether g ” wi. If g “G 1 this process will stop.

Since exactly one of the machines must stop we can algorithmically decide
if g is the trivial word. □

Remark I.A.1.9. There exists a finitely generated residually finite group
with unsolvable word problem. See [Mes74].

A characteristic subgroup K ď G is one that is invariant under all auto-
morphisms of G. Note that if G is finitely generated, then then the intersec-
tion of all subgroups of index n is both finite index and characteristic in G.

Proposition I.A.1.10 (Baumslag). [Bau63] If G is a finitely generated
residually finite group, then AutpGq is residually finite.

Proof. Let a P AutpGq be non-trivial. There exists a g P G such
that apgq ‰ g. Let h “ apgqg´1. Since h ‰ 1 P G, by Lemma I.A.1.4,
there exists a finite index normal subgroup N P G such that h R N . Let
K denote the intersection of all subgroups of index |G : N | in G. Since
K is characteristic, the sujection α : G ↠ G{K induces a homomorphism
ψ : AutpGq Ñ AutpG{Kq. Moreover, ψpaq is a non-trivial automorphism of
G{K because πphq ‰ 1 P G{K. Since a was arbitrary, we have verified that
AutpGq is residually finite. □

Corollary I.A.1.11. Let N and Q be a residually finite groups. If N is
finitely generated, then any semi-direct product G “ N ¸ Q is residually
finite.

Proof. It is easy to see that elements of the form nq with n P N ,
q P Q and q ‰ 1 are non-trivial in a finite quotient. Indeed, the projection
π : G↠ Q composed with a finite quotient α of Q where αpqq ‰ 1 suffices. It
remains to find finite quotients for the elements n P N with n ‰ 1. Since N
is residually finite there is a finite quotient β : N ↠ L such that βpnq ‰ 1L.
Since N is finitely generated and L is finite there are only finitely many
homomorphisms N Ñ L. The intersection of these homomorphisms is a
finite index characteristic subgroup C of N and so preserved by Q. The
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subgroup CQ is normal and has finite index in G. Moreover, n has non-
trivial image in the finite group G{CQ. □

There is also a set of dynamical criterion for residual finiteness due to
Cairns, Davis, Elton, Kolganova, and Perversi.

Definition I.A.1.12. Suppose that a group G acts continuously on a Haus-
dorff topological space X. Then we say that the action of G on X is chaotic
if both of the following conditions hold

(1) (topological transitivity) for every pair of non-empty open subsets
U and V of X, there is an element g P G such that gpUq X V ‰ H;

(2) (finite orbits dense) the set of points in X whose orbit under G is
finite is a dense subset of X.

Theorem I.A.1.13. [CDE`95, Theorem 1] For a group G, the following
are equivalent:

(1) G is residually finite;
(2) there is a faithful action of G with finite orbits dense on some Haus-

dorff topological space X;
(3) there is a faithful action of G with all orbits finite on some Hausdorff

topological space X;
(4) there is a faithful chaotic action of G on some Hausdorff topological

space X.

Proof. https://www.e-periodica.ch/cntmng?pid=ens-001:1995:41::68
Todo 2: add proof

□

I.A.2. Mal’cev’s Theorem. In [Mal65] Mal’cev proved the following
remarkable theorem:

thm.Mal’cev
Theorem I.A.2.1 (Mal’cev’s Theorem). A finitely generated linear group

is residually finite.

To prove Mal’cev’s Theorem we will need to recall some basic ring theory.
Let R be a ring. Here a ring is associative and contains a multiplicative

unit 1. A ring without a multiplicative identity is a rng.
A zero-divisor is a non-zero element z P R such that there exists a

non-zero element z1 satisfying zz1 “ 0. A ring R is a domain if it has no
zero-divisors.

We say a ring R is left Noetherian if R has the ascending chain condition
on left ideals, that is, for every chain of left ideals I1 Ă I2 Ă . . . has a largest
element. Said differently, this means there exists an n such that IN “ IN`1

for N ą n.
Let S be a commutative ring and let R be an S-algebra. We say R is

finitely generated if there exists a finite set of elements x1, . . . , xn P R such
that every element of R can be expressed as a polynomial in the xi with
coefficients in S.

The key examples of a finitely generated Z- or Fp-algebra for us is as
follows.
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ex.fg_Z-alg
Example I.A.2.2. Let k be a field, let G ď GLnpkq be a finitely generated
subgroup, and let X be a finite set of matrices (closed under inversion)
generating G. The subring R of k generated as a k-algebra by the entries of
the matrices in X and the multiplicative identity of k is a finitely generated
algebra over Z if char k “ 0 and over Fp if char k “ p a prime. Moreover,
G ď GLnpRq.

lem.facts_Noetherian
Lemma I.A.2.3. Let S be a commutative Noetherian ring and let R be a
finitely generated S-algebra. The following assertions hold:

(1) R is Noetherian;
(2) if R is a field, then it is finite;
(3) the intersection of the maximal ideals of R is 0.

Proof of Theorem I.A.2.1. LetG be a finitely generated linear group
over some field k. Thus, G ď GLnpkq for some n ě 0. As in Example I.A.2.2
we find that G ď GLnpRq where R is a finitely generated Z-algebra.

For an ideal I Ď R, let ΓpIq to be the Ith principle congruence subgroup
of GLnpRq defined by

ΓpIq :“ kerpGLnpRq Ñ GLnpR{Iqq,

where the homomorphism is defined by taking entries of GLnpRq modulo I.
Now, since R is Noetherian (Lemma I.A.2.3(i)), if I is a maximal ideal

then R{I is a field and by Lemma I.A.2.3(ii) it is finite. Hence, GLnpR{Iq

is finite and so ΓpIq is a finite index normal subgroup of GLnpR{Iq. Now,
the intersection

č

IĂR

ΓpIq where I ranges over all maximal ideals

is finite by Lemma I.A.2.3(iii). The theorem follows from Lemma I.A.1.4. □

The following example of Druţu and Sapir gives an example of a non-
linear residually finite one-relator group.

Example I.A.2.4. [DS05] (Druţu–Sapir) The group xa, t | t2at´2 “ a2y is
non-linear but is residually finite. Their proof depends in an essential way
on [Weh73].

I.A.3. An aside: Hopficity.

Definition I.A.3.1. A group G is Hopfian if every surjection G ↠ G is
injective.

Another result of Mal’cev shows that for finitely generated groups the
Hopf property follows from residual finiteness.

Proposition I.A.3.2. Let G be a finitely generated group. If G is residually
finite, then G is Hopfian.

Proof. Suppose G – G{N for some normal subgroup N , our aim is
to show that N is trivial. As G is finitely generated, that the number of
subgroups of index m in G is finite. Moreover, the number of subgroups of
index n in G{N is equal to the number of subgroups of index n in G. The
bijection is Hi{N Ø Hi. But then it is clear that N ď Hi for every finite
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index subgroup of G. Thus, N ď Gp8q “ t1u where the equality follows
from the fact G is residually finite and Lemma I.A.1.4. □

Example I.A.3.3 (Baumslag–Solitar groups). We define a family of one-
relator groups, known as Baumslag–Solitar groups, by

BSpm,nq :“ xa, t | tamt´1 “ any.

We claim if p|m|, |n|q “ 1, then BSpm,nq is non-Hopfian. Let p be a prime
dividing m but not n. Define an homomorphism

ν : BSpm,nq Ñ BSpm,nq by

#

a ÞÑ ap,

t ÞÑ t.

We first prove that ν is an epimorphism. We have νptq “ t and

νprt, am{psq “ tamt´1a´m “ ana´m “ an´m,

now since νpaq “ ap and pp, n ´ mq “ 1, by Bézout’s Identity there exist
integers x, y such axpaypn´mq “ a. It remains to check that ker ν is non-
empty. Note that the element rt, am{pspam{p is non-trivial in BSpm,nq, but

νprt, am{pspam´nq “ ptamt´1amqpapm´nqp “ pana´mqpapm´nqp “ 1.

Hence, ν is not injective. ˛

In fact a complete study of the residual finiteness and Hopficity of Baumslag–
Solitar groups has been completed. The Hopfian property was verfied by
Baumslag and Solitar in [BS62], however, their claim of which BSpm,nq are
residually finite was incorrect. A correct and complete argument was later
given by Meskin [Mes72].

Theorem I.A.3.4 (Baumslag–Solitar, Meskin). The groups BSpm,nq are
(1) Hopfian if and only if m and n have the same prime factors;
(2) residually finite if and only if |m| “ |n| or at least or of |m| or |n|

equals 1.

Proof. To be added, for now see [Mes72, Section 2].
Todo 3: Add proof

□

Definition I.A.3.5. A group G is co-Hopfian if every injection G ↣ G is
surjective. We say G is finitely co-Hopfian is every injection G ↣ G whose
image has finite index is surjective.

Exercise I.A.3.6. Let G be a finitely generated group. Suppose XpGq is
a group invariant taking values in R which for every finite index subgroup
H ď G satisfies XpHq “ |G : H|XpGq. If XpGq ‰ 0, then G is finitely
co-Hopfian.

Examples of invariants (when they are defined) satisfying the hypothesis
of the exercise include: Euler characteristic χpGq, ℓ2-Betti numbers bp2q

i pGq,
and ℓ2-torsion ρp2qpGq.
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I.B. Subgroup separability

I.B.1. The definition. We will now extend the notion of residual finite-
ness to subgroups.

Definition I.B.1.1 (Separable subgroup). Let G be a group and let H ď G.
We say H is separable in G if for each g P GzH there exists a finite index
subgroup Kg ď G with H ď Kg and g R Kg.

It is easy to see a subgroup H is separable in G if and only if H is an
intersection of finite index subgroups of G. In particular, G is residually
finite if and only if the trivial subgroup is separable in G.

Lemma I.B.1.2. Let G be a finitely generated group and let H ď G. Then,
H is separable in G if and only if for every g P GzH there exists a finite
quotient α : G↠ Q with αpgq R αpHq.

Proof. Let g P GzH. We have a homomorphism α : G ↠ Q with Q
finite and αpgq R αpHq. Define K :“ α´1pαpHqq and note that K contains
H, but g R K. Thus, it suffices to show that K is finite index in G, but this
is clear since it contains kerα with has index |Q| in G.

Conversely, suppose H is separable in G and let g P GzH. By hypothesis
there exists a finite index subgroup Kg ď G containing H but not g. Let
N denote the core of Kg, that is the intersection of all of the conjugates
of a Kg in G. Since G is finitely generated, N is a finite index normal
subgroup of G. Let α denote the quotient G ↠ G{N . The claim that
αpgq R αpHq will follows from αpHq ď αpKgq once we show αpgq R αpKgq.
The latter statement follows from the finite index of N , the fourth (or lattice)
isomorphism theorem, and the fact that gKg and Kg are distinct cosets of
Kg. □

Exercise I.B.1.3. Let H be a separable subgroup in a finitely generated
group K. If K is a finite index subgroup of a group G, then H is separable
in G.

Let H ď G. We say H has solvable membership problem in G if there
exists an algorithm which takes as input an element g P G and decides if
g P H.

Theorem I.B.1.4. Let H be a finitely generated subgroup of a finitely
presented group G. If H is separable in G, then H has solvable membership
problem in G.

Proof. Let g P G and fix a generating set S “ th1, . . . , hku of H. The
algorithm consists of two processes run in parallel of which one will stop. The
first process enumerates finite quotients of G and checks to see if the image
of H contains the image of g. If the image of g is not contained in the image
of H, then the algorithm stops since g R H. The second process works in a
finitely generated free group F such that F ↠ G is a finite presentation with
relations R. We enumerate the words wℓ in the free monoid on S YS´1 and
the products pk in F of conjugates of relators r P R. We check to see if each
g´1wℓ is freely equal to pk, it is then the algorithm stops since g P H. □

The following result, due to Mihăılova [Mih58, Mih66], shows that
F2 ˆ F2 does not in fact have solvable subgroup membership problem.
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Theorem I.B.1.5 (Mihăılova). The group F2 ˆ F2 has unsolvable sub-
group membership problem.

Proof. Note that F 2
2 contains F 2

n for every n ě 1 so we may work in
F 2
n for some n. Let Q be a finitely presented group with unsolvable word

problem and let S generate Q. Let |S| “ n and let π : F 2
n ↠ Q2 be the

natural projection. Let D “ tpg, gqu ă Q2 be the diagonal subgroup and
define ∆ “ π´1pDq ă F 2

n . Now, px, yq P ∆ if and only if x and y project to
the same element in Q. But Q has unsolvable word problem so we cannot
decide if px, yq P ∆.

It remains to check that ∆ is finitely generated. Let R be a finite set of
relations for Q. We claim that

S :“ tpg, gq : g P Su Y tpr, 1q : r P Ru Y tp1, rq : r P Ru

is a generating set. The issue is that R only normally generates the kernel
of the map Fn ↠ Q, however, if w P Fn and r P R we have

pwrw´1, 1q “ pw,wqpr, 1qpw´1, w´1q

of which each term is in S. □
F2xF2_notLERF

Corollary I.B.1.6. F2 ˆ F2 has inseparable subgroups.

I.B.2. LERF groups. We say a group G is extended residually finite
(ERF) if every subgroup of G is separable. We say G is locally extended
residually finite (LERF) if every finitely generated subgroup of G is separa-
ble.

Two groups G and H are commensurable if there exists finite index sub-
groups K ď G and L ď H such that K – L.

Exercise I.B.2.1. Let G be a finitely generated LERF group. If H is a
group commensurable with G, then H is LERF.

Examples I.B.2.2. We record a few examples:
(1) finite groups are trivially LERF;
(2) Z is also trivially seen to be LERF;
(3) Zn is LERF.

Proof. Let L ď Zn and let g P ZnzL. We may assume L has infinite
index since all finite index subgroups are separable by definition.
Since L Ÿ Zn we may consider the quotient πL : Zn ↠ A “ Zn{L.
Note that πLpgq ‰ 0. Now, A is a finitely generated abelian group
and hence residually finite. Thus, there exists a finite (abelian)
quotient α : A↠ Q where αpπLpgqq ‰ 0 P Q. Moreover, kerpα˝πLq

contains L. Hence, we have separated L from g in Q. ˛

(4) It follows from Corollary I.B.1.6 that F2 ˆ F2 is not LERF.

A particularly famous result due to Marshall Hall Jr. is that free groups
are LERF [Hal49]. We divert the proof to the next section.

thm.MarshallHall
Theorem I.B.2.3 (Marshall Hall Jr.’s Theorem). Free groups are LERF

It follows from Theorem I.B.2.3 and Corollary I.B.1.6 that direct prod-
ucts of LERF groups are not necessarily LERF.
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I.B.3. The connection with covering theory. Separability of sub-
groups has a particularly powerful interpretation when viewed from a topo-
logical lens. The following somewhat miraculous result of Scott allows one
to promote immersions to embeddings, at the cost of taking a finite cover,
when in the presence of subgroup separability.

Let X and Y be CW complexes. Recall that an immersion is map
f : X í Y such that f is a locally injective combinatorial map. The map f
map is combinatorial if it maps the interior of each cell homeomorphically
onto its image.

Theorem I.B.3.1. [Sco78]
thm.Scott_LERF_geometric
Let G be a finitely generated group and let

X be a CW complex with π1X “ G. Let H ď G and let Y Ñ X be the
cover corresponding to H. Then, H is separable if and only if for every
finite subcomplex K Ď Y , there exists an intermediate finite sheeted cover
Y Ñ Z Ñ X such that K embeds as a subcomplex of Z.

Proof. Suppose the geometric condition holds for some subgroup H

with cover Y Ñ X and let g P GzH. Pick a basepoint x P rX in the
universal cover of X and let K “ πpx Y gxq Ď Y , where π : rX Ñ Y is the
universal covering map. By hypothesis we obtain a finite covering Z Ñ X
with corresponding finite index subgroup G1 such that K Ď Z. But, then
g R G1. Hence, H is separable.

Now, suppose H is a separable subgroup of G with corresponding cover
Y Ñ X and let K be a finite subcomplex of Y . Let π : rX Ñ Y be the
universal cover and let C “ π´1K. Pick a finite subcomplex D of C such
that πpDq “ K and note that S :“ tg P G : gD XD ‰ Hu is finite. Since H
is separable we can find a finite index subgroup G1 of G such that H ď G

and G1 X S Ď H. The cover rX{G1 Ñ X is then the required intermediate
finite cover. □

We will also need the following easy lemma.
Graphs_imm_lifts

Lemma I.B.3.2. Let ∆ and Γ be finite graphs and let f : ∆ í Γ be an
immersion. Then extends f to a finite-sheeted covering Γ̂ Ñ Γ such that ∆
embeds in Γ̂.

Proof. Fix an orientation and a colouring on the edges of Γ. This lifts
to an orientation and a colouring on ∆. A combinatorial map is an immersion
if and only if at each vertex, we see each colour arriving exactly once and
leaving exactly once. Let n denote the number of vertices of ∆ and for each
colour c of Γ let nc be the number of edges of ∆ coloured c. There are n´nc
vertices of ∆ missing incoming edges with colour c and the same number of
vertices missing outgoing edges with colour c. Pick any bijection between
these sets and glue in n´nc edges coloured c. Repeating this for each colour
we eventually obtain a covering space Γ̂ of Γ such that ∆ Ă Γ̂. □

We now give Stalling’s proof of the Marshall Hall Theorem.

Proof of Theorem I.B.2.3. Now, let Γ be a finite rose and H a
finitely generated subgroup of F “ π1Γ. Let ∆ Ñ Γ be the covering cor-
responding to H, and consider a finite subcomplex K Ă ∆. Since H is
finitely generated, we may enlarge K to ensure that K is connected and
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that π1K “ H. But ∆ Ñ Γ is an immersion, so can be completed to a
finite-sheeted covering Γ̂ Ñ Γ by Lemma I.B.3.2. The result now follows
from Theorem I.B.3.1. □

I.C. Pro topologies on groups

I.C.1. The definition.

Definition I.C.1.1 (Profinite topology). Let N be a non-empty collection of
finite index normal subgroups of a group G. We say N is filtered from below if
whenever N1, N2 P N , there exists N P N such that N ď N1 XN2. We make
G into a topological group by taking N as a basis of open neighbourhoods
of the identity the collection. We refer to the corresponding topology as a
pro topology on G.

Let H1, . . . ,Hn be groups. A subdirect product of H “
śn
i“1Hi is any

subgroup G of H such that the projections πi : G Ñ Hi are surjective.

Definition I.C.1.2 (Formation). A class of finite groups C is called a for-
mation if C is closed under taking quotients and subdirect products.

Examples I.C.1.3. The following are examples of formations:
(1) the class of all finite groups;
(2) the class of all finite abelian groups;
(3) the class of all finite nilpotent groups;
(4) the class of all finite soluble groups;
(5) the class of all finite p-groups for a fixed prime p.

Definition I.C.1.4 (Pro-C topology). Let C be a formation of finite groups.
The (full) pro-C topology on G is the topology τCpGq on G given by taking
as a basis of open neighbourhoods of the identity the collection

NCpGq :“ tN Ĳ G | G{N P Cu.

When C is the class of all finite groups, we denote the topology by τG and
refer to it as the profinite topology on G.

Lemma I.C.1.5. Let C be a formation of finite groups. A group G is resid-
ually C if and only if its pro-C topology is Hausdorff.

Proof. Suppose G is residually-C. Let g ‰ h be elements of G. Since,
gh´1 is non-trivial, there exists a finite index subgroup N ă G such that
gh´1 R N . Hence, gN X hN “ H. This proves the topology is Hausdorff.
Reversing the argument yields the converse. □

Definition I.C.1.6 (Separable subset). Let S be subset of G. We say S is
C-separable if S is closed in pro-C topology on G.

Lemma I.C.1.7. Let C be a formation of finite groups and let G be a group.
Suppose H ď G. Then, H is closed in the pro-C topology on G if and only
if H is the intersection of open subgroups of G.

Proof. An open subgroup in the topology τCpGq has finite index so it is
also a closed subgroup. Hence, any intersection of open subgroups is closed.

For the converse suppose H is closed in τCpGq and let g P GzH. There
exists some N P NCpGq such that xN X H “ H. Thus, g R HN . It follows
that H “

Ş

NPNCpGq HN . But each HN is open, whence the lemma. □
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Exercise I.C.1.8. Let C be a formation of finite groups and let G be a
group. Suppose H is a finite index subgroup of G. Then, H is open in the
pro-C topology on G if and only if G{CoreGpHq is in C.

In general the subspace topology induced on a subgroup H ď G from
the pro-C topology on G will not be equal to the pro-C topology on H but
instead some mystery pro topology. When the topology induced on H is
the pro-C topology we say that G induces the full pro-C topology on H. A
sufficient condition for this to happen is that every finite index subgroup of
H is separable in G.

Example I.C.1.9. If G is residually finite and H is a finite index subgroup
of G, then the inclusion H Ñ G is a homemorphism onto its image. That
is, G induces the full

I.C.2. Virtual retracts.

Definition I.C.2.1 (Virtual retract). Recall that H ď G is a retract if
the inclusion i : H ↣ G has a left inverse r : G ↠ H, that is r ˝ i “ idH .
Similarly, we call H a virtual retract, written H ďvr G, if H is a retract of a
finite index subgroup of G.

The following useful lemma is due to Hsu and Wise [HW99, Lemma 3.9].
lem.RetractsClosed

Lemma I.C.2.2. Let G be a residually finite group and let H ď G. If
r : G↠ H is retract, then

(1) H is closed in the profinite topology on G;
(2) if K is closed in profinite topology on H, then K is closed in the

profinite topology on G;
(3) the inclusion map H Ñ G induces a homemorphism onto its image

of profinite topologies.

Proof. We first prove (1). Let N “ ker r and note that G “ NH and
N X H “ 1 so we may express any element of G uniquely as a product nh
with n P N and h P H. Since G is residually finite we may pick a chain pGiq
of finite index normal subgroups of G such that

Ş

iGi “ 1. Let Ni “ GiXN
and note that |G : NiH| “ |NH : NiH| “ |N : Ni| ď |G : Gi|. Hence, pNiHq

is a sequence of finite index subgroups of H whose intersection is exactly H.
We now prove (2). Let K be a closed subgroup of H. Since r : G Ñ H

is continuous with respect to the profinite topologies, the preimage r´1pKq

is closed in G. Now, K “ H X r´1pKq and so is the intersection of closed
subgroups and hence closed in G.

The claim (3) follows from (2). □
lem.virRetractsClosed

Lemma I.C.2.3. Let G be a finitely generated residually finite group and
let H ď G. If H ďvr G, then H is closed in the profinite topology on G.

Proof. Let K ď G be a finite index subgroup admitting a retract
r : K ↠ H. By Lemma I.C.2.2 we see that H is closed in the profinite
topology on K. But K is finite index in G, so every closed subset of K is
closed in G. Hence, H ic closed in the profinite topology on G. □

We state some elementary properties of virtual retracts first collected by
Minasyan [Min21, Lemma 3.2].
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Exercise I.C.2.4. Suppose that G and G1 are groups.
(1) Let H ďvr G and A ď G such that H ď A. Then, H ďvr A.
(2) Suppose H ď G and that there exists a homomorphism ϕ : G Ñ G1

such that ϕ|H is injective. If ϕpHq ďvr G
1, then H ďvr G.

(3) If H ďvr G and α P AutpGq, then αpHq ďvr G.
(4) If H ďvr G and A ďvr H, then A ďvr G.
(5) If H ďvr G and H 1 ďvr G

1, then H ˆH 1 ďvr GˆG1.
(6) If G is finitely generated and H ďvr G, then H is undistorted in G.

Let G be finitely generated by a set S and H ď G be finitely generated by
a set T . We say H is undistorted

Undistorted subgroup
if there exists a C ą 0 such that for all

h P H we have |h|T ď C ¨ |h|S . Where | ¨ |S and | ¨ |T are the word metrics in
G and H with respect to T and S respectively.



CHAPTER II

Profinite groups and completions

II.A. Profinite groups

II.A.1. Inverse limits and profinite spaces.

Definition II.A.1.1 (Directed poset). A pair I “ pI,ďq where I is a set
and ď is a binary relation is a directed poset if it is a poset :

(1) i ď i, for i P I;
(2) if i ď and j ď k, then i ď k, for i, j, k P I;
(3) if i ď j and j ď i, then i “ j, for i, j P I;

satisfying one additional condition
(4) if i, j P I, then there exists some k P I such that i, j ď k.

Definition II.A.1.2 (Inverse system). An inverse system of objects in a
category C over a directed poset I consists of a collection tXi | i P Iu of
objects in C indexed by I and a collection of morphisms φi,j : Xi Ñ Xj for
each j ď i such that

(1) if i ď j ď k we have φi,j ˝φj,k “ φi,k, that is the following diagram
commutes

Xi Xj

Xk;

φi,j

φi,k
φj,k

(2) and φi,i “ idXi .

Let Y be an object in some category C and let tXi, φi,j , Iu be an inverse
system of objects in C over a directed poset I.

Definition II.A.1.3 (Inverse limit). We say a sequence of morphisms ψi : Y Ñ

Xi is compatible (with I) if φi,j ˝ ψi “ ψj for j ď i.
Given an object X in C with compatible morphisms νi : X Ñ Xi, we say

X is an inverse limit of the inverse system tXi, φi,j , Iu if the following uni-
versal property holds: whenever Y is an object in C with a set of compatible
morphisms ψi : Y Ñ Xi, then there exists a unique morphism ψ : Y Ñ X
such that following diagram commutes

Y X

Xi

D!ψ

ψi νi

for every i P I. We will denote an inverse limit X by lim
ÐÝ

Xi.

14
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Exercise II.A.1.4. Let I “ tXi, φi,j , Iu be an inverse system of objects in
a category C over a directed poset I. If an inverse limit of I exists, then it
is unique up to C-isomorphism.

Proposition II.A.1.5. Let I “ tXi, φi,j , Iu be an inverse system of topo-
logical spaces (or topological groups) over a directed poset I. Then, there
exists an inverse limit of I.

Proof. We construct the inverse limit for spaces, the proof for topo-
logical groups being near identical. We define a subspace X of

ś

iPI Xi en-
dowed with the Tychonoff topology to consist of the tuples pxiq that satisfy
φi,jpxiq “ xj if j ď i. The projections νi : X Ñ

ś

iPI Xi Ñ Xi are clearly
continuous. It remains to check the universal property. Suppose ψi : Y Ñ Xi

is a set of compatible continuous functions, we may take the product map
ψ :“

ś

iPI ψi : Y Ñ
ś

iPI Xi. But now impψq Ď X and νi ˝ ψ “ ψi. □
prop.InvLimProps

Proposition II.A.1.6. Let tXi, φi,ju be an inverse system of Hausdorff
spaces. The following holds:

(1) lim
ÐÝ

Xi is closed subspace of
ś

iPI Xi;
(2) if each Xi is compact, then lim

ÐÝ
Xi is compact;

(3) if each Xi is compact and non-empty, then lim
ÐÝ

Xi is non-empty;
(4) if each Xi is totally disconnected, then lim

ÐÝ
Xi is totally disconnected.

Proof. Exercise. □

Definition II.A.1.7 (Profinite space). A topological space X is a profinite
space if X is an inverse limit of finite sets with the discrete topology.

Theorem II.A.1.8. Let X be a topological space. The following are equiv-
alent:

(1) X is a profinite space;
(2) X is a totally disconnected compact Hausdorff space;
(3) X is a compact Hausdorff space and admits a base of clopen sets

for its topology.

Definition II.A.1.9 (Morphism of inverse systems). Let pXi, ϕi,jqiPI and
pYi, ψi,jqiPI be inverse systems of objects in a category C with inverse limitsX
and Y respectively. A morphism of inverse systems pfiq : Xi Ñ Yi is a family
of morphisms fi : Xi Ñ Yi such that for all i ĺ j we have fj ˝ϕi,j “ ψi,j ˝ fi,
that is the following diagram commutes

Xi Yi

Xj Yj .

fi

ϕi,j ψi,j

fj

It is easy to check that a morphism of inverse systems induces a morphism
f : X Ñ Y that is compatible with the projection maps.

Exercise II.A.1.10. In nice situations we can refine the inverse system to
ensure a number of extra properties:

(1) Let pXiqiPI be an inverse system of finite sets with inverse limit
X. If all of the transition maps Xi Ñ Xj are surjective, then the
projection maps X Ñ Xi are surjective.
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(2) Let pGiqiPI be an inverse system of finite groups. Then, there is
an inverse system pH 1

iqiPI with surjective transition maps and an
isomorphic inverse limit.

A cofinal subsystem J of an inverse system pI,ĺq is a subset J Ď I such that
for all i P I there is some j P J such that i ĺ j.

(3) Let pGiqiPI be an inverse system of finite groups. If J Ď I is cofinal,
then lim

ÐÝiPI
Gi – lim

ÐÝiPJ
Gj as topological groups. [Hint: There is a

natural projection lim
ÐÝiPI

Gi Ñ lim
ÐÝiPJ

Gj .]
An inverse system pI,ĺq is linearly ordered if there exists a bijection f : I Ñ

N such that i ĺ j if and only if fpiq ě fpjq. Note there is a reversal of sign.
We say I has no global minimum if for all i P I, there exists j P I such that
j ĺ i but i ‰ j.

(4) Let I be a countable inverse system such that I has no global min-
imum. Then, I has a linearly ordered cofinal subsystem.

II.A.2. Definition and examples.

Lemma II.A.2.1. Let tGi, φi,j , Iu be an inverse system of finite groups Gi,
let G “ lim

ÐÝ
Gi, and let φi : G ↠ Gi denote the projection maps. The set

tkerφiu forms a basis of open neighbourhoods of the identity in G.

Exercise II.A.2.2. Let G be a compact topological group. Then, a sub-
group U ď G is open if and only if U is closed and finite index.

Definition II.A.2.3 (Pro-C group). Let C be a formation of finite groups.
A pro-C group is a group which is the inverse limit of groups in C. A profinite
group is a group which is the inverse limit of finite groups.

thm.characterise-proCgroups
Theorem II.A.2.4. Let C be a formation of finite groups and let G be a

topological group. The following are equivalent:
(1) G is a pro-C group;
(2) G is compact Hausdorff totally disconnected and for each open nor-

mal subgroup N of G we have G{N P C;
(3) the identity of G admits of a basis of open neighbourhoods N such

that each N P N is a normal subgroup of G, G{N P C, and G is an
inverse limit of the quotients tG{Nu.

lem.profiniteDenseSubsets
Lemma II.A.2.5. Let tGi, φi,j , Iu be an inverse system of finite groups Gi,
let G “ lim

ÐÝ
Gi, and let φi : G ↠ Gi denote the projection maps. A subset

X Ď G is dense if and only if φipXq “ φipGq for all i P I.

The following lemma is an easy consequence of the Tychnoff product
topology.

lem.ContinuityProjectionsToptoProf
Lemma II.A.2.6. Let H be a topological group and let G “ lim

ÐÝ
Gj be a

profinite group with projections πi : G Ñ Gi. A homomorphism f : H Ñ G
is continuous if and only if each map πi ˝ f : H Ñ Gi is continuous.

It follows from point (3) and the continuity of the multiplication GˆG Ñ

G that we have a basis of neighbourhoods for every point g P G. Indeed, the
neighbourhoods gN suffice.

Examples II.A.2.7. We record a number of examples.
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(1) As a first example we have the p-adic integers

Z
pp “ lim

ÐÝ

´

¨ ¨ ¨ Z{pi`1 Z{pi ¨ ¨ ¨ Z{p
¯

where the homomorphisms are the reduction modulo pi maps. Thus,
Z

pp is a subgroup of
ś

iě1 Z{pi and is hence and abelian group.
There is a natural map i : Z Ñ Z

pp by n ÞÑ pn mod piqiě1. The
map i is injective since if n P Z and pn ą |z|, then z mod pn ‰ 0.
There is a ring structure on Z

pp inherited from the product ring
structure on

ś

iě1 Z{pi.

Proposition II.A.2.8. The following statements hold.
(a) As a group Z

pp is torsion-free and abelian.
(b) As a ring Z

pp is domain.

Proof. For (a) we have already verified that Z
pp is abelian. Since Z

pp

is abelian we will work with additive notation. It remains to check Z
pp is

torsion-free. Let g “ pgiq P Z
pp be non-trivial and suppose there exists some

k P N such that kg “ 0. Suppose for contradiction k ‰ 0, and let k “ pℓs
where gcdps, pq “ 1. Choose i such that gi ‰ 0 and consider gi`ℓ. We have
mgi`ℓ ” 0 mod pi`ℓ so pi`ℓ|pℓsgi`ℓ. Hence, pi|gi`ℓ as s is coprime to p.
But then gi`ℓ ” 0 mod pi contradicting gi`ℓ ” gi mod pi.

For (b) suppose there exists g “ pgiq, h “ phiq P Z
pp both non-zero,

so say gk and hℓ are non-zero, such that gh “ 0. Now, gk`ℓhk`ℓ “ 0, so
pk`ℓ|gk`ℓhk`ℓ. But then either pk|gk`ℓ or pℓ|hk`ℓ a contradiction. □

Without delving into too deep a discussion about attributions, the collo-
quially named Chinese Remainder Theorem was first written down by Suan-
jing in the 5th century with no proof. In 1247 Jiushao proved the full version
for the integers. A detailed historical account can be found here [She88]. A
more modern formulation, first recorded by Ore [Ore52], is as follows:

Two ideals I, J in a ring R are called coprime if there exists elements
i P I and j P J such that i` j “ 1.

thm.CoprimeIdeals
Theorem II.A.2.9 (The Coprime Ideal Theorem). Let I1, . . . , Ik be pair-

wise coprime ideals in a ring R and let I “
Şk
i“1 Ii. Then, the map

R{I Ñ

k
ź

i“1

R{Ii by x mod I ÞÑ px mod I1, . . . , x mod Ikq

is a ring isomorphism.

Note that in a commutative ring
Şk
i“1 Ii “

śk
i“1 Ii so we recover the

usual statement for Z.
With that out of the way we may return to our examples.
(2) Define pZ to be the inverse limit of the system of finite quotients of Z.

That is, the system consisting of all groups Z{n and the projections
Z{n↠ Z{m whenever m|n.

prop.CoprimeIdeals_Zhat
Proposition II.A.2.10. There is an isomorphism of topological rings

pZ –
ź

pPp

Z
pp
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where p is the set of all prime numbers.

Proof. Let m P N and write m “
ś

pPp p
cppmq. The Coprime Ideal The-

orem (Theorem II.A.2.9) yields an isomorphism ϕm : Z{m Ñ
ś

pPp Z{pcppmq

that is compatible with any projection Z{k ↠ Z{m for m|k. Thus, pZ –

lim
ÐÝi

ś

pPp Z{pcppiq. There are natural continuous surjections
ś

pPp Zpp ↠
ś

pPp Z{pcppiq so we get a homomorphism ψ
ś

pPp Zp Ñ lim
ÐÝi

ś

pPp Z{pcppiq

which is continuous by Lemma II.A.2.6 and surjective since ψ has dense im-
age (Lemma II.A.2.5) and the codomain is compact. Injectivity is clear so
we conclude that ψ is the desired isomorphism. □

(3) Direct products of profinite groups are profinite groups.
Proof. Exercise. ˛

(4) We can define

GLnpZ
ppq “ tM P MnˆnpZ

ppq : detM P Zˆ
pp u

it is an exercise to show that

(2.7–i)
{eqn.GLnZp_invLim}{eqn.GLnZp_invLim}

GLnpZ
ppq “ lim

ÐÝ
i

GLnpZ{piq

and that
GLnppZq “

ź

p

GLnpZpq.

Hint. For (2.7–i) show that there are epimorphisms

πi : GLnpZ
ppq ↠ GLnpZ{piq

induced by the projections Z
pp ↠ Z{pi. Now, adapt the proof of

Proposition II.A.2.10, for injectivity show that
Ş

kerπi “ 1. ˛

(5) One similarly obtains SLnpZ
ppq “ tM P MnˆnpZ

ppq : detM “ 1u,
SLnpZ

ppq “ lim
ÐÝi

SLnpZ{piq, and that SLnppZq “
ś

p SLnpZpq.

II.A.3. Basic properties.

Lemma II.A.3.1. Let G be a profinite group and let X Ď G. The closure
of X in G is

X “
č

NP0G

XN

Proof. Each set XN is clopen since it is a union of cosets of N . Clearly,
X Ď XN for each N . If g R X, then there is some open set U Ď G such that
g P U and X X U “ H. Theorem II.A.2.4 yields an open normal subgroup
N P G such that g P gN Ď U . Suppose g P XN , we may write g “ xn with
X P X and n P N , then x “ gn´1 P gN Ď U , a contradiction. □

Proposition II.A.3.2. A closed subgroup of a profinite group is a profinite
group.

Proof. Let G “ lim
ÐÝ

Gi with projections φi : G Ñ Gi and let H be a
closed subgroup of G. We define an inverse system of groups Hi “ φipHq

and transition maps being the restrictions of the transition maps for G. Let
K “ lim

ÐÝ
Hi. It suffices to show H “ K. By construction H ď K. Let

g “ pgiq R H. Since H is closed, GzH is open. By Theorem II.A.2.4 it
follows that φiphq ‰ gi for all h P H. Hence, gi R Hi and thus, g R K. □
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Thm.1stIsoProf
Theorem II.A.3.3 (The First Isomorphism Theorem). Let G be a profi-

nite groups. The following hold:
(1) If N be a closed normal subgroup, then G{N with the quotient topol-

ogy is a profinite group.
Let π : G ↠ Q be a continuous surjection, let K “ kerπ, and let q : G ↠
G{K denote the natural projection. Endow G{K with the quotient topology.

(2) There exists a homeomorphism f : G{K Ñ Q such that π “ f ˝ q.

Proposition II.A.3.4. If G is a profinite group, then G is residually finite.

Proof. Since G is the inverse limit of a directed system of finite groups
pGiq we may view G as a subgroup of

ś

Gi. Thus, G is residually finite by
Exercise I.A.1.7 and Exercise I.A.1.6. □

Exercise II.A.3.5. If G is a profinite group, then G is either finite or
uncountable. [Hint: Use the Baire Category Theorem.]

II.A.4. Generating sets.

Definition II.A.4.1 (Topological generating set). Let G be a topological
group and let S Ă G. The closed subgroup of G (topologically) generated by
S, denoted xSy is the smallest closed subgroup of G containing S.

It is easy to see that ifH ď G, then the closureH Ď G is also a subgroup.
In particular, for S Ď G, the closure of the subgroup xSy and the subgroup
topologically generated by S coincide.

Definition II.A.4.2 (Topologically finitely generated). If a topological group
G is topologically generated by a finite subset S Ď G then we say G is topo-
logically finitely generated.

Exercise II.A.4.3. The following hold.
(1) Let G be a topologically finitely generated profinite group. If U is

a open subgroup of G, then U is topologically finitely generated.
(2) Let pGiq be an inverse system of finite groups with inverse limit

G and projections πi : G ↠ Gi. A subset S Ď G is a topological
generating set for G if and only if πiS generates πiG for every i.

(3) Let G be a topologically finitely generated profinite group. Then
G is an inverse limit of a countable inverse system of finite groups.

The following result was proved by Gaschütz for finite groups [Gas55]
and extended to topologically finitely generated groups by Jarden and Kiehne
[JK75].

GaschutzLemma
Theorem II.A.4.4 (Gaschütz’s Lemma). Let G and H be profinite groups

and let Ψ: G ↠ H be a continuous epimorphism. Suppose that G is topo-
logically generated by a set of size d. Then, for any topological generating set
T of size d of H, there exists some generating set S of size d of G such that
Ψ|S is a bijection.

Proof. We first prove the result for finite groups. To this end assume
G “ G and H “ H are finite.
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Extend the map Ψ: G Ñ H to the product map ψ :“ pΨqd : Gd Ñ Hd.
Let t “ pt1, . . . , tdq P Hd be such that tt1, . . . , tdu generates H. For the
remainder of the proof we will say that t generates H.

We will proceed by induction on |G| with H fixed. Our induction hy-
pothesis is that the number MpG, tq, defined to be the number of ordered
tuples s “ ps1 . . . sdq P Gd such that

(1) ts1 . . . , sdu generate G; and
(2) pψqdpsq “ t,

is independent of the tuple t. That is MpG, tq “ MpG, t1q for every t, t1 P Hd

that generate H.
Let Pd denote the set of proper d-generator subgroups of G. Now, every

s P Gd generates G or some subgroup in Pd so we have

ts : pψqdpsq “ tu “ MpG, tq `
ÿ

PPPd

MpP, tq.

Now, |ts : pψqdpsq “ tu| “ | kerψ|d so

MpG, tq “ | kerψ|d ´
ÿ

PPPd

MpP, tq

but by our inductive hypothesis every term on the right hand side is inde-
pendent of the tuple t. Hence, MpG, tq.

To conclude the proof in the case of finite groups observe that since
Gd has some tuple s which generates G we have MpG, pψqdtq ě 1. Hence,
MpG, tq ě 1 for every tuple t P Hd that generates H.

Now, suppose G and H are profinite groups and write them as inverse
limits of finite groups G “ lim

ÐÝ
Gi and H “ lim

ÐÝ
Hj such that the projection

maps G Ñ Gi and H Ñ Hj are surjective. Let pψiq : pGiq Ñ pHiq be a
morphism of the inverse systems with inverse limit Ψ and such that each ψi
is surjective.

Let t P Hd be a tuple that generates H and let ti be its image in Hi.
Define Xi to be the set of tuples si P Gdi such that pψiq

dpsiq “ ti. By the
result for finite groups established above these sets are non-non-empty. The
transition maps in the inverse system pGiq map Xi to Xj whenever i ě j,
so we have an inverse limit of non-empty sets X “ lim

ÐÝ
Xi which is non-

empty by Proposition II.A.1.6(3). Now, an element of t P X generates G
and pΨqdptq “ s as required. □

II.A.5. The Nikolov–Segal Theorem.

Theorem II.A.5.1 (Nikolov–Segal). If G is a finitely generated profinite
group, then every subgroup of finite index in G is open.

We highlight an important corollary.

Corollary II.A.5.2 (Automatic continuity). Let G and H be finitely gen-
erated profinite groups. If Θ: G Ñ H is an abstract group homomorphism,
then Θ is continuous.
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II.B. Profinite completions

II.B.1. The completion functor.

Definition II.B.1.1 (Pro-C completion). Let G be a group and let C be a
formation of finite groups. Consider the non-empty set of finite index normal
subgroups NC “ tN P G : G{N P Cu of G. We form an inverse system by
declaring for M,N P NC that M ĺ N if N ď M . The maps are given by the
natural epimorphisms φNM : G{N ↠ G{M . The group

G
pC :“ lim

ÐÝ
nPNC

G{N

is the pro-C completion of G.
When C consists of all finite groups we instead write pG and refer to the

resulting profinite group as the profinite completion of G. When C consists
of all finite p-groups we obtain the pro-p completion of G which we denote
by G

pp. When C consist of all nilpotent or soluble groups, we refer to G
pC as

the pro-nilpotent completion and pro-soluble completion respectively.

The group G has natural map ιC : G Ñ G
pC given by g ÞÑ pgNqNPNC . By

Lemma II.A.2.5, the image ιCpGq is dense in G
pC .

The next exercise clarifies the link to our study of residual finiteness.
Ex.resC_embedsGhat

Exercise II.B.1.2. Let C be a formation of finite groups. A group G is
residually-C if and only if the natural map G Ñ G

pC is injective.

The following theorem is an easy consequence of work on inverse limits.
thm.proC_univ

Theorem II.B.1.3 (Universal property of the pro-C completion). Let G
be a group and let H be a pro-C group. Then, any group homomorphism
G Ñ H factors uniquely through a continuous homomorphism pG Ñ H.

Remark II.B.1.4. Note that although pro-C completion has a universal
property, it is not the case that for G a pro-C group, the map ι

pC : G Ñ G
pC

is necessarily an isomorphism.

The next proposition shows that taking pro-C completions is functorial.

Proposition II.B.1.5. Let C be a formation of finite groups. If ϕ : G Ñ

H is a group homomorphism, then there exists a unique continuous group
homomorphism ϕ

pC : G pC Ñ H
pC such that ϕ

pC ˝ ιG
pC

“ ιH
pC

˝ ϕ.

Proof. For any N P H with H{N in C we have a homomorphism
ϕN : G Ñ H{N given by the composition. By the universal property of the
pro-C completion we obtain a homomorphism pϕN q

pC : G pC Ñ H{N . These
maps are clearly compatible with the transition maps in the inverse system
NCpHq. So by the definition of a limit, there is a unique continuous ho-
momorphism ϕ

pC : G pC Ñ H
pC . As ϕNϕ

pCιG pC
“ ϕN ιH

pC
ϕ, that is the following

diagram commutes

G G
pC H

pC

H H
pC H{N

ιG
pC

ϕ

ϕ
pC

ϕN

ιH
pC ϕN
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for every N P NCpHq we have that ϕ
pC ˝ ιG

pC
“ ιH

pC
˝ ϕ. □

Applying the Nikolov–Segal Theorem and the universal property we ob-
tain the following useful lemma.

lem:EpisHoms_Ghat_G
Lemma II.B.1.6. Let C be a formation of finite groups and let G be a
finitely generated group. For every Q P C there are bijections

hompG
pC , Qq Ñ hompG,Qq and epipG

pC , Qq Ñ epipG,Qq.

II.B.2. Finite quotients determine the completion. At this point
we have seen the interactions between subgroup separability, the profinite
topology, and profinite completions. While developing these abstract the-
ories is certainly interesting it is now time to link everything back to our
motivating question from the introduction.

Given a finitely generated group G and a class of groups
X . To what extent do the isomorphism classes of finite
quotients of G determine G amongst groups in X?

The following theorem was first proved by Dixon, Formanek, Poland
and Ribes [DFPR82]. Our proof is considerably simplified by applying the
Nikolov–Segal Theorem.

thm.DixonFormanekPolandRibes
Theorem II.B.2.1. Let G and H be topologically finite generated profi-

nite groups. If the isomorphism types of continuous finite quotients of G and
H are equal, then G – H as profinite groups.

Proof. Let Gn denote the intersection of all subgroups of G of index
n and define Hn similarly. We have G “ lim

ÐÝ
G{Gn and similarly H “

lim
ÐÝ

H{Hn.

Claim II.B.2.2. G{Gn – H{Hn.

Proof of claim. There exists an open subgroup N of H with H{V –

G{Gn. Because the intersection of normal subgroups of G{Gn whose index
is at most n is trivial, we may write N as an intersection of open normal
subgroups of H of index at most n. Now, |G{Gn| “ |H{V | ď |H{Hn| and
by symmetry we obtain |G{Gn| ě |H{Hn|. Whence, the claim. ■

It remains to establish that the transition maps in the two inverse systems
are compatible. Let In :“ IsopG{Gn,H{Hnq denote the set of isomorphisms
G{Gn Ñ H{Hn and let ϕn P In. Since ϕn maps normal subgroups to normal
subgroups, it induces a unique isomorphism ψnm : G{Gm Ñ H{Hm such that

G{Gn G{Gm

H{Hn H{Hm.

ϕn ψnm

It follows that tIn, ψnmu is an inverse system of non-empty finite sets
and so the inverse limit Ψ “ lim

ÐÝ
In and defines an isomorphism of inverse

systems lim
ÐÝ

G{Gn Ñ lim
ÐÝ

H{Hn. Thus, G – H. □

Corollary II.B.2.3. Let C be a formation of finite groups and let G and
H be finitely generated groups. If the sets of isomorphism types of finite
quotients of G and H in C are isomorphic, then G

pC – H
pC.
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The following lemma is extraordinarily useful.

Lemma II.B.2.4 (The Promoting Epimorphisms Lemma). Let C be a for-
mation of finite groups and let G be a finitely generated residually C group.
If φ : G↠ H is an epimorphism, and G

pC – H
pC, then φ is an isomorphism.

Proof. Let g P kerφ and note that there is a finite quotient α : G↠ Q
such that in Q P C and αpgq ‰ 1. The map α is not in the image of
the injection hompH,Qq Ñ hompG,Qq. Thus, |hompG,Qq| ą |hompH,Qq|

contradicting Lemma II.B.1.6. □

II.B.3. Enter profinite rigidity. We are now ready to reformulate
our profinite rigidity question from the introduction in terms of profinite
completions:

Motivating Question (Profinite rigidity). Given a finitely generated
group G and a class of groups X . To what extent does pG determine G
amongst groups in X?

This also raises a second question about group invariants.

Motivating Question (Profinite invariants). Let X be a class of finitely
generated residually finite groups and let G,H P X . If pG – pH, what proper-
ties do G and H share?

A first straightforward observation is that the lattice of finite index sub-
groups of G and of pG are intimately related.

Proposition II.B.3.1. Let C be a formation of finite groups. If G is a
finitely generated residually finite group, then there is a bijection

η : tN ďfi G : N open in τCpGqu Ñ tU : U ď G
pC an open subgroupu

by N ÞÑ N ; with inverse given by U ÞÑ U X G. Moreover, if H,K P NCpGq

and H ď K, then
(1) |K : H| “ |K : H|;
(2) H P K if and only if H P K; and in this case K{H “ K{H;
(3) if L P NCpGq, then K X L “ K X L; and xK,Ly “ xK,Ly.

In particular, the topology of G
pC induces on G the full pro-C topology.

Proof. Let H be a finite index subgroup of G open in τCpGq. Clearly,
H ď G X H. Let g P G X H and recall that H “ lim

ÐÝNPNCpGq
HN{N . So

g P HN . Since CoreGpHq P NCpGq we have g P CoreGpHqH “ H. Thus
GXH ď H.

Let U be an open subgroup of G
pC . Since G is dense in G

pC if follows that
GX U is dense in U . Hence, U XG “ U . This establishes the bijection η.

We now prove (1). It suffices to establish the result in the case that
K “ G. As G is dense in G

pC we have GH “ G
pC . Let t1, . . . , tn be a right

transversal of H in G
pC , so G “

šn
i“1Hti. Now, if t P G, then GXHt “ tH.

So,

G “ GX

˜

n
ž

i“1

Hti

¸

“

n
ž

i“1

Hti
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and so |G
pC : H| “ |G : H|.

To prove (2) first suppose that H Ĳ G. For every N P NCpGq we have
HN{N Ĳ G{N . Hence, H Ĳ G

pC . Now, suppose U is an open normal
subgroup of G

pC , then U XG P G. Hence, normal subgroups map to normal
subgroups under η.

Now, suppose H P K ď G such that H,K P NCpGq. The homorphism
K Ñ K Ñ K{H has kernel K X H “ H. Thus, it is an isomorphism since
|H : K| “ |H : K| by (1).

Item (3) follows from items (1) and (2) and the fact that η is a bijection
as claimed.

We now prove the “in particular”. But this follows immediately from the
bijection η. □

Let G be finitely generated and residually C. If H ď G, then the pro-C
topology on G induces some mystery pro topology on H and so also deter-
mines some completion of H. As G is residually C we have that H embeds
into G

pC and determines a subgroupH. This yields an epimorphismH
pC Ñ H.

Clearly, this map is injective exactly when G induces the full pro-C topology
on H. From this we obtain the following easy lemma.

Lemma II.B.3.2. Let C be a formation of finite groups, let G be a residually
C group, and let i : H Ñ G be an inclusion. If for every finite index subgroup
H 1 ď H, the subgroup H 1 is C-separable in G, then the natural map i

pC : H pC Ñ

G
pC is an isomorphism.

We highlight an important consequence for LERF groups.

Corollary II.B.3.3. Let G be a finitely generated LERF group. If H is a
finitely generated subgroup of G, then the natural map pH Ñ H ď pG is an
isomorphism.

II.B.4. Genus of groups. The (profinite) genus GpGq of a finitely
generated residually finite group G is defined to be the set

GpGq “

!

H f. g. residually finite | pH – pG
)

{ – .

In other words, GpGq is the set of isomorphisms classes of finitely generated
residually finite groups whose profinite completion is isomorphic to that of
G.

If B is a class of residually finite groups, then we denote by GBpGq :“
GpGq X B the B-genus of G. We call a finitely generated residually finite
group G profinitely rigid (resp. B-profinitely rigid) if GpGq “ tGu (resp.
GBpGq “ tGu). We say that G is almost profinitely rigid (resp. almost
B-profinitely rigid) if |GpGq| ă 8 (resp. |GBpGq| ă 8).

Note that these definitions are equivalent to the ones given in the intro-
duction.

II.B.5. Varieties of groups.

Definition II.B.5.1. A non-empty variety of groups is a non-empty collec-
tion of groups X such that ifG P X thenG satisfies a given set of equationally
defined relations tripx1, . . . , xnq “ 1: i P Iu for every x1, . . . , xn P G.
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The following theorem of Birkhoff classifies when a class of groups forms
a variety of groups [Bir35].

Theorem II.B.5.2 (Birkhoff). A non-empty class of groups is a variety if
and only if it is closed under taking subgroups, quotients, and direct products.

Examples II.B.5.3. The following equations determine varieties of groups:
(1) Abelian groups: r “ rx, ys.
(2) Nilpotent groups of class at most c: r “ rr. . . rrx1, x2s, x3s . . . s, xcs
(3) Soluble groups of derived length at most n: since this class is closed

under subgroups, quotients, and direct products, it forms a variety
by Birkhoff’s Theorem.

(4) Burnside varieties: r “ xn. Any variety in which such an equation
holds is known as a Burnside variety. All groups in such a variety
are torsion and of exponent at most n.

If a variety of groups is defined by only finitely many equations then we
may multiply the equations together as r1px11 , . . . , xn1q . . . rkpx1k , . . . , xnk

q.
This new equation alone still defines the variety. In this case we saw that
the variety is defined by a group law.

Example II.B.5.4. Let pGiqiPN be a sequence of nilpotent groups such that
the class of Gi is i. The group

ś

iPNGi is not nilpotent. Hence, by Birkhoff’s
Theorem the class of all nilpotent groups does not form a variety. A similar
argument applies to the class of soluble groups.

thm:LawsPassToCompletion
Theorem II.B.5.5. Let G be a finitely generated residually finite group

and let r be a group law. Then G satisfies r if and only if pG satisfies r.

Proof. This is essentially a corollary of Birkhoff’s Theorem. Suppose
pG satisfies r. Since G is residually finite, by Exercise II.B.1.2, G ď pG. As
a variety is subgroup closed, it follows that G satisfies r. Conversely, if G
satisfies r, then so does every quotient of G. As varieties are closed under
direct products, it follows that the product

P “
ź

NĲG, |G:N |ă8

G{N

satisfies r. But pG ď P . Hence pG satisfies r. □

II.B.6. Profinite rigidity of finitely generated abelian groups.
The first Betti number of a finitely generated group G is

b1pGq :“ dimQpGab b Qq

where Gab is the abelianisation of G. lem:b1_profinite
Lemma II.B.6.1. Let p be a prime C be a formation of finite groups con-
taining all abelian p-groups. Let G and H be finitely generated groups. If H
is isomorphic to a dense subgroup of G

pC, then b1pHq ě b1pGq.

Proof. One has that b1pGq is the greatest integer k such that G sujects
onto pZ{pnqk for all n ě 1. Now, for every finite group Q, by density,
an epimorphism G

pC ↠ A restricts to an epimorphism on both G and H.
However, the map epipG

pC , Qq Ñ epipH,Qq need not be surjective. Thus, if
G surjects onto pZ{pnqk so does H. □
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lem:ab_profinite
Lemma II.B.6.2. Let C be a formation of finite groups containing all finite
abelian groups. Let G and H be finitely generated groups. If G

pC – H
pC, then

Gab – Hab.

Proof. Write Gab – Zr ‘ T1 and Hab – Zs ‘ T2 where Ti is a finite
abelian group. By Lemma II.B.6.1 we have that b1pGq “ b1pHq so r “ s.
Now, we have quotients G ↠ T2 and H ↠ T1 and hence T1 ↠ T2 and
T2 ↠ T1 (for these pick a prime p ą |T1||T2| and map Gi onto Tj ‘ pZ{pqr

for i “ j ` 1 mod 2). This implies T1 – T2 since they are finite. □

We are now ready to prove are first profinite rigidity result.

Theorem II.B.6.3. Let G be a finitely generated abelian group. Then,
GpGq “ tGu.

Proof. Let H P GpGq. By Theorem II.B.5.5 we see that pG is abelian.
SinceH ď pG we have thatH is abelian. The result follows from Lemma II.B.6.2
and the classification of finitely generated abelian groups. □

Exercise II.B.6.4. We will investigate profinite rigidity amongst Baumslag–
Solitar groups.

(1) Let n ě 2. Then, BSp1, nq – Zr1{ns ¸n Z
(2) If 1 ď |m| ă |n|, then there exists an epimorphism ν : BSpm,nq ↠

Zr1{mns ¸n{m Z.
(3) If gcdpm,nq “ 1, then ker ν “ BSpm,nqp8q.
(4) For m ě 2, the group BSpm,˘mq contains a non-abelian free sub-

group. [Hint: use the action on the Bass-Serre tree.]
(5) Let B denote the class of residually finite Baumslag-Solitar groups.

Then, GBpBSp1, nqq “ tBSp1, nqu.

The following exercise studies an interesting one-relator group due to
Baumslag [Bau69].

Exercise II.B.6.5. Let G “ xa, b | a “ ra, b´1absy.

(1) a2 “ apabq.
(2) pG “ pZ. [Hint: show every finite quotient of G is cyclic — you will

need to use Fermat’s Little Theorem.]
(3) G contains a non-abelian free subgroup.
(4) Conclude G is non-residually finite. [One could appeal to the profi-

nite rigidity of Z here, although it is overkill to do so.]

The next exercise, first observed by Baumslag [Bau74], gives examples
of some flexible virtually abelian groups.

Exercise II.B.6.6. We define two groups G and H are isomorphic to split
extensions of shape Z{11 ¸ Z. Here

G “ xa, t | a11 “ 1, tat´1 “ a4y

and
H “ xb, s | b11 “ 1, sa´1 “ a8y.
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(1) G is not isomorphic to H. [Hint: Use the fact that AutpZ{11q “

Z{10 and that t and s have different images contained in the Z{5
subgroup.]

(2) Every finite quotient of G is one of Z{n or Z{11 ¸ Z{k, where 5|k
and the action in the semi-direct is non-trivial of order 5.

(3) Every finite quotient of H is one of Z{n or Z{11 ¸ Z{k, where 5|k
and the action in the semi-direct is non-trivial of order 5.

(4) pG – pH – Z{11 ¸ pZ.

II.C. Torsion in the profinite completion

Our goal is to study how torsion in G influences the existence of torsion
in pG. Clearly, if pG is torsion-free then so is G. However, G being torsion-free
does not guarantee that pG is and in fact there are counterexamples.

In particularly nice situations we are able to relate the torsion in pG to
the torsion in G very concretely. However, the quest to do this will take a
rather unusual detour through group cohomology. We quickly outline why
one might think to connect these two areas:

(1) In nice situations the cohomological dimension of a torsion-free
group is finite;

(2) the cohomological dimension of a finite group is infinite;
(3) the cohomology theory of a finite group is ‘seen’ by finite modules;
(4) so if we can find reasonable conditions for the profinite completion

to see the cohomology of G, then we could try to detect torsion
using cohomological dimension.

Our main reference for the next few subsections is Serre’s book “Galois Co-
homology” [Ser97].

II.C.1. Continuous cohomology of profinite groups. Let G be a
profinite group. An abelian group M is a discrete G-module if M , equipped
with the discrete topology, is a G-module such that G acts continuously.

Let Cnc pG;Mq be the set of all continuous maps Gn`1 Ñ M . One defines
a coboundary operator dn : Cnc pG;Mq Ñ Cn`1pG;Mq in the usual way: for
f : Gn Ñ M we define

pdnfqpg0, ¨ ¨ ¨ , gn`1q “

n`1
ÿ

i“0

p´1qifpg0, g1, . . . , gi´1, gi`1, . . . , gn`1q.

Clearly, dnf is a function in Cn`1
c pG;Mq and dn`1˝dn “ 0. Thus, we obtain

a chain complex C‚
c pG;Mq and we define, the continuous cohomology groups

of G in M as
Hn
c pG;Mq “ ker dn`1{ im dn.

prop.Devissage_submodules
Proposition II.C.1.1. Let G be a profinite group written as the inverse
limit of finite groups pGiq and let M be a discrete G-module. Then, for all
n ě 0 we have

Hn
c pG;Mq “ lim

ÝÑ
i, APFGpMq

Hn
c pGi;Aq

where FGpMq consists of all finitely generated G-submodules of A.
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Proof. It is an exercise to check that the canonical homomorphism

lim
ÝÑ

i APFGpMq

Hn
c pG;Aq Ñ Hn

c pG;Mq

is an isomorphism. □

Remark II.C.1.2. From here basically everything reduces to the case of
finite groups. We highlight a number of facts

(1) the category of discrete G-modules does not in general have enough
projectives, but it does have enough injectives;

(2) if M is an injective discrete G-module, then Hq
c pG;Mq “ 0 for all

q ě 1;
(3) H0

c pG;Mq is the G-fixed points MG of M ;
(4) the functors M ÞÑ Hq

c pG;Mq are the derived functors of M ÞÑ MG;
(5) H1

c pG;Mq is the group of continuous crossed homomorphisms of G
to M ;

(6) if M is finite, then H2
c pG;Mq is in bijection with equivalence classes

of extensions 1 Ñ M Ñ E Ñ G Ñ 1. For a general M it is in
bijection with equivalence classes of factor systems.

II.C.2. Coinduced modules. Let G be a profinite group and let H ď

G be a closed subgroup. Let M be a discrete H-module. We define the coin-
duction of M from H to G to be the G-module coindGHpMq “ homHpG,Mq.
That is the group of continuous maps m˚ : G Ñ M satisfying

m˚phgq “ h ¨m˚pgq

for h P H and g P G. The G-module structure is given by

pgm˚qpxq “ m˚pg´1xq

where g, x P G. When H “ 1 we shall write coindpMq for the coinduction
and say that coindpMq is a coinduced module.

lem:Shapiro
Lemma II.C.2.1 (Shapiro’s Lemma). Let G be a profinite group and let
H ď G be a closed subgroup. Let M be a discrete H-module. Then,

(1) there are isomorphisms Hq
c pG; coindGHMq Ñ Hq

c pH;Mq;
(2) Hq

c pG; coindMq “ 0 for q ě 1.

Proof. We define a homomorphism

coindGHpMq Ñ M by m˚ ÞÑ m˚p1q

which induces homomorphisms Hq
c pG; coindGHMq Ñ Hq

c pH;Mq. The iso-
morphism follows from the fact that homGpN, coindGHpMqq “ homHpN,Mq

for every discrete G-module N . The second point also follows since this
shows that injective modules are mapped to injective modules under coin-
duction. □

II.C.3. Cohomological dimension. The cohomological dimension of
a discrete group G, denoted cdpGq is the smallest integer n or 8 such that
for every G-module M and every q ą n we have that HqpG;Mq “ 0.

For a prime p, the p-cohomological dimension of a profinite group G,
denoted cdppGq, is the smallest integer n or 8 such that for every finite
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discrete G-module M and every q ą n, the p-primary part of Hq
c pG;Mq is

zero. We define the profinite cohomological dimension to be
xcdpGq :“ sup

pPp
tcdppGqu .

The reader may worry that we have restricted ourselves to finite modules
instead of torsion modules. The next proposition will hopefully un-furrow
their brow.

prop:cd_p_equivs
Proposition II.C.3.1. Let p be a prime and let G be a profinite group. The
following are equivalent

(1) cdppGq ď n;
(2) the p-primary part of Hq

c pG;Mq “ 0 for all q ą n and every discrete
torsion G-module M ;

(3) Hq
c pG;Mq “ 0 for all q ą n and every discrete p-primary torsion

G-module M ;
(4) Hn`1

c pG;Mq “ 0 for every simple discrete G-module M killed by
p.

Proof. Trivially (2) implies (1). We show that (1) implies (3). Let
M be a discrete p-primary torsion G-module. If M is finite we are done
trivially. Otherwise we write M “ lim

ÝÑAPFGpMq
A and note that each A is a

finite module. Hence, for each A we have Hq
c pG;Aq “ 0 for q ą n. It follows

from Proposition II.C.1.1 that Hq
c pG;Mq “ 0.

The equivalence of (2) and (3) follows immediately from writing M “
À

Mppq, the canonical p-primary decomposition of M , and then identifying
HqpG;Mppqq with the p-primary part of Hq

c pG;Mq.
Clearly, (3) trivially implies (4). Now, assume (4), we aim to prove

(3). Any finite discrete p-primary torsion module N is an iterated extension
of simple discrete modules killed by p. From the long exact sequence in
cohomology and induction on the length of the composition series we obtain
that Hn`1

c pG;Nq “ 0. For a discrete p-primary torsion module A, we write
A as a limit of its finitely generated (hence finite) submodules and apply
Proposition II.C.1.1.

To conclude we induct on q, the base case q “ n`1 being complete. Now,
embed A into the co-induced module M “ hompG, Aq by a ÞÑ apxq “ a ¨ x.
We obtain an extension of G-modules 0 Ñ A Ñ M Ñ M{A Ñ 0 and so
obtain a long exact sequence in cohomology

¨ ¨ ¨ Ñ Hq
c pG;M{Aq Ñ Hq`1

c pG;Aq Ñ Hq`1
c pG;Mq Ñ ¨ ¨ ¨

where the first and third term of the pictured diagram are 0. Indeed, M{A is
a p-torsion module so the inductive hypothesis applies, and M is a coinduced
module so all of its cohomology vanishes above degree 0 by Lemma II.C.2.1.

□
prop:cdp_closed_subs

Proposition II.C.3.2. Let p be a prime and let G be a profinite group. If
H is a closed subgroup of G, then cdppHq ď cdppGq.

Proof. Suppose A is a discrete torsion H-module, then coindGHpMq is a
discrete torsion G-module and Hq

c pG; coindGHpMqq “ Hq
c pH;Mq. The result

follows from Proposition II.C.3.1. □
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II.C.4. The comparison map. Let G be a finitely generated group
and let M be a G-module. The map ι : G Ñ pG induces a comparison map
on cohomology groups

ιn : H
n
c pG;Mq Ñ HnpG;Mq.

If M is a finite G-module, then the universal property of the profinite
completion makes M a discrete G-module.

Following Serre [Ser97, §I.2.6], we say G is n-good if for all k ď n and
for all finite G-modules M , the comparison map ιk is an isomorphism. If G
is n-good for every n, then we say G is good.

lem:good_Serre_equivs
Lemma II.C.4.1. For a group G the following are equivalent:

(1) for every finite discrete pG-module M the map ιn : H
i
cp

pG;Mq Ñ

H ipG;Mq is bijiective for 0 ď i ď n and injective for i “ n` 1;
(2) for every finite discrete pG-module M the map ιn : H

i
cp

pG;Mq Ñ

H ipG;Mq is surjective for 0 ď i ď n
(3) G is n-good.

Proof. We have that (1) implies (2) and (3) and that (3) implies (2) so
it suffices to show that (2) implies (1) which we leave as an exercise.

[Hint: show that (2) implies for all c P HqpG;Mq and 1 ď q ď n there
exists a subgroup H of G, the preimage of an open subgroup K of pG such
that x maps to zero under the restriction map HqpG;Mq Ñ HqpH;Mq.
Now, show that the previous statement implies for all c P HqpG;Mq and
1 ď q ď n, there exists a finite G-module N containing M such that the
image of c is zero under the induced map HqpG;Mq Ñ HqpG;Nq taking N
to be the coinduced module coindGHpMq. Finally, show this last statement
implies (1) using induction on n and the long exact sequence in cohomology
for the short exact sequence 0 Ñ M Ñ N Ñ M{N Ñ 0.] □

lem:1-good_Serre
Lemma II.C.4.2. All groups are 1-good.

Proof. Let M be a finite G-module. By the universal property of a
profinite completion (Theorem II.B.1.3) we have that the image of G in
AutpMq is equal to the image of pG in AutpMq. Thus, the fixed point sub-
modules MG and M

pG are equal. Recall that H1pG;Mq – homGpG,Mq

which is equal to hom
pGp pG;Mq by Lemma II.B.1.6. But this latter group is

isomorphic to H1
c p pG;Mq. □

Example II.C.4.3. We record a number of examples
(1) Finite groups are good.
(2) Free groups are good. This follows from the fact that free groups

have cdpGq ď 1, Lemma II.C.4.1, and Lemma II.C.4.2.
The following extremely useful theorem of Lorensen [Lor08] will give us

many more examples.
thm.Lorensen_group_ext_good

Theorem II.C.4.4 (Lorensen). Let N and Q be n-good groups and sup-
pose that N is type FPn´1. If G is an extension 1 Ñ N Ñ G Ñ Q Ñ 1,
then G is n-good.

(1) Poly-{finitely generated free} groups are good.
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(2) Being good is a commensurability invariant (exercise)
(3) Finitely generated abelian groups are good.

II.C.5. Goodness and separability. The following proposition re-
lates goodness and separability of kernels in group extensions. The forward
direction was proven by Serre in [Ser97] and the converse was given by
Lorensen [Lor08, Proposition 2.4].

prop:Good_ResFin_Extensions
Proposition II.C.5.1. Let G be a group. The following are equivalent:

(1) G is 2-good;
(2) for every extension 1 Ñ N

i
ÝÑ E Ñ G Ñ 1 with N finitely gener-

ated, the map pi : pN Ñ pG is injective.

Proof. Assume first N is finite. We may reduce to the case where N is
a minimal normal subgroup of E because an extension of a good group with
finite kernel is good by Theorem II.C.4.4.

Suppose N is abelian. The action of E on N by conjugation gives N the
structure of a G-module with corresponding extension class c P H2pG;Nq.
By 2-goodness there is a corresponding class of H2

c p pG;Nq mapped to c by
the comparison map. In particular, there is a commutative diagram

1 N E G 1

1 N pE pG 1

where the first down arrow is an isomorphism and the third down arrow is
injective. Hence, the middle down arrow is injective too.

Suppose N is non-abelian. Observe that the subgroup K defined to be
the kernel of the map E Ñ AutpNq is finite index in E. We have NXK “ 1.
So the projection E Ñ G maps K injectively to a subgroup of finite index
in G. It follows that K and hence E are residually finite. Hence, the map
N “ pN Ñ pG is injective.

We now suppose N is finitely generated and that K is a finite index
subgroup of N . We need to show there is a finite index subgroup E0 of
E such that E0 X N ď K. As N is finitely generated there is finite index
characteristic subgroup H contained in K that is normal in E. Thus, we
obtain a commutative diagram

1 N E G 1

1 N{H pE{H pG 1

π

where N{H is finite. Now, by the result for the finite case we find E1
0 ď E{H

such that E1
0 X pN{Hq “ 1. Thus, E0 “ π´1pE1

0q satisfies E0 XN ď H ď K
as required.

We now prove (2) implies (1) following Lorensen’s argument. By Lemma II.C.4.1
it is enough to show the map H2

c p pG;Mq Ñ H2pG;Mq is surjective for all
finite discrete pG-modules M . Let c P H2pG;Mq and take a corresponding
group extension 1 Ñ M Ñ E Ñ G Ñ 1. Passing to profinite completions
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we obtain a short exact sequence of profinite groups 1 Ñ M Ñ pE Ñ pG Ñ 1.
The cohomology class of this extension in H2

c p pG;Mq is then mapped to c by
the homomorphism H2

c p pG;Mq Ñ H2pG;Mq. □

We record another theorem of Lorensen [Lor08, Theorem 2.10], this time
relating residual finiteness of group extensions and goodness.

Theorem II.C.5.2 (Lorensen). Let G be a group. The following are
equivalent

(1) G is residually finite and 2-good;
(2) for any extension 1 Ñ N Ñ E Ñ G Ñ 1, with N a finitely gener-

ated residually finite group, the group E is residually finite;
(3) 1 Ñ N Ñ E Ñ G Ñ 1, with N a finite group, the group E is

residually finite.

Proof. We leave this as an exercise since the proof is not dissimilar to
Proposition II.C.5.1 □

II.C.6. Relating cohomology to torsion.
lem:cd_hat_cd_Z

Lemma II.C.6.1. Let G be a good discrete group. If cdpGq ď n, then
xcdp pGq ď n.

Proof. Since cdpGq ď n, we have HqpG;Mq “ 0 for every G-module
M and every q ą n. If M is finite, by goodness we have Hq

c p pG;Mq “ 0 for
every q ą n. Whence, the lemma. □

We finally attain the goal of the section.
thm.good.tf

Theorem II.C.6.2. Let G be a residually finite good group. If cdpGq is
finite, then pG is torsion-free

Proof. Suppose pG is not torsion-free. Then, there exists g P pG of prime
order p. Now, H “ xgy is a closed subgroup of pG so cdppHq ď cdppGq. Since
H is discrete, the ordinary and continuous cohomology of H coincides. But
then HkpH;Fpq ‰ 0 for all k ě 0. So cdppHq is infinite and hence, by
Proposition II.C.3.2, so is cdpp pGq. Which contradicts Lemma II.C.6.1. □

II.C.7. When things go wrong. In this section we will see how being
torsion-free does not imply that the profinite completion is. To start we recall
a classical result of Mennicke [Men65].

thm.CongrCompl_SLn
Theorem II.C.7.1 (Mennicke). Let n ě 3 and let ď SLnpZq. If H is a

finite index subgroup of SLnpZq, then there exists an m such that H contains
Γm :“ kerpSLnpZq ↠ SLnpZ{mqq. In particular, SLnppZq “ {SLnpZq.

The ‘in particular’ conclusion of the previous theorem is known as the
congruence subgroup property. The groups Γm are known as congruence sub-
groups. For a general group A and a subgroup G of its outer automorphism
group we may define the congruence subgroups of G with respect to A as
follows: let C P A be a characteristic finite index normal subgroup, then
we obtain a homomorphism ϕC : OutpAq Ñ OutpA{Cq; our congruence sub-
groups are then the groups kerϕC X A. The congruence subgroups define a
pro-topology on G known as the congruence topology (with respect to A).
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One can take the completion with respect to the congruence topology to
obtain a profinite group known as the congruence completion (of G with re-
spect to A). Denote the congruence completion by G

zCpAq
. There is a natural

surjective map pG↠ G
zCpAq

of which we call its kernel the congruence kernel.

The Congruence Subgroup Problem. Let A be residually finite a
group. For which residually finite groups G ď OutpAq is the congruence
kernel of G with respect to A finite?

At the time of writing the congruence subgroup property (CSP) is known
for any S-arithmetic lattice in the following algebraic groups: a non-anisotropic
group, any group not of type An, and any unitary group of a hermitian form.
It is conjectured not to hold for lattices in rank one Lie groups. It is known
not to hold for lattices in SOpn, 1q except when n “ 7 where there are some
open cases — notably trialitarian lattices. It is open for many lattices in
SUpn, 1q — notably type II arithmetic lattices; and it is completely open for
lattices in Sppn, 1q and F´20

4 . In higher rank it is open for the cases of inner
and outer forms of An. In particular, it is open for cocompact lattices in
SL3pRq and SL2pRq ˆ SL2pRq.

The following result of Lubotzky exploits the CSP to produce a lot of
torsion in the profinite completion of torsion-free finite index subgroups of
SLnpZq for n ě 3 [Lub93].

Proposition II.C.7.2 (Lubotzky). For each r ě 2 there exists a finitely
generated torsion-free linear group G such that pG contains uncountably many
conjugacy classes of elements of order r.

Proof. Let n ě 3. The group SLnpZq is virtually torsion-free, let G
be any such finite index subgroup. Now, pG is a finite index open subgroup
of {SLnpZq which by Mennicke’s theorem Theorem II.C.7.1 is isomorphic to
ś

pPp SLnpZ
ppq. Hence, pG contains

ś

pPpzS SLnpZ
ppq as a direct factor where

S is a finite set of primes. Let r ě 2, by Dirichlet’s Theorem there is an
infinite set of primes Q with r|q ´ 1 and Q X S “ H. For every p P Q the
group Z

pp has a unit of order r and so, SLnpZ
ppq has an element gr of order r.

Let A Ď Q. We define an element αA “ paiq of SLnppZq by ai “ gr if p P A
and ai “ 1 otherwise. It is easy to see this gives an element of order r in G.
Moreover, if A and A1 are different subsets of Q, the elements αA and αA1

are not conjugate. □

II.D. Rigidity of virtually abelian groups

Todo 4: Write chapter

II.D.1. Background on crystallographic groups.

II.D.2. Almost rigidity.

II.D.3. Examples.



CHAPTER III

Profinite rigidity and nilpotent groups

III.A. Background on nilpotent groups

III.A.1. Central series and structure theorems. Given a group G
we define a series of subgroups

1 “ G0 ď G1 ď ¨ ¨ ¨ ď Gn “ G

to be a central series if each Gi Ĳ G and Gi`1{Gi is contained in ZpG{Giq
for all i. The lower central series of G is defined to be the series of subgroups

G “ γ1G ě γ2G ě . . .

where γ1G “ G and γn`1G “ rγnG,Gs. The upper central series of G is
defined to be the series of subgroups

1 “ ζ0G ď ζ1G “ ZpGq ď ζ2G ď . . .

where ζn`1G{ζnG “ ZpG{ζnGq and ζ1G “ ZpGq.
A group G is nilpotent if it admits a finite length central series termi-

nating in G. The length of the shortest central series of G is the nilpotency
class of G.

Exercise III.A.1.1. Let G be a nilpotent group. The nilpotent class of G
is equal to the length of the upper and lower central series.

Lemma III.A.1.2. If G is a nilpotent group and N Ĳ G is non-trivial, then
N X ZpGq is non-trivial.

Proof. We have G “ ζcG for some c. Thus, there exists a smallest
positive integer i such that N X ζiG ‰ 1. So, rN X ζiG,Gs ď N X ζi´1G “ 1.
Now, rG,N X ζiGs ď rG,N s X rG, ζiGs ď N X ζi´1G where the last inclusion
follows from rG, ζiGs ď ζi´1G. But NXζi´1G “ 1 by our choice of i. Hence,
i “ 1 and so N X ζ1G “ N X ZpGq is non-trivial. □

There are homomorphisms

ϵi : pγiG{γi`1Gq bGab ↠ γi`1G{γi`2G

by
aγi`1Gb grG,Gs ÞÑ ra, gsγi`2G.

The maps ϵi are surjective because γi`1G “ rγiG,Gs.

Exercise III.A.1.3. The maps ϵi are well defined group homomorphisms.
lem:nilp_induct_otimes_ext

Lemma III.A.1.4. Let P be a group theoretic property which is closed under
(1) extensions; and
(2) homomorphic images of tensor products of abelian groups.

If G is a nilpotent group such that Gab has P, then G has P.

34
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Proof. Let Fi “ γiG{γi`1G. Suppose Fi has P, then Fi`1 has P be-
cause it is a homomorphic image of Fi b Gab. Thus, by induction every
lower central factor of G has P. Since some γc`1G “ 1 and P is clsoed
under extensions, it follows that G has P. □

Corollary III.A.1.5. Let G be a nilpotent group. G is finite if and only if
Gab is finite.

A group G is polycyclic if G admits a series

1 P G0 P ¨ ¨ ¨ P Gn “ G

such that Gi{Gi´1 is a (possibly infinite) cyclic group. If each Gi is isomor-
phic to Z, then we say G is poly-Z.

ex.tf_nilp_poly_Z
Exercise III.A.1.6. Let G be a finitely generated torsion-free nilpotent
group. Then, G is poly-Z.

Let π Ď p be a non-empty set of prime powers. We call a group whose
elements are finite order and have prime power divisors in π a π-group, such
a number is a π-number.

A crafty application of the previous lemma gives us a huge amount of
control over the torsion in nilpotent groups.

Lemma III.A.1.7. Let G be a nilpotent group. The torsion elements of G
form a normal subgroup T such that G{T is torsion-free. Moreover, T “
ś

pPp Tp where Tp is the maximal p-subgroup of G.

Proof. Let π Ď p be a non-empty set of primes. Let Tπ denote the
subgroup generated by all elements of order whose prime divisors are in
π. Now, T ab

π is generated by elements whose prime divisors are in π too.
Moreover, it is actually equal to the set of such elements. Now, since T ab

π is
a π-group, it follows from Lemma III.A.1.4 is also a π-group.

If π “ p, then T “ Tp consists of all elements of finite order. Hence, T is
torsion. Taking π “ p we obtain that Tp is a p-group. It is now easy to see
that Tp P G, that T “

ś

pPp Tp, and that G{T is torsion-free. □

Exercise III.A.1.8. Finitely generated nilpotent groups are residually fi-
nite.

A group G is periodic if it has a finite exponent k, that is, gk “ 1 for
every g P G.

lem:fg_nilp_periodic
Lemma III.A.1.9. If G is a finitely generated periodic nilpotent group, then
G is finite.

Proof. We induct on the nilpotency class c. If c “ 1, then G is a finitely
generated periodic abelian group and so obviously finite. Suppose c ą 1, and
note that rG,Gs is of nilpotency class c ´ 1. By the inductive hypothesis,
rG,Gs is finite. Thus, G is an extension of finite groups and hence finite. □

III.A.2. Dimension subgroups. Let G be a group and denote its
integral group ring by ZG. The augmentation ϵ : ZG Ñ Z by

ř

ngg ÞÑ
ř

ng.
The kernel I of ϵ is the augmentation ideal of ZG.
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For a positive integer n, the nth dimension subgroup of G is the subgroup

∆npGq “ p1 ` Inq XG.

Note that this is the kernel of the action by right multiplication of G on
ZG{In. Hence, we obtain a sequence of G-modules

0 “ In{In Ď In´1{I ¨ ¨ ¨ Ď Ii{In Ď ¨ ¨ ¨ Ď ZG{In

Since Ii´1pG ´ 1q Ď Ii for each i, we see that G acts trivially on each
of the factors. Hence, G{∆npGq is nilpotent of class at most n ´ 1 and
γnpGq ď ∆npGq.

Lemma III.A.2.1. If G is a finitely generated group, then In{In`1 is a
finitely generated abelian group.

Proof. We first show that I{I2 is finitely generated (in fact isomorphic
to Gab.

Define G Ñ I{I2 by g ÞÑ pg´1q `I2. This is a homomorphism since for
g, h P G we have gh ´ 1 “ pg ´ 1q ` ph ´ 1q ` pg ´ 1qph ´ 1q. As the latter
group is abelian we obtain a homomorphism

α : Gab Ñ I{I2 by grG,Gs ÞÑ pg ´ 1q ` I2.

As I is a free abelian group with basis tg´ 1 : 1 ‰ g P Gu we may define
a homomorphism

ν : I Ñ Gab by pg ´ 1q ÞÑ grG,Gs.

Now, for g, h P G non-trivial we have

νppg ´ 1qph´ 1qq “ νppgh´ 1q ´ pg ´ 1q ´ ph´ 1qq

“ ghrG,Gs ¨ pgrG,Gsq´1 ¨ phrG,Gsq´1

“ 1.

Since I2 is generated by elements of the form pg ´ 1qph ´ 1q we see that
I2 ď ker ν and that ν induces a homomorphism µ : I{I2 Ñ Gab. It is easy
to check that α ˝ µ “ idI{I2 and that µ ˝ α “ idGab .

Now, if n ě 1 there is a surjective homomorphism of abelian groups

βn : I{I2 b In´1{In Ñ In{In`1 by pa` Inqpb` I2q ÞÑ ab` In`1.

Hence, the result follows from induction on n. □
thm.Jennings.DimSub

Theorem III.A.2.2 (Jennings). If G is a finitely generated torsion-free
nilpotent group of class c, then ∆c`1pGq “ 1.

III.A.3. Nilpotent actions. Let G and A be groups and suppose G
acts on A by automorphisms. We say G acts nilpotently on A if there exists
a composition series

0 ď A0 P A1 P ¨ ¨ ¨ P An “ A

such that Ai is a G-invariant normal subgroup and the induced G-action on
Ai{Ai´1 is trivial. We call the series a G-series of length n.

lem:nilp_actions
Lemma III.A.3.1. Suppose a group G acts faithfully on a group A. If A
admits a nilpotent G-series of length n, then G is nilpotent of class at most
n´ 1.
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Proof. Exercise. □
lem:nilp_PID_actions

Lemma III.A.3.2. Let R be a commutative principal ideal domain, let M
be a finitely generated free R-module, and suppose G acts nilpotently and
R-linearly on M . Then, M has an R-basis such that the G-action may be
represented by unitriangular matrices.

Proof. Define a chain of submodules 0 “ M0 Ă M1 Ă ¨ ¨ ¨ Ă Mk “ M ,
where Mi{Mi´1 “ pM{Mi´1qG. Then, each Mi is an R-submodule of M .
Moreover, M{Mi´1 is R-torsion-free and hence a free R-module because R
is a PID. We may write Mi “ Mi´1 ‘

´

Àri
j“1 xi,jR

¯

and the union of these
bases txi,j : 1 ď i ď k, 1 ď j ď riu suffices. □

III.A.4. Canonical representations.

Definition III.A.4.1 (Representation ideal). Let G be a finitely generated
torsion-free nilpotent group of class c. Define an ideal J “ JpGq Ď ZG by
J{Ic`1 “ pZG{Ic`1qtors. We call J the representation ideal of G. The reason
for this will quickly become apparent.

lem:nilp_rep_J_cap_G
Lemma III.A.4.2. Let G be a finitely generated torsion-free nilpotent group
of class c. Then, pJ ` 1q XG “ 1.

Proof. Let H “ pJ ` 1q XG. Let N denote the kernel of the G-action
on J{Ic`1 by right multiplication. By Theorem III.A.2.2, G acts faithfully
on ZG{Ic`1, so HXN is a subgroup of hompZG{I, J{Ic`1q and hence finite.
But G is torsion free, so H XN is trivial. □

lem:nilp_rep_J_faithful
Lemma III.A.4.3. Let G be a finitely generated torsion-free nilpotent group
of class c. The group G¸AutpGq acts on ZG faithfully extending the action
of G, and the ideal J is invariant under this action. Moreover, G¸ AutpGq

acts faithfully on ZG{J .

Proof. Let A “ G¸AutpGq. We have that G acts by left translation on
ZG and a P AutpGq acts on elements by apcg ¨gq “ cg ¨ga and then extending
linearly. We leave it to the reader to check this is a well-defined action. It is
easy to see that J is invariant under the action of A by its definition.

We now show the action on the quotient is faithful. Consider an element
ga P A that acts trivially on ZG{J . We will show the element is trivial.
In J we have ga ´ 1 “ 1g

a
´ 1. So ga “ 1 by Lemma III.A.4.2. Hence

g “ 1. Let h P G and observe that hah´1 ´ 1 “ hhah´1 ´ h P hJ Ď J .
Applying Lemma III.A.4.2 we obtain hah´1 “ 1 for all h P G. Thus, a “

1 P AutpGq. □
thm:nilp_canonical_rep

Theorem III.A.4.4. Let G be a finitely generated torsion-free nilpotent
group of class c. There exists an injective homomorphism αG : G¸AutpGq Ñ

GLnpZq, where n “ rankZpZG{Jq and image of G is unitriangular. More-
over, the homomorphism is canonical in the following sense: any isomor-
phism β : G Ñ H may be realised by conjugating imαG to imαH in GLnpZq.

Proof. By Lemma III.A.4.3 we see that A “ G ¸ AutpGq acts faith-
fully on the free abelian group ZG{J and so the associated homomorphism
α : A Ñ GLpZG{Jq “ GLnpZq is injective. Since G acts nilpotently on
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ZG{J , by Lemma III.A.3.2, we may choose a basis such that G is contained
in the upper unitriangular matrices of GLnpZq.

It remains to verify the canonicity of the homomorphism. An isomor-
phism β : G Ñ H induces an isomorphism b : ZG{JpGq Ñ ZH{JpHq. Clearly,
b can represented by an element of GLnpZq and we have pimαGqb “ imαH “

impαH ˝ βq as required. □

III.B. Almost rigidity of nilpotent groups

The goal of this section is to prove a splendid result of Pickel [Pic71]
that the genus of a finitely generated torsion-free nilpotent group is finite.
Our proof follows the line of argument in D. Segal’s book [Seg83] and we
provide a very loose sketch of Pickel’s argument in a latter section. Segal’s
argument more readily generalises to the class of polycyclic-by-finite groups,
see [GPS80]. But the reader should note this is a highly non-trivial result
depending on a number of other results of Grunewald and Segal [Seg78,
GS78, GS79, GS82].

III.B.1. Some sledgehammers involving algebraic groups. Let G
be a algebraic Q-group with a representation ρ : G Ñ GLnpQq and denote by
πk : GpZq Ñ GpZ{kq the congruence quotients of GpZq. Given two elements
a, b P Zn we say that they G-equivalent modulo k if there exists an element
g P GpZ{kq such that g ¨ a “ b where a, b are the images of a and b under
the map Zn ↠ pZ{kqn. If a and b are G-equivalent for every positive integer
k, then we say that a and b are in the same local orbit of G.

The following theorem of Borel and Serre [BS64], which goes far beyond
the scope of this text, is the key result in an extremely useful sledgehammer
we will need later.

thm:BorelSerre_local_orbits
Theorem III.B.1.1 (Borel–Serre). Let G be a algebraic Q-group with a

representation ρ : G Ñ GLnpQq. Every local orbit of G in Qm is a union of
finitely many orbits of GpZq.

We say two subgroups H and K of GpZq are GpZq-congruent if their
images in GpZ{kq are conjugate for all positive integers k.

We arrive at our sledgehammer, due to Grunewald and Segal [GS82].
The proof again goes far beyond what we will cover here.

thm:GL_congruence_soluble
Theorem III.B.1.2 (Grunewald–Segal). Let G be a algebraic Q-group.

Then every GpZq-congruence class of soluble-by-finite subgroups of GpZq is
the union of finitely many conjugacy classes of subgroups of GpZq.

Todo 5: Add sketch of proof

III.B.2. Proving almost rigidity.
lem:Segal_canonical_rep_profinite

Lemma III.B.2.1 (Segal). Let G and H be finitely generated torsion-free
nilpotent groups. If pG – pH, then

n :“ rankZpZG{JpGqq “ rankZpZH{JpHqq,

and the images of the canonical representations of G and H are GLnpZq-
congruent.
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Proof. Throughout this proof we let Gk denote the subgroup of G
generated by kth powers of elements, that is by the set tgk |g P Gu. We note
that G{Gk has exponent k and so is a finite group by Lemma III.A.1.9.

Let G be of nilpotency class c and let JpGq be the representation ideal
of ZG and let VG “ ZG{J . Denote by αG : G Ñ GLpVGq “ GLnpZq the
canonical representation G given by Theorem III.A.4.4.

By Theorem II.B.5.5 we have that H is nilpotent of class c. Let 0 ă

m P Z and choose q such that qJpGq Ď Ic`1. Since ZG{Ic`1 is a finitely
generated abelian group, the quotient RG “ ZG{pqmZG ` Ic`1q is a finite
ring. Thus, the kernel K of the map G Ñ Rˆ

G (the unit group) has finite
index in G. In particular, Gk is contained in K for some k ą 0.

Let Gk “ G{Gk and and note that the induced ring hommorphism ZG Ñ

ZGk is surjective with kernel pGk ´ 1qZG. Thus, there is an isomorphism

r : RG “ ZG{pqmZG` Ic`1q Ñ ZGk{pqmZGk ` Ic`1
Gk

q

where rpqZG` Ic`1q “ qZGk ` Ic`1
Gk

.
Our choice of q implies that VG{mVG “ pqZG ` Ic`1q{pqmZG ` Ic`1q.

Indeed, VG “ ZG{J and qJ Ď Ic`1, so VG “ qZG ` Ic`1. Thus, by the
isomorphism r we have

VG{mVG – pqZGk ` Ic`1
Gk

qpqmZGk ` Ic`1
Gk

q.

We now choose q, k such that qJH Ď Ic`1
H and Hk ´ 1 “ qmZH ` Ic`1

H .
Let Hk “ H{Hk. Note that Gk the largest quotient of G of exponent
k and similarly for Hk and H. Since pH – pG we have an isomorphism
fm : Gk Ñ Hk, which induces an isomorphism

pqZGk ` Ic`1
Gk

q{pqmZGk ` Ic`1
Gk

q Ñ pqZHk ` Ic`1
Hk

q{pqmZHk ` Ic`1
Hk

q.

Hence, we get an isomorphism Fm : VG{mVG Ñ VH{mVH . Note that this
implies the canonical representation αH : H Ñ GLpVHq of H has image in
GLnpZq. Indeed, VG{mVG has order mn and similarly for VH{mVH (here we
take m ą 1).

We fix isomorphisms a : VG Ñ Zn and b : VH Ñ Zn inducing αG and αH .
We have a commutative square of isomorphism

VG{mVG pZ{mqn

VH{mVH pZ{mqn

am

Fm cm

bm

where cm “ bm ˝ Fm ˝ a´1
m is an element of GLnpZ{mq. Let πm : GLnpZq Ñ

GLnpZmq denote the congruence map. Our goal now is to show the equality
πmpαGpGqqcm “ πM pαHpHq.
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Let g P G and h P h and denote there images in Gk and Hk by g and h.
Suppose fmpgq “ h. We claim the following diagram commutes

pZ{mqn pZ{mqn

VG{mVG VG{mVG

VH{mVh VH{mVH

pZ{mqn pZ{mqn

cn

πmpαGpgqq

cnFm

g

an

Fm

an

h

bn bn

πmpαHphqq

but this is clear from the definitions of the maps involved. Thus it follows
that πmpαHphqq “ c´1

n πmpαGpgqqcn as required. As m was arbitrary, we
conclude that G and H are GLnpZq-congruent. □

PickelsTheorem
Theorem III.B.2.2 (Pickel). Let G be a finitely generated torsion-free

nilpotent group. Then, GpGq is finite and all such groups are torsion-free
nilpotent.

Proof. Let H P GpGq. By Theorem II.B.5.5 we see that H is nilpotent.
By Theorem II.C.4.4 and Exercise III.A.1.6 we conclude that H is good. By
Theorem II.C.6.2 we see that H is torsion-free. Thus, we are in the setting
of Lemma III.B.2.1 and so conclude that H is GLnpZq-congruent to G for
some n. But by Theorem III.B.1.2 H is contained in one of finitely many
conjugacy classes of subgroups of GLnpZq. Hence, there are only finitely
many choices for H. □

III.B.3. Pickel’s original argument. We summarise the original ar-
gument of Pickel [Pic71] in the following steps:

(1) Reduce to studying the pro-p completion.
(2) Relate the Mal’cev completions of the pro-p completions of G to

rational Lie algebra of G tensored with the p-adic rationals. Specif-
ically, the group given by the non-zero elements with multiplication
the lie bracket is isomorphic to the Mal’cev completion of the pro-p
completion of G.

(3) The deep result of Borel–Serre (Theorem III.B.1.1) implies the finite-
ness of the number of isomorphism classes rational Lie algebras
which become isomorphic when tensored with the p-adic rationals.

(4) We apply the result of Borel–Serre to show that GpGq consists
of finitely many commensurability classes of torsion-free nilpotent
groups.

(5) We now show that the isomorphism classes in each commensura-
bility class rCs of the groups in GpGq is in bijection with a set of
double cosets in some algebraic group.

(6) A deep result of Borel [Bor63] implies that the number of double
cosets is finite.
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III.B.4. Extension to polycyclic groups.
Todo 6: Write section
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Todo 7: Prove Jennings theorem

Todo 8: Prove the Borel–Serre finiteness theorem

Todo 9: Better account of Galois cohomology
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